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Abstract

In this paper, we study the existence and uniqueness of mild solutions for nonlinear fractional
differential equations subject to nonlocal integral boundary conditions in the frame of a ψ-Hilfer
fractional derivative. Further, we discuss different kinds of stability of Ulam-Hyers for mild solutions
to the given problem. Using the fixed point theorems together with generalized Gronwall inequality
the desired outcomes are proven. The obtained results generalize many previous works that contain
special cases of function ψ. At the end, some pertinent examples demonstrating the effectiveness of
the theoretical results are presented.
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1. Introduction

In latest years, fractional differential equations (FDE’s) theory has received very broad regard
in the fields of pure and applied mathematics, see [14, 18, 19, 25] and emerge naturally in diverse
scopes of science, with many applications, e.g. [12, 13, 17, 20, 34].
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In 1999 Hilfer introduced the generalization of Riemann-Liouville and Caputo fractional deriva-
tives (FD’s) see [17]. The fundamental works on the theory of FDE’s with Hilfer derivative can be
found in [9, 15, 16, 22, 35]. In 2018, Sousa and Oliveira [31] presented the so-called ψ-Hilfer FD with
respect to another function, to unify in one fractional operator a large number of fractional deriva-
tives and thus, window open to new applications. Some works involving the fractional derivative
ψ-Hilfer, can be found in [2, 4, 5, 33, 37].

One of the crucial and interesting areas of research in the theory of functional equations is devoted
to the stability analysis. Stability analysis is the fundamental property of the mathematical analysis
which has got paramount importance in many fields of engineering and science. In the existing
literature, there are stabilities such as Mittag Leffler, h-stability, exponential, Lyapunov stability
and so on. In the nineteenth-century, Ulam and Hyers presented an interesting type of stability
called Ulam-Hyers stability, which, nowadays has been picked up a great deal of consideration due
to a wide range of applications in many fields of science such as optimization and mathematical
modeling.

The stability of the Ulam can be viewed as a special kind of data dependence which was initiated
by the Ulam in [27]. Rassias in [26] extended the concept of UH stability. Many authors subsequently
discussed different UH stability problem for various types of fractional integral (FI) and FDE’s
utilizing various techniques, see [1, 3, 6, 7, 8, 23, 24, 29, 32, 38] and the references therein.

Recently, in [15] the authors prove the existence and uniqueness of global solution for nonlinear
FDE’s of the type {

HDa1,a2κ (%) = f (%,κ (%)) , % ∈ (a, b) , a > 0,

I1−γ
a+ κ (a) = κa, γ = a1 + a2 − αβ,

where HDa1,a2 is the Hilfer FD of order a1 ∈ (0, 1) and type a2 ∈ [0, 1].
In [9], Asawasamrit et al. they studied the following Hilfer FDE with nonlocal integral boundary

conditions 
HDa1,a2κ (%) = f (%,κ (%)) , % ∈ [a, b],

κ (a) = 0, κ (b) =
m∑
i=1

θiI
ηi
a+κ (δi) , δi ∈ [a, b],

(1.1)

where Iηia+ is the Riemann-Liouville FI of order ηi > 0, 1 < a1 < 2, 0 ≤ a2 ≤ 1 and θi ∈ R. On
the other hand, the authors in [21] have investigated the existence and stability results of implicit
problem for FDE (1.1) involving ψ-Hilfer fractional derivative.

Motivated by the aforementioned works and inspired by [31], we study existence, uniqueness and
Ulam stability of the following nonlinear FDE involving ψ-Hilfer fractional derivative with nonlocal
integral boundary conditions

HDa1,a2;ψ
a+ κ (%) = f (%,κ (%)) , % ∈ (a, b) , a > 0,

κ (a) = 0, I2−γ;ψ
a+ κ (b) =

m∑
i=1

θiI
ηi;ψ
a+ κ (δi) ,

(1.2)

where HDa1,a2;ψ
a+ is the left sided ψ-Hilfer FD of order a1 ∈ (1, 2) and type a2 ∈ [0, 1], I2−γ;ψ

a+ , Iηi;ψa+ are
the left sided ψ-Riemann-Liouville FI of orders 2−γ, ηi > 0 respectively, γ = a1 +a2 (2− a1) ∈ (1, 2],
−∞ < a < b <∞, θi ∈ R, i = 1, 2, ...,m, 0 ≤ a ≤ δ1 < δ2 < δ3 < ... < δm ≤ b, and f : [a, b]×R→ R
is a given continuous function.

The considered problem involves a general operator. More precisely, for various values of a2 and
ψ, the problem (1.2) is reduced to FDE’s involving the FDs like Hilfer, Caputo, Riemann-Liouville,
Katugampola, Erdelyi-Kober, Hadamard, and many other FDs, which yields to generalize many
pervious works.
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The organization of the rest of the paper divided of four sections. In Section 2, some notations,
definitions of fractional calculus, ulam stability and fixed point theorems are presented. In Section
3, Some useful results about the existence, uniqueness and Ulam stability of the nonlinear FDE are
obtained. In Section 4, we present some examples to illustrates the effectiveness of the theoretical
results.

2. Preliminary notions

In this part, we give some essential ideas of fractional calculus, definitions of various types of
Ulam stability and results of nonlinear analysis (fixed point theorems and generalized Gronwall’s
inequality) that prerequisite in our analysis.

Let J = [a, b] , a1 ∈ (1, 2), a2 ∈ [0, 1]. By C = C (J,R) we denote the Banach space of all
continuous functions κ : J → R with norm

‖κ‖ = sup {|κ (%)| : % ∈ J} ,

and L1 (J,R) be the Banach space of Lebesgue integrable functions κ : J → R with norm

‖κ‖L1 =

∫
J

|κ (%)| d%.

Let υ : J → R be an integrable function and ψ ∈ Cn (J,R) an increasing function such that ψ′ (%) 6= 0,
for any % ∈ J .

Definition 2.1 ([18]). The ath1 -ψ-Riemann-Liouville FI of a function υ is described by

Ia1;ψ
a+ υ (%) =

1

Γ (a1)

∫ %

a

ψ′ (ϑ) (ψ (%)− ψ (ϑ))a1−1 υ (ϑ) dϑ.

Definition 2.2 ([18]). The ath1 -ψ-Riemann-Liouville FD of a function υ is described by

Da1;ψ
a+ υ (%) =

(
1

ψ′ (%)

d

dt

)n
I

(n−a1);ψ
a+ υ (%) ,

where n = [a1] + 1, n ∈ N.

Definition 2.3 ([31]). The ψ-Hilfer FD of a function υ of order a1 and type a2 is described by

HDa1,a2;ψ
a+ υ (%) = I

a2(n−a1);ψ
a+ D

[n]
ψ I

(1−a2)(n−a1);ψ
a+ υ (%) ,

where D
[n]
ψ =

(
1

ψ′(%)
d
dt

)n
.

Lemma 2.4 ([18, 31]). Let a1, a2, µ > 0. Then
1) Ia1;ψ

a+ Ia2;ψ
a+ κ (%) = Ia1+a2;ψ

a+ κ (%).

2) Ia1;ψ
a+ (ψ (%)− ψ (a))µ−1 = Γ(µ)

Γ(a1+µ)
(ψ (%)− ψ (a))a1+µ−1.

Lemma 2.5 ([31]). If x ∈ Cn (J,R), a1 ∈ (n− 1, n) and a2 ∈ (0, 1), then

1) Ia1;ψ
a+

HDa1,a2;ψ
a+ κ (%) = κ (%)−

n∑
k=1

(ψ(%)−ψ(a))v−k

Γ(v−k+1)

(
1

ψ′(%)
d
dt

)n−k
I

(1−a2)(n−a1);ψ
a+ κ (a).

2) HDa1,a2;ψ
a+ Ia1;ψ

a+ κ (%) = κ (%).
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To define Ulam’s stability, we consider the following FDE

HDa1,a2;ψ
a+ κ (%) = f (%,κ (%)) , % ∈ J. (2.1)

Definition 2.6 ([28]). The equation (Eq) (2.1) is said to be UH stable if there is a number k ∈ R∗
such that for each ε > 0 and for each κ̃ ∈ C solution of the inequality∣∣∣HDa1,a2;ψ

a+ κ̃ (%)− f (%, κ̃ (%))
∣∣∣ ≤ ε, % ∈ J, (2.2)

there is a solution κ ∈ C of the Eq (2.1) with

|κ̃ (%)− κ (%)| ≤ kfε, % ∈ J.

Definition 2.7 ([28]). Assume that κ̃ ∈ C satisfies the inequality in ( 2.2) and κ ∈ C is a solution
of the Eq (2.1). If there is a function φf ∈ C (R+,R+) with φf (0) = 0 satisfying

|κ̃ (%)− κ (%)| ≤ φf (ε), % ∈ J.

Then the Eq (2.1) is said to be generalized Ulam-Hyres (GUH) stable.

Definition 2.8 ([28]). The Eq (2.1)is said to be UHR stable with respect to φf ∈ C (J,R+) if there
is a number k ∈ R∗ such that for each ε > 0 and for each κ̃ ∈ C solution of the inequality∣∣∣HDa1,a2;ψ

a+ κ̃ (%)− f (%, κ̃ (%))
∣∣∣ ≤ εφf (%), % ∈ [0, 1] , (2.3)

there is a solution κ ∈ C of the Eq (2.1) with

|κ̃ (%)− κ (%)| ≤ kφ,fφf (%)ε, % ∈ J.

Definition 2.9 ([28]). Assume that κ̃ ∈ C satisfies the inequality in ( 2.3) and κ ∈ C is a solution
of the Eq (2.1). If there is a constant kφ,f > 0 such that

|κ̃ (%)− κ (%)| ≤ kφ,fφf (%), % ∈ J.

Then the Eq (2.1) is said to be generalized Ulam-Hyres-Rassias (GUHR) stable.

Remark 2.10. If there is a function v ∈ C (dependent on κ̃), such that
1) |v (%)| ≤ ε, for all % ∈ J ,
2) HDa1,a2;ψ

a+ κ̃ (%) = f (%, κ̃ (%)) + v (%), % ∈ J .
Then the function κ̃ ∈ C is a solution of the inequality (2.2).

We state the following generalization of Gronwall’s Lemma.

Lemma 2.11 ([36]). Let u and v be two integrable functions, z be continuous with domain [a, b]
and ψ is defined at the beginning. Suppose that

1) u and v are nonnegative,
2) z is nonnegative and nondecreasing.
If

u (%) ≤ v (%) + z (%)

∫ %

a

ψ′ (ϑ) (ψ (%)− ψ (ϑ))a1−1 u (ϑ) dϑ,

then

u (%) ≤ v (%) +

∫ %

a

∞∑
k=1

[z (%) Γ (a1)]k

Γ (kα)
ψ′ (ϑ) (ψ (%)− ψ (ϑ))kα−1 v (ϑ) dϑ.
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Corollary 2.12 ([36]). Under the hypotheses of Lemma 2.11, assume further that v (%) is nonde-
creasing function for % ∈ [a, b]. Then

u (%) ≤ v (%)Ea1 (z (%) Γ (a1) (ψ (%)− ψ (ϑ))a1) ,

where Ea1 (.) is the Mittag-Leffler function of one parameter, defined as

Ea1 (%) =
∞∑
k=0

%k

Γ (kα + 1)
.

Theorem 2.13 (Banach fixed point theorem [30]). Let Ω 6= ∅ be a closed subset of a Banach
space ( X , ‖.‖). If S̃ : Ω→ Ω is a contraction mapping. Then, S̃ admits a unique fixed point.

Theorem 2.14 (Schauder fixed point theorem [30]). Let Ω 6= ∅ be a bounded closed convex
subset of a Banach space X . If S̃ : Ω → Ω be a continuous compact operator. Then, S̃ has a fixed
point in Ω.

To obtain our results, we need the following lemma.

Lemma 2.15. Let

Λ =
(ψ (b)− ψ (a))

Γ (2)
−

m∑
i=1

θi
Γ (γ + ηi)

(ψ (δi)− ψ (a))γ+ηi−1 6= 0, (2.4)

and for any q ∈ C (J), then the nonlocal boundary value problem
HDa1,a2;ψ

a+ κ (%) = q (%) , % ∈ (a, b) ,

κ (a) = 0, I2−γ;ψ
a+ κ (b) =

m∑
i=1

θiI
ηi;ψ
a+ κ (δi) ,

(2.5)

has a unique mild solution given by

κ (%) =
(ψ (%)− ψ (a))γ−1

ΛΓ (γ)

(
m∑
i=1

θiI
a1+ηi;ψ
a+ q (δi)− I2+a1−γ;ψ

a+ q (b)

)
+ Ia1;ψ

a+ q (%) . (2.6)

Proof . Taking ψ-FI Ia1;ψ
a+ to the first equation of (2.5),and from Lemma 2.5, we get

κ (%)−
2∑

k=1

(ψ (%)− ψ (a))γ−k

Γ (γ − k + 1)
h

[2−k]
ψ I

(1−a2)(2−a1);ψ
a+ κ (a) = Ia1;ψ

a+ q (%) , % ∈ J. (2.7)

We have (1− a2) (2− a1) = 2− γ. Therefore

κ (%) =
(ψ (%)− ψ (a))γ−1

Γ (γ)

(
1

ψ′ (%)

d

dt

)
I2−γ;ψ
a+ κ (%)

∣∣∣
%=a

+
(ψ (%)− ψ (a))γ−2

Γ (γ − 1)
I2−γ;ψ
a+ κ (%)

∣∣∣
%=a

+ Ia1;ψ
a+ q (%)

=
(ψ (%)− ψ (a))γ−1

Γ (γ)
Dγ−1;ψκ (%)

∣∣
%=a

+
(ψ (%)− ψ (a))γ−2

Γ (γ − 1)
I2−γ;ψ
a+ κ (%)

∣∣∣
%=a

+ Ia1;ψ
a+ q (%) .
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Put
c1 = Dγ−1;ψκ (%)

∣∣
%=a

and c2 = I2−γ;ψ
a+ κ (%)

∣∣∣
%=a

, % ∈ J.

Then

κ (%) =
(ψ (%)− ψ (a))γ−1

Γ (γ)
c1 +

(ψ (%)− ψ (a))γ−2

Γ (γ − 1)
c2 + Ia1;ψ

a+ q (%) .

Because lim
%→a

(ψ (%)− ψ (a))γ−2 =∞, in the view of boundary conditions κ (a) = 0, we must have

c2 = 0.

Replacing c2 by their value in (2.7)), we get

κ (%) =
(ψ (%)− ψ (a))γ−1

Γ (γ)
c1 + Ia1;ψ

a+ q (%) . (2.8)

Next, we use the second boundary condition to determine the constant c1 . Applying Iηi;ψa+ on both
side of equation (2.8), we get

Iηi;ψa+ κ (%) =
c1

Γ (γ + ηi)
(ψ (%)− ψ (a))γ+ηi−1 + Ia1+ηi;ψ

a+ q (%) . (2.9)

From the condition κ (b) =
m∑
i=1

θiI
ηi;ψ
a+ κ (δi) and (2.9), we have

κ (b) =
m∑
i=1

θiI
ηi;ψ
a+ κ (δi)

= c1

m∑
i=1

θi
Γ (γ + ηi)

(ψ (δi)− ψ (a))γ+ηi−1 +
m∑
i=1

θiI
a1+ηi;ψ
a+ q (δi) . (2.10)

From equations (2.8) and (2.10), we have

I2−γ;ψ
a+ κ (b) =

(ψ (b)− ψ (a))

Γ (2)
c1 + I2+a1−γ;ψ

a+ q (b)

= c1

m∑
i=1

θi
Γ (γ + ηi)

(ψ (δi)− ψ (a))γ+ηi−1 +
m∑
i=1

θiI
a1+ηi;ψ
a+ q (δi) .

Thus, we find

c1 =
1

Λ

(
m∑
i=1

θiI
a1+ηi;ψ
a+ q (δi)− I2+a1−γ;ψ

a+ q (b)

)
.

Substituting the value of c1 into (2.8), we obtain the fractional integral equation (2.6). �

3. Existence results

In what follows, we apply some fixed point theorems to demonstrate the existence and uniqueness
results for problem (1.2).

To obtain our findings, We need the following assumptions.
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(As1) There is a constants l1 > 0 such that

|f (%,κ)− f (%, κ̃)| ≤ l1 |κ − κ̃| .

(As2) There is a function w ∈ C (J,R+) such that

|f (%,κ)| ≤ w(%), ∀ (%,κ) ∈ J × R.

For the sake of convenience, we put

k1 =
m∑
i=1

|θi|
(ψ (b)− ψ (a))a1+ηi+γ−1

|Λ|Γ (γ) Γ (a1 + ηi + 1)
, k2 =

(ψ (b)− ψ (a))1+a1

|Λ|Γ (γ) Γ (3 + a1 − γ)
, k3 =

(ψ (b)− ψ (a))a1

Γ (a1 + 1)
,

Aκ =

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 f (ϑ,κ (ϑ)) dϑ

− 1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))1+a1−γ f (ϑ,κ (ϑ)) dϑ

)
. (3.1)

3.1. Existence and uniqueness results via Banach’s fixed point theorem

Theorem 3.1. Let (As1) valid. If

(k1 + k2 + k3) l1 < 1, (3.2)

then, (1.2) has a unique mild solution on J , where k1, k2, k3 are given by (3.1).

Proof . We switch the problem (1.2) into a fixed point problem, we consider the operator S̃ : C → C
as (
S̃κ
)

(%) =
(ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 f (ϑ,κ (ϑ)) dϑ

− 1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))1+a1−γ f (ϑ,κ (ϑ)) dϑ

)
+

1

Γ (a1)

∫ %

a

ψ′ (ϑ) (ψ (%)− ψ (ϑ))a1−1 f (ϑ,κ (ϑ)) dϑ.

Clearly, the solution of (1.2) is as a fixed point of the operator S̃.
By (As1), for any κ, κ̃ ∈ C and % ∈ J , we get∣∣∣(S̃κ) (%)−

(
S̃κ̃
)

(%)
∣∣∣

≤ (ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 |f (ϑ,κ (ϑ))− f (ϑ, κ̃ (ϑ))| dϑ

+
1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))1+a1−γ |f (ϑ,κ (ϑ))− f (ϑ, κ̃ (ϑ))| dϑ
)

+
1

Γ (a1)

∫ %

a

ψ′ (ϑ) (ψ (%)− ψ (ϑ))a1−1 |f (ϑ,κ (ϑ))− f (ϑ, κ̃ (ϑ))| dϑ

≤ l1

(
m∑
i=1

|θi|
(ψ (b)− ψ (a))a1+ηi+γ−1

|Λ|Γ (γ) Γ (a1 + ηi + 1)
+

(ψ (b)− ψ (a))1+a1

|Λ|Γ (γ) Γ (3 + a1 − γ)
+

(ψ (b)− ψ (a))a1

Γ (a1 + 1)

)
‖κ − κ̃‖ .
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Thus ∥∥∥(S̃κ)− (S̃κ̃)∥∥∥ ≤ (k1 + k2 + k3) l1 ‖κ − κ̃‖ .

From (3.2), S̃ is a contraction. As an outcome of Banach’s fixed point theorem, S̃ has a unique fixed
point which is a unique mild solution of (1.2) on J . �

3.2. Existence results via Schauder’s fixed point theorem

Theorem 3.2. Suppose that the hypothesis (As2) is satisfied. Then, (1.2) has at least one mild
solution on J .

Proof . Let Ω = {κ ∈ C : ‖κ‖ ≤M0} be a non-empty closed bounded convex subset of C, and M0

is chosen such
M0 ≥ w∗ (k1 + k2 + k3) ,

where k1, k2, k3 are given by (3.1), w∗ = sup {w(%) : % ∈ J}. It is a known that continuity of the
functions f implies that the operator S̃ is continuous. It remain to demonstrate that the operator S̃
is compact and will be given in the following steps.

Step 1.We show that S̃ (Ω) ⊂ Ω.
In view of (As2) and for each % ∈ J , we have∣∣∣(S̃κ) (%)

∣∣∣
≤ (ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 |f (ϑ,κ (ϑ))| dϑ

− 1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))1+a1−γ |v (ϑ)| dϑ
)

+
1

Γ (a1)

∫ %

a

ψ′ (ϑ) (ψ (%)− ψ (ϑ))a1−1 |f (ϑ,κ (ϑ))| dϑ

≤ (ψ (%)− ψ (a))γ−1w∗

|Λ|Γ (γ)

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 dϑ

+
1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))1+a1−γ dϑ

)
+

w∗

Γ (a1)

∫ %

a

ψ′ (ϑ) (ψ (%)− ψ (ϑ))a1−1 dϑ

≤ w∗

(
m∑
i=1

|θi|
(ψ (b)− ψ (a))a1+ηi+γ−1

|Λ|Γ (γ) Γ (a1 + ηi + 1)
+

(ψ (b)− ψ (a))1+a1

|Λ|Γ (γ) Γ (3 + a1 − γ)
+

(ψ (b)− ψ (a))a1

Γ (a1 + 1)

)
≤ w∗ (k1 + k2 + k3) ,

and consequently ∥∥∥S̃κ∥∥∥ ≤M0.

Hence, S̃ (Ω) ⊂ Ω and the set S̃ (Ω) is uniformly bounded.
Step 2. S̃ sends bounded sets of C into equicontinuous sets.
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For %1, %2 ∈ J , %1 < %2 and for κ ∈ Ω, we have∣∣∣(S̃κ) (%2)−
(
S̃κ
)

(%1)
∣∣∣

≤ (ψ (%2)− ψ (a))γ−1 − (ψ (%1)− ψ (a))γ−1

|Λ|Γ (γ)

×

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 |f (ϑ,κ (ϑ))| dϑ

+
1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))2+a1−γ |f (ϑ,κ (ϑ))| dϑ
)

+
1

Γ (a1)

∫ %1

a

ψ′ (ϑ)
(
(ψ (%2)− ψ (ϑ))a1−1 − (ψ (%1)− ψ (ϑ))a1−1) |f (ϑ,κ (ϑ))| dϑ

+
1

Γ (a1)

∫ %2

%1

ψ′ (ϑ) (ψ (%2)− ψ (ϑ))a1−1 |f (ϑ,κ (ϑ))| dϑ

≤
(
(ψ (%2)− ψ (a))γ−1 − (ψ (%1)− ψ (a))γ−1)w∗

|Λ|Γ (γ)

×

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 dϑ

+
1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))1+a1−γ dϑ

)
+

w∗

Γ (a1 + 1)
((ψ (%2)− ψ (a))a1 − (ψ (%1)− ψ (a))a1) .

As %1 → %2, we obtain ∣∣∣(S̃κ) (%2)−
(
S̃κ
)

(%1)
∣∣∣→ 0.

Hence S̃ (Ω) is equicontinuous. The Arzela-Ascoli theorem implies that S̃ is compact. Thus by
Schauder fixed point theorem, we prove that S̃ has at least one fixed point κ ∈ Ω that is in fact a
mild solution of (1.2) on J . �

4. Ulam stability results

In this portion, we discuss the various types of Ulam stability for the ψ-Hilfer problem (1.2).

Theorem 4.1. Suppose that the hypothesis (As1) and condition (3.2) are satisfied. Then, the first
Eq of (1.2) is UH stable.

Proof . Let ε > 0. Let κ̃ ∈ C be any solution of the inequality∣∣∣HDa1,a2;ψ
a+ κ̃ (%)− f (%, κ̃ (%))

∣∣∣ ≤ ε, % ∈ J.

Then, there exists v ∈ C such that

HDa1,a2;ψ
a+ κ̃ (%) = f (%, κ̃ (%)) + v (%) , % ∈ J, (4.1)
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and |v (%)| ≤ ε, % ∈ J . In view of Lemma 2.15, we get

κ̃ (%) =
(ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)
Aκ̃ + Ia1;ψ

a+ f (%, κ̃ (%)) + Ia1;ψ
a+ v (%) , (4.2)

is solution of Eq (4.1), where

Aκ̃ =

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 f (ϑ, κ̃ (ϑ)) dϑ

− 1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))1+a1−γ f (ϑ, κ̃ (ϑ)) dϑ

)
. (4.3)

From Eq (4.2), we have ∣∣∣∣∣κ̃ (%)− (ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)
Aκ̃ − Ia1;ψ

a+ f (%, κ̃ (%))

∣∣∣∣∣
≤ Ia1;ψ

a+ |v (%)| ≤ ε
(ψ (%)− ψ (a))a1

Γ (a1 + 1)
. (4.4)

Let κ̃ ∈ C be solution of the problem{
HDa1,a2;ψκ̃ (%) = f (%, κ̃ (%)) ,

κ (a) = κ̃ (a) , I2−γ;ψ
a+ κ (b) = I2−γ;ψ

a+ κ̃ (b) ,
(4.5)

where I2−γ;ψ
a+ κ (b) =

m∑
i=1

θiI
ηi;ψ
a+ κ (δi) and I2−γ;ψ

a+ κ̃ (b) =
m∑
i=1

θiI
ηi;ψ
a+ κ̃ (δi). By Lemma 2.15, the equiva-

lent fractional integral equation of (4.5) is

κ̃ (%) =
(ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)
Aκ̃ + Ia1;ψ

a+ f (%, κ̃ (%)) ,

where Aκ̃ is given by (4.3).
Now, by using the assumption (As1), we obtain

|Aκ − Aκ̃|

≤ (ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 |f (ϑ,κ (ϑ))− f (ϑ, κ̃ (ϑ))| dϑ

+
1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))1+a1−γ |f (ϑ,κ (ϑ))− f (ϑ, κ̃ (ϑ))| dϑ
)

≤ (ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)

(
m∑
i=1

|θi|
Γ (a1 + ηi)

∫ δi

a

ψ′ (ϑ) (ψ (δi)− ψ (ϑ))a1+ηi−1 |κ (ϑ)− κ̃ (ϑ)| dϑ

+
1

Γ (2 + a1 − γ)

∫ b

a

ψ′ (ϑ) (ψ (b)− ψ (ϑ))1+a1−γ |κ (ϑ)− κ̃ (ϑ)| dϑ
)

≤ (ψ (%)− ψ (a))γ−1 l1
|Λ|Γ (γ)

(
m∑
i=1

|θi| Ia1+ηi;ψ
a+ |κ (δi)− κ̃ (δi)|+ I2+a1−γ;ψ

a+ |κ (b)− κ̃ (b)|
∣∣∣) . (4.6)
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Because κ (b) = κ̃ (b), we must have κ (δi) = κ̃ (δi), i = 1, 2, ...,m. Therefore, from inequality (4.6),
we obtain Aκ = Aκ̃. From (4.4) and (As1), we get

|κ̃ (%)− κ (%)|

=

∣∣∣∣∣κ̃ (%)− (ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)
Aκ − Ia1;ψ

a+ f (%,κ (%))

∣∣∣∣∣
≤

∣∣∣∣∣κ̃ (%)− (ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)
Ax̃ − Ia1;ψ

a+ f (%, κ̃ (%))

∣∣∣∣∣
+
∣∣∣Ia1;ψ
a+ f (%, κ̃ (%))− Ia1;ψ

a+ f (%,κ (%))
∣∣∣

≤ ε
(ψ (b)− ψ (a))a1

Γ (a1 + 1)
+

l1
Γ (a1)

∫ %

a

ψ′ (ϑ) (ψ (%)− ψ (ϑ))a1−1 |κ̃ (ϑ)− κ (ϑ)| dϑ.

Applying Lemma 2.11 with u (%) = |κ̃ (%)− κ (%)| , v (%) = ε (ψ(b)−ψ(a))a1

Γ(a1+1)
and z (%) = l1

Γ(a1)
, we obtain

|κ̃ (%)− κ (%)|

≤ ε
(ψ (b)− ψ (a))a1

Γ (a1 + 1)

[
1 +

∫ %

a

∞∑
k=1

[l1]k

Γ (kα)
ψ′ (ϑ) (ψ (%)− ψ (ϑ))kα−1 dϑ

]

≤ ε
(ψ (b)− ψ (a))a1

Γ (a1 + 1)

[
1 +

∞∑
k=1

[l1 (ψ (b)− ψ (a))a1 ]
k

Γ (kα + 1)

]

= ε
(ψ (b)− ψ (a))a1

Γ (a1 + 1)
Ea1 (l1 (ψ (b)− ψ (a))a1) .

By setting

kf =
(ψ (b)− ψ (a))a1

Γ (a1 + 1)
Ea1 (l1 (ψ (b)− ψ (a))a1) .

we obtain
|κ̃ (%)− κ (%)| ≤ kfε. (4.7)

Therefore, the first Eq of (1.2) is UH stable. �

Remark 4.2. Define φf : R+ → R+ by φf (ε) = kfε. Then, φf ∈ C (R+,R+) and φf (0) = 0. Then
inequality (4.7) can be written as

|κ̃ (%)− κ (%)| ≤ φf (ε) .

Thus, the first Eq of (1.2) is GUH stable.

In the next, we introduce the following function.
(As3) The function φ ∈ C ([a, b] ,R+) is increasing and there is a constant λφ > 0 such that

Ia1;ψ
a+ φ (%) ≤ λφφ (%) , ∀% ∈ J.

Theorem 4.3. Assume that the hypotheses (As1), (As3) and condition (3.2) are satisfied. Then,
the first Eq of (1.2) is UHR stable.
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Proof . Let any ε > 0. Let κ̃ ∈ C be any solution of the inequality∣∣∣HDa1,a2;ψ
a+ κ̃ (%)− f (%, κ̃ (%))

∣∣∣ ≤ εφ (%) , % ∈ J.

Then, proceeding as in the proof of Theorem 4.1. From Remark 2.10 , for some continuous function
v such that |v (%)| < εφ (%), we get∣∣∣∣∣κ̃ (%)− (ψ (%)− ψ (a))γ−1

|Λ|Γ (γ)
Aκ̃ − Ia1;ψ

a+ f (%, κ̃ (%))

∣∣∣∣∣
≤ Ia1;ψ

a+ |v (%)| ≤ εIa1;ψ
a+ |φ (%)| ≤ ελφφ (%) , % ∈ J.

Taking κ̃ ∈ C as any solution of (4.5), and following same steps as in the proof of Theorem 4.1,we
get

|κ̃ (%)− κ (%)|

≤ ελφφ (%) +
l1

Γ (a1)

∫ %

a

ψ′ (ϑ) (ψ (%)− ψ (ϑ))a1−1 |κ̃ (ϑ)− κ (ϑ)| dϑ, % ∈ J.

By applying Corollary 2.12, we obtain

|κ̃ (%)− κ (%)| ≤ ελφφ (%)Ea1 (l1 (ψ (%)− ψ (a))a1)

≤ ελφφ (%)Ea1 (l1 (ψ (b)− ψ (a))a1) .

By taking a constant
kφ,f = Ea1 (l1 (ψ (b)− ψ (a))a1) .

we obtain
|κ̃ (%)− κ (%)| ≤ kφ,fεφ (%) . (4.8)

Therefore, the first Eq (1.2) is UHR stable. �

Remark 4.4. By putting ε = 1 in the inequality (4.8), we deduce that first Eq of (1.2) is GUHR
stable.

5. Examples

In this section, we consider some particular cases of the nonlinear FDE’s to apply our results in
the study of existence and Ulam stabilities, specifically, UH and UHR.

Consider the following FDE of the form
HDa1,a2;ψ

a+ κ (%) = f (%,κ) , % ∈ (a, b) ,

κ (a) = 0, I2−γ;ψ
a+ κ (b) =

m∑
i=1

θiI
ηi;ψ
a+ κ (δi) .

(5.1)

The following examples are particular cases of (5.1).

Example 5.1. Consider the FDE given by (5.1). Taking ψ (%) = log %, a2 → 0, a = 1, b = e,
a1 = 3

2
, θ1 = 1

2
, θ2 = 1

10
, η1 = 1

4
, η2 = 5

2
, δ1 = 3

2
, δ2 = 2. Then, the problem (5.1) reduce to the

following problem {
HaD

3
2
,0;log %

1+ κ (%) = f (%,κ) , % ∈ (1, e) ,

κ (1) = 0, I
1
2

;log %
a+ κ (e) = 1

2
I

1
4

;log %
a+ κ

(
3
2

)
+ 1

10
I

5
2

;log %
a+ κ (2) ,

(5.2)
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which is the FDE involving Hadamard FD. In this case γ = 3
2

and with this data we find Λ =
0.71802 6= 0. Consider the function f : [1, e]× R→ R given by

f (%,κ) =
cos (%)

exp (%2 − 1) + 5

|κ|
|κ|+ 1

.

For κ, κ̃ ∈ R and % ∈ [1, e], we have

|f (%,κ)− f (%, κ̃)| ≤
∣∣∣∣ cos (%)

exp (%2 − 1) + 5

(
|κ|
|κ|+ 1

− |κ̃|
|κ̃|+ 1

)∣∣∣∣
≤ 1

exp (%2 − 1) + 5

(
|κ − κ̃|

(1 + |κ|) (1 + |κ̃|)

)
≤ 1

6
|κ − κ̃| ,

thus, the assumption (As1) is satisfied with l1 = 1
6
. We will check that condition (3.2) is satisfied.

Indeed

(k1 + k2 + k3) l1 '
0.5 + 0.79 + 0.75

6
' 0.34 < 1.

Then by Theorem 3.1, (5.2) has a unique mild solution on [1, e]. Further, by Theorem 4.1 we conclude
that the first Eq of (5.2) is UH stable with

kf =
1

Γ
(

5
2

)E 3
2

(
1

6

)
.

Define

φ (%) = log (%)
3
2 , % ∈ [1, e] .

Then, φ is continuous increasing function such that

I
3
2

;log %

1+ φ (%) =
1

Γ
(

3
2

) ∫ %

1

(
log

%

ϑ

) 1
2

log (%)
3
2
dϑ

ϑ

≤ 1

Γ
(

3
2

) ∫ %

1

(
log

%

ϑ

) 1
2 dϑ

ϑ

≤ 1

Γ
(

5
2

) log (%)
3
2 .

Therefore, for λφ = 1

Γ( 5
2)

and φ (%) = log (%)
3
2 , hypothesis (As3) is satisfied. Hence, by Theorem 4.3

the first Eq of (5.2) is UHR stable.

Example 5.2. Consider the FDE given by (5.1). Taking ψ (%) = %, a2 → 0, a = 0, b = 1, a1 = 5
4
,

θ1 = 3, θ2 = 5, η1 = 1
4
, η2 = 1

2
, δ1 = 1

4
, δ2 = 1

2
. Then, the problem (5.1) reduce to the following

problem {
RLD

5
4
,0;%

0+ κ (%) = f (%,κ) , % ∈ (0, 1) ,

κ (0) = 0, I
3
4

;%

0+ κ (1) = 3I
1
4

;%

0+ κ
(

1
4

)
+ 5I

1
2

;%

0+ κ
(

1
2

)
,

(5.3)

which is the FDE involving Riemann-Liouville FD. In this case γ = 5
4

and with this data we find
Λ = −3.9274 6= 0. Consider the function f : [0, 1]× R→ R given by

f (%, x) =
sin (%)

exp (%2) + 2

|κ|
|κ|+ 1

.
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For κ, κ̃ ∈ R and % ∈ [0, 1], we have

|f (%,κ)− f (%, κ̃)| ≤
∣∣∣∣ sin (%)

exp (%2) + 2

(
|κ|
|κ|+ 1

− |κ̃|
|κ̃|+ 1

)∣∣∣∣
≤ 1

exp (%2) + 2

(
|κ − κ̃|

(1 + |κ|) (1 + |κ̃|)

)
≤ 1

3
|κ − κ̃| ,

thus, the assumption (As1) is satisfied with l1 = 1
3
. We will check that condition (3.2) is satisfied.

Indeed

(k1 + k2 + k3) l1 '
1.51 + 0.14 + 0.88

3
' 0.84 < 1.

Then by Theorem 3.1, (5.3) has a unique mild solution on [0, 1]. Further, by Theorem 4.1 we conclude
that the first Eq of (5.3) is UH stable with

kf =
1

Γ
(

9
4

)E 5
4

(
1

3

)
.

Define
φ (%) = %

5
4 , % ∈ [0, 1] .

Then, φ is continuous increasing function such that

I
5
4

;%

0+ φ (%) =
1

Γ
(

5
4

) ∫ %

0

(%− ϑ)
1
4 %

5
4dϑ

≤ 1

Γ
(

5
4

) ∫ %

0

(%− ϑ)
1
4 dϑ

≤ 1

Γ
(

9
4

)% 5
4 .

Therefore, for λφ = 1

Γ( 9
4)

and φ (%) = %
5
4 , hypothesis (As3) is satisfied. Hence, by Theorem 4.3 the

first Eq of (5.3) is UHR stable.

Example 5.3. Consider the FDE given by (5.1). Taking ψ (%) = %, a2 → 1
2
, a = 0, b = 1, a1 = 7

4
,

θ1 = 3, θ2 = 5, η1 = 1
4
, η2 = 1

2
, δ1 = 1

4
, δ2 = 1

2
. Then, the problem (5.1) reduce to the following

problem {
HD

7
4
, 1
2

;%

0+ κ (%) = f (%,κ) , % ∈ (0, 1) ,

κ (0) = 0, I
1
8

;%

0+ κ (1) = 3I
1
4

;%

0+ κ
(

1
4

)
+ 5I

1
2

;%

0+ κ
(

1
2

)
,

(5.4)

which is the FDE involving Hilfer FD. In this case γ = 15
8

and with this data we find Λ = −1.1725 6= 0.
Consider the function f : [0, 1]× R→ R given by

f (%,κ) =
sinκ

exp (%2) + 6
.

For κ, κ̃ ∈ R and % ∈ [0, 1], we have

|f (%,κ)− f (%, κ̃)| ≤ |κ − κ̃|
exp (%2) + 6

≤ 1

7
|κ − κ̃| ,
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thus, the assumption (As1) is satisfied with l1 = 1
7
. We will check that condition (3.2) is satisfied.

Indeed

(k1 + k2 + k3) l1 '
3.1 + 0.5 + 0.62

7
' 0.60 < 1.

Then by Theorem 3.1, (5.4) has a unique mild solution on [0, 1]. Further, by Theorem 4.1 we conclude
that the first Eq of (5.4) is UH stable with

kf =
1

Γ
(

11
4

)E 7
4

(
1

7

)
.

Define
φ (%) = %

7
4 , % ∈ [0, 1] .

Then, φ is continuous increasing function such that

I
7
4

;%

0+ φ (%) =
1

Γ
(

7
4

) ∫ %

0

(%− ϑ)
3
4 %

7
4dϑ

≤ 1

Γ
(

7
4

) ∫ %

0

(%− ϑ)
3
4 dϑ

≤ 1

Γ
(

11
4

)% 7
4 .

Therefore, for λφ = 1

Γ( 11
4 )

and φ (%) = %
7
4 , hypothesis (As3) is satisfied. Hence, by Theorem 4.3 the

first Eq of (5.4) is UHR stable.

6. Conclusions

In this article, we have studied the existence, uniqueness and Ulam-Hyers stability of mild solu-
tions for nonlinear ψ-Hilfer FDE’s with nonlocal integral boundary conditions. Our investigations
based on the fixed point theorems and generalized Gronwall inequality. The acquired results in this
paper are more general and cover many of the parallel problems that contain special cases of function
ψ, because our proposed problem contains a general fractional derivative that combines many classic
fractional derivatives.

In future works, we will try to extend the existing problem in the present paper to a general
structure with the Mittag-Leffler power law [10] and for fractal fractional operators [11].
Acknowledgements. The authors are grateful to the referees for their valuable comments which
have led to improvement of the presentation.
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Erdélyi-Kober fractional integral boundary condition, Advances in Difference Equations 2021(1) (2021) 1–17.
[23] A. Lachouri, A. Ardjouni and A. Djoudi, Existence and Ulam stability results for nonlinear hybrid implicit Caputo

fractional differential equations, Mathematica Moravica 24(1) (2020) 109–122.
[24] A. Lachouri, A. Ardjouni and A. Djoudi, Existence and ulam stability results for fractional differential equations

with mixed nonlocal conditions, Azerbaijan Journal of Mathematics 11(2) (2021) 78–97.
[25] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
[26] TM. Rassians, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
[27] IA. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes-Bolyai Math. 54(4) (2009) 125–133.
[28] IA. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26 (2010)

103–107.
[29] W. Shatanawi, A. Boutiara, MS. Abdo, MB. Jeelani and K. Abodayeh, Nonlocal and multiple-point fractional

boundary value problem in the frame of a generalized Hilfer derivative, Adv. Differ. Equ. 2021 (2021) 294.
[30] DR. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, no. 66, Cambridge University Press, London-

New York, 1974.
[31] JVC. Sousa and ECD. Oliveira, On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simula.

60 (2018) 72–91.
[32] JVC. Sousa and ECD. Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations

using the Ψ -Hilfer operator, J. Fixed Point Theory Appl. 20 (2018) 96.
[33] JVC. Sousa and ECD. Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equa-

tion, Appl. Math. Lett. 81 (2018) 50–56.
[34] VE. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, Fields and Media.

Springer, New York, 2011.
[35] STM. Thabet, B. Ahmad and RP. Agarwal, On abstract Hilfer fractional integrodifferential equations with bound-

ary conditions, Arab Journal of Mathematical Sciences 26(1/2) (2019) 107–125.
[36] H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential

equation, J. Math. Anal. Appl. 328(2) (2007) 1075–1081.



Fractional differential equations 2633

[37] HA. Wahash, MS. Abdo and SK. Panchal, Fractional integro-differential equations with nonlocal conditions and
generalized ψ-Hilfer fractional derivative, Ufa Mathematical Journal 11(4) (2019) 114–133.

[38] J. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo
derivative, Electron. J. Qual. Theory Differ. Equ. 2011(63) (2011) 1–10.


	Introduction
	Preliminary notions
	Existence results
	Existence and uniqueness results via Banach's fixed point theorem
	Existence results via Schauder's fixed point theorem

	Ulam stability results
	Examples
	Conclusions

