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Abstract

In this paper, we study the existence and uniqueness of weak solution to a Dirichlet boundary value
problems for the following nonlinear degenerate elliptic problems

−div
[
ω1A(x,∇u) + ν2B(x, u,∇u)

]
+ ν1C(x, u) + ω2|u|p−2u = f − divF,

where 1 < p < ∞, ω1, ν2, ν1 and ω2 are Ap-weight functions, and A : Ω × Rn −→ Rn, B :
Ω×R×Rn −→ Rn, C : Ω×R −→ R are Caratéodory functions that satisfy some conditions and the

right-hand side term f − divF belongs to Lp
′
(Ω, ω1−p′

2 ) +
n∏
j=1

Lp
′
(Ω, ω1−p′

1 ). We will use the Browder-

Minty Theorem and the weighted Sobolev spaces theory to prove the existence and uniqueness of
weak solution in the weighted Sobolev space W 1,p

0 (Ω, ω1, ω2).

Keywords: Dirichlet problem, nonlinear degenerate elliptic problems, Browder-Minty Theorem,
weighted Sobolev spaces, weak solution.
2010 MSC: Primary 35J60; Secondary 35D30, 35J15, 35J30, 35J66, 35J70.

1. Introduction

In the past decade, much attention has been devoted to nonlinear elliptic equations because of
their wide application to physical models such as non-Newtonian fluids, boundary layer phenomena
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for viscous fluids, chemical heterogenous model, celestial mechanics and reaction-diffusion problems
(we refer to [6, 9, 30] where it is possible to find some examples of applications of degenerate elliptic
equations).

The Sobolev spaces W k,p(Ω) without weights, in general, occur as spaces of solutions for elliptic
and parabolic partial difierential equations. For degenerate partial differential equations, where we
have equations with various types of singularities in the coefficients, it is natural to look for solutions
in weighted Sobolev spaces [1, 4, 13, 14, 15, 17, 19, 21, 25, 27]. The type of a weight depends on the
equation type.

Our aim in this paper is to prove the existence and uniqueness of weak solution in the weighted
Sobolev space W 1,p

0 (Ω, ω1, ω2) (see Definition 2.7) for the Dirichlet problem associated to the degen-
erate degenerate elliptic equation of the form{

−div
[
ω1A(x,∇u) + ν2B(x, u,∇u)

]
+ ν1C(x, u) + ω2|u|p−2u = f − divF in Ω,

u(x) = 0 on ∂Ω,
(1.1)

where, Ω is a bounded open set in Rn, ω1, ν2, ν1 and ω2 are Ap-weight functions that will be defined in
the Preliminaries, and the functions B : Ω×R×Rn −→ Rn, A : Ω×Rn −→ Rn and C : Ω×R −→ R
are Caratéodory functions that satisfy the assumptions of growth, ellipticity and monotonicity.

Problem like (1.1) have been studied by many authors in the non weighted case (see [3, 7]). For
ω1 ≡ ν2 ≡ ν1 ≡ 1(the non weighted case), ω2 ≡ 0 and the term A(x,∇u) is equal to zero, existence
results for Problem (1.1) have been shown in [5].

When −divF = 0, El Ouaarabi and al. [24] proved in the variational setting, under some
assumptions that, for every f ∈ L1(Ω) the Problem (1.1) has a unique solution u ∈ W 1,p

0 (Ω, ω1, ω2).
The degenerate case with difierent conditions haven been studied by many authors (we refer to
[2, 11, 26, 32] for more details).

Let us rapidly summarize the work’s contents. In Section 2, we give some preliminaries and some
technical lemmas. In Section 3, we make precise all the assumptions on A, B, C and we introduce
the notion of weak solution for the Problem (1.1). The main results will be stated and proved in
Section 4. Section 5 is devoted to an example which illustrates our main result.

2. Preliminaries

In this section, we present some definitions and preliminary facts which are used throughout this
paper. Complete expositions can be found in the monographs by J. Garcia-Cuerva and J. L. Rubio
de Prancia [16] and A. Torchinsky [28].

By a weight, we shall mean a locally integrable function ω on Rn such that ω(x) > 0 for a.e.
x ∈ Rn. Every weight ω gives rise to a measure on the measurable subsets on Rn through integration.
This measure will also be denoted by ω. Thus,

ω(E) =

∫
E

ω(x)dx for measurable subset E ⊂ Rn.

For 1 ≤ p <∞, we denote by Lp(Ω, ω) the space of measurable functions f on Ω such that

||f ||Lp(Ω,ω) =

(∫
Ω

|f(x)|pω(x)dx

) 1
p

<∞,
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where ω is a weight, and Ω be open in Rn. It is a well-known fact that the space Lp(Ω, ω), endowed
with this norm is a Banach space. We also have that the dual space of Lp(Ω, ω) is the space
Lp
′
(Ω, ω1−p′).
We now determine conditions on the weight ω that guarantee that functions in Lp(Ω, ω) are

locally integrable on Ω.

Proposition 2.1. [20, 22] Let 1 ≤ p <∞. If the weight ω is such that

ω
−1
p−1 ∈ L1

loc(Ω) if p > 1,

ess sup
x∈B

1

ω(x)
< +∞ if p = 1,

for every ball B ⊂ Ω. Then,
Lp(Ω, ω) ⊂ L1

loc(Ω).

As a consequence, under conditions of Proposition 2.1, the convergence in Lp(Ω, ω) implies conver-
gence in L1

loc(Ω). Moreover, every function in Lp(Ω, ω) has distributional derivatives. It thus makes
sense to talk about distributional derivatives of functions in Lp(Ω, ω).

A class of weights, which is particularly well understood, is the class of Ap-weights (or Mucken-
houpt class) that was introduced by B. Muckenhoupt [23]. These classes have found many useful
applications in harmonic analysis [28]. There are many interesting examples of weights (see [19] for
p-admissible weights and another examples).

Definition 2.2. Let 1 ≤ p < ∞. A weight ω is said to be an Ap-weight, or ω belongs to the
Muckenhoupt class, if there exists a positive constant ζ = ζ(p, ω) such that, for every ball B ⊂ Rn

(
1

|B|

∫
B

ω(x)dx

)(
1

|B|

∫
B

(ω(x))
−1
p−1 dx

)p−1

6 ζ if p > 1,

(
1

|B|

∫
B

ω(x)dx

)
ess sup

x∈B

1

ω(x)
6 ζ if p = 1,

where |.| denotes the n-dimensional Lebesgue measure in Rn.

The infimum over all such constants ζ is called the Ap constant of ω. We denote by Ap, 1 ≤ p <∞,
the set of all Ap weights.

If 1 ≤ q ≤ p <∞, then A1 ⊂ Aq ⊂ Ap and the Aq constant of ω equals the Ap constant of ω (we
refer to [18, 19, 29] for more informations about Ap-weights).

Example 2.3. (Example of Ap-weights)

(i) If ω is a weight such that C 6 ω(y) 6 D for a.e. y ∈ Rn, where C and D are positive constants.
Then ω ∈ Ap for 1 6 p <∞.

(ii) If ω(y) = |y|η, y ∈ Rn. Then ω ∈ Ap if and only if −n < η < n(p − 1) for 1 6 p < ∞ (see
Corollary 4.4 in [28]).

(iii) Let Ω be an open subset of Rn. Then ω(y) = eλv(y) ∈ A2, with v ∈ W 1,n(Ω) and λ is sufficiently
small (see Corollary 2.18 in [23]).
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Definition 2.4. A weight ω is said to be doubling, if there exists a positive constant C such that

ω(2B) 6 Cω(B),

for every ball B = B(x, r) ⊂ Rn, where ω(B) =

∫
B

ω(x)dx and 2B denotes the ball with the same

center as B which is twice as large. The infimum over all constants C is called the doubling constant
of ω.

It follows directly from the Ap condition and Hölder inequality that an Ap-weight has the following
strong doubling property. In particular, every Ap-weight is doubling (see Corollary 15.7 in [18]).

Proposition 2.5. [30] Let ω ∈ Ap with 1 6 p < ∞ and let E be a measurable subset of a ball
B ⊂ Rn. Then (

|E|
|B|

)p
6 C

ω(E)

ω(B)

where C is the Ap constant of ω.

Remark 2.6. If ω(E) = 0 then |E| = 0. The measure ω and the Lebesgue measure |.| are mutually
absolutely continuous, that is they have the same zero sets

(
ω(E) = 0 if and only if |E| = 0

)
; so

there is no need to specify the measure when using the ubiquitous expression almost everywhere and
almost every, both abbreviated a.e..

The weighted Sobolev space W 1,p(Ω, ω, v) is defined as follows.

Definition 2.7. Let Ω ⊂ Rn be open, and let ω and v be Ap-weights, 1 6 p < ∞. We define the
weighted Sobolev space W 1,p(Ω, ω, v) as the set of functions u ∈ Lp(Ω, v) with Dku ∈ Lp(Ω, ω), for
k = 1, ..., n. The norm of u in W 1,p(Ω, ω, v) is given by

||u||W 1,p(Ω,ω,v) =

(∫
Ω

|u(x)|pv(x)dx+

∫
Ω

|∇u(x)|pω(x)dx

) 1
p

. (2.1)

We also define W 1,p
0 (Ω, ω, v) as the closure of C∞0 (Ω) in W 1,p(Ω, ω, v) with respect to the norm (2.1).

Equipped by this norm, W 1,p(Ω, ω, v) and W 1,p
0 (Ω, ω, v) are separable and reflexive Banach spaces(

see Proposition 2.1.2. in [20] and see [19, 22] for more informations about the spaces W 1,p(Ω, ω, v)
)
.

The dual of space W 1,p
0 (Ω, ω, v) is the space defined as[

W 1,p
0 (Ω, ω, v)

]∗
=

{
f −

n∑
i=1

Difi :
f

v
∈ Lp

′

(Ω, v),
fi
ω
∈ Lp

′

(Ω, ω), i = 1, ..., n

}
.

To prove the main result of this paper, we use the following results.

Proposition 2.8. [31](Convergence Principles). A sequence (xn) in a Banach space X has the
following convergence properties.

(1) Strong convergence. Let x be a fixed element of X. If every subsequence of (xn) has, in turn, a
subsequence which converges strongly to x, then the original sequence converges strongly to x.

(2) Weak convergence. Let x be a fixed element of X. If every subsequence of (xn) has, in turn, a
subsequence which converges weakly to x, then the original sequence converges weakly to x.
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Theorem 2.9. [15] Let ω ∈ Ap, 1 6 p <∞, and let Ω be a bounded open set in Rn. If um −→ u in
Lp(Ω, ω), then there exist a subsequence (uij) and ψ ∈ Lp(Ω, ω) such that

(i) uij(x) −→ u(x), ij −→∞, almost everywhere on Ω.

(ii) |uij(x)| 6 ψ(x), almost everywhere on Ω.

Theorem 2.10. [10] (The weighted Sobolev inequality) Let ω ∈ Ap, 1 < p < ∞, and let Ω be a
bounded open set in Rn. There exist constants CΩ and δ positive such that for all ϕ ∈ W 1,p

0 (Ω, ω)
and all ν satisfying 1 6 ν 6 n

n−1
+ δ,

||ϕ||Lνp(Ω,ω) 6 CΩ||∇ϕ||Lp(Ω,ω),

where CΩ depends only on n, p, the Ap constant of ω and the diameter of Ω.

Remark 2.11. Let ω, v ∈ Ap. then,

(i) If ω = v, then C∞0 (Ω) is dense in W 1,p
0 (Ω, ω) = W 1,p

0 (Ω, ω, ω).

(ii) If ϕ ∈ W 1,p
0 (Ω, ω, v), then by Theorem 2.10 (with ν = 1), it holds that

||ϕ||Lp(Ω,ω) 6 CΩ||∇ϕ||Lp(Ω,ω) 6 CΩ||ϕ||W 1,p
0 (Ω,ω,v).

Hence, W 1,p
0 (Ω, ω, v) ⊂ W 1,p

0 (Ω, ω).

Proposition 2.12. [8] Let 1 < p <∞.

(i) There exists a positive constant Cp such that for all η, ξ ∈ Rn, we have∣∣∣|ξ|p−2ξ − |η|p−2η
∣∣∣ ≤ Cp|ξ − η|

(
|ξ|+ |η|

)p−2

.

(ii) There exist two positive constants βp and γp such that for every x, y ∈ Rn, it holds that

βp

(
|x|+ |y|

)p−2

|x− y|2 ≤
〈
|x|p−2x− |y|p−2y, x− y

〉
≤ γp

(
|x|+ |y|

)p−2

|x− y|2.

The Browder-Minty Theorem is stated as follows.

Theorem 2.13. [32] Let A : Y −→ Y ∗ be a monotone, coercive and hemicontinuous operator on
the real, separable, reflexive Banach space Y . Then the following assertions hold:

(a) For each T ∈ Y ∗, the equation Au = T has a solution u ∈ Y .

(b) If the operator A is strictly monotone, then equation Au = T has a unique solution u ∈ Y .
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3. Basic assumptions and notion of solutions

3.1. Basic assumptions

Let us now give the precise hypotheses on the Problem (1.1), we assume that the following
assumptions: Ω be a bounded open subset of Rn( n ≥ 2), 1 < q, s < p < ∞, let ω1, ν2, ν1

and ω2 are Ap-weight functions, and let A : Ω × Rn −→ Rn, B : Ω × R × Rn −→ Rn, with

A(x, ξ) =
(
A1(x, ξ), ...,An(x, ξ)

)
and B(x, η, ξ) =

(
B1(x, η, ξ), ...,Bn(x, η, ξ)

)
and C : Ω × R −→ R

satisfying the following assumptions:

(A1) For k = 1, ..., n, Ak, Bk and C are Caratéodory functions.

(A2) There are positive functions h1, h2, h3, h4 ∈ L∞(Ω) and γ1 ∈ Lp
′
(Ω, ω1)(

with 1
p

+ 1
p′

= 1
)

, γ2 ∈ Lq
′
(Ω, ν2)

(
with 1

q
+ 1

q′
= 1

)
and γ3 ∈ Ls

′
(Ω, ν1)

(
with 1

s
+ 1

s′
= 1

)
such that

|A(x, ξ)| ≤ γ1(x) + h1(x)|ξ|p−1,

|B(x, η, ξ)| ≤ γ2(x) + h2(x)|η|q−1 + h3(x)|ξ|q−1,

and
|C(x, η)| ≤ γ3(x) + h4(x)|η|s−1,

where (η, ξ) ∈ R× Rn.

(A3) There exists a constant α > 0 such that

〈A(x, ξ)−A(x, ξ
′
), ξ − ξ′〉 > α|ξ − ξ′ |p,

〈B(x, η, ξ)− B(x, η
′
, ξ
′
), ξ − ξ′〉 > 0,

and (
C(x, η)− C(x, η′)

)(
η − η′

)
> 0,

whenever η, η′ ∈ R and ξ, ξ′ ∈ Rn with η 6= η
′

and ξ 6= ξ
′
(

where 〈., .〉 denotes here the usual

inner product in Rn
)

.

(A4) There are constants β1, β2, β3 > 0 such that

〈A(x, ξ), ξ〉 > β1|ξ|p,

〈B(x, η, ξ), ξ〉 > β2|ξ|q + β3|η|q,

and
C(x, η)η > 0,

for all (η, ξ) ∈ R× Rn.
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3.2. Notions of solutions

The definition of a weak solution for Problem (1.1) can be stated as follows.

Definition 3.1. One says u ∈ W 1,p
0 (Ω, ω1, ω2) is a weak solution to Problem (1.1), provided that∫

Ω

〈A(x,∇u),∇v〉ω1 dx+

∫
Ω

〈B(x, u,∇u),∇v〉 ν2 dx+

∫
Ω

C(x, u) v ν1 dx

+

∫
Ω

|u|p−2u v ω2 dx =

∫
Ω

fvdx+
n∑
j=1

∫
Ω

fjDjvdx,

for all v ∈ W 1,p
0 (Ω, ω1, ω2).

Remark 3.2. We seek to establish a relationship between ω1, ν2 and ν1, in order to ensure the
existence and uniqueness of solution for our Problem (1.1). At first we notice, for all ω1, ν2, ν1 ∈ Ap
:

(i) If ν2
ω1
∈ Lr1(Ω, ω1) where r1 = p

p−q and 1 < q < p <∞, then, by Hölder inequality we obtain

||u||Lq(Ω,ν2) 6 Cp,q||u||Lp(Ω,ω1),

where Cp,q = || ν2
ω1
||1/qLr1 (Ω,ω1).

(ii) Analogously, if ν1
ω1
∈ Lr2(Ω, ω1) where r2 = p

p−s and 1 < s < p <∞, then

||u||Ls(Ω,ν1) 6 Cp,s||u||Lp(Ω,ω1),

where Cp,s = || ν1
ω1
||1/sLr2 (Ω,ω1).

4. Main result

4.1. Result on the existence and uniqueness

The main result of this article is given in the next theorem.

Theorem 4.1. Let ωi, νi ∈ Ap(i = 1, 2), 1 < q, s < p < ∞ and assume that the assumptions
(A1)− (A4) hold. If

1. f ∈ Lp′(Ω, ω1−p′
2 ) and fj ∈ Lp

′
(Ω, ω1−p′

1 ) for j = 1, ..., n,
2. ν2

ω1
∈ Lp/(p−q)(Ω, ω1) and ν1

ω1
∈ Lp/(p−s)(Ω, ω1),

then the problem (1.1) has a unique solution u ∈ W 1,p
0 (Ω, ω1, ω2).

4.2. Proof of Theorem 4.1

The essential one of our proof is to reduce the (1.1) to an operator problem Au = T and apply
the Theorem 2.13.

We define
O : W 1,p

0 (Ω, ω1, ω2)×W 1,p
0 (Ω, ω1, ω2) −→ R

and
T : W 1,p

0 (Ω, ω1, ω2) −→ R,
where O and T are defined below.
Then u ∈ W 1,p

0 (Ω, ω1, ω2) is a weak solution of (1.1) if and only if

O(u, v) = T(v), for all v ∈ W 1,p
0 (Ω, ω1, ω2).

The proof of Theorem 4.1 is divided into several steps.
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4.2.1. Equivalent operator equation

In this subsection, we prove that the Problem (1.1) is equivalent to an operator equation Au = T.

We define the operator T by T =

∫
Ω

fvdx+
n∑
j=1

∫
Ω

fjDjvdx.

Using Hölder inequality, Theorem 2.10 and Remark 2.11 (ii), we obtain

|T(v)| ≤
∫

Ω

|f |
ω2

|v|ω2 dx+
n∑
j=1

∫
Ω

|fj|
ω1

|Djv| ω1dx

≤ ||f/ω2||Lp′ (Ω,ω2)||v||Lp(Ω,ω2) +
n∑
j=1

||fj/ω1||Lp′ (Ω,ω1)||Djv||Lp(Ω,ω1)

≤

(
CΩ||f/ω2||Lp′ (Ω,ω2) +

n∑
j=1

||fj/ω1||Lp′ (Ω,ω1)

)
||v||W 1,p

0 (Ω,ω1,ω2).

According to f ∈ Lp
′
(Ω, ω1−p′

2 ) and fj ∈ Lp
′
(Ω, ω1−p′

1 ) for j = 1, ..., n, we deduce that T ∈[
W 1,p

0 (Ω, ω1, ω2)
]∗
.

The operator F is broken down into the from

O(u, v) = O1(u, v) + O2(u, v) + O3(u, v) + O4(u, v),

where Oi : W 1,p
0 (Ω, ω1, ω2)×W 1,p

0 (Ω, ω1, ω2) −→ R, for i = 1, 2, 3, 4, are defined as

O1(u, v) =

∫
Ω

〈A(x,∇u),∇v〉ω1dx, O2(u, v) =

∫
Ω

〈B(x, u,∇u),∇v〉ν2dx,

O3(u, v) =

∫
Ω

C(x, u)v ν1dx and O4(u, v) =

∫
Ω

|u|p−2u v ω2 dx.

Then, we have

|O(u, v)| ≤ |O1(u, v)|+ |O2(u, v)|+ |O3(u, v)|+ |O4(u, v)|. (4.1)

On the other hand, we get by using (A2), Hölder inequality, Remark 3.2 (i) and Theorem 2.10,

|O1(u, v)|

≤
∫

Ω

|A(x,∇u)||∇v|ω1dx

≤
∫

Ω

(
γ1 + h1|∇u|p−1

)
|∇v|ω1dx

≤ ||γ1||Lp′ (Ω,ω1)||∇v||Lp(Ω,ω1) + ||h1||L∞(Ω)||∇u||p−1
Lp(Ω,ω1)||∇v||Lp(Ω,ω1)

≤
(
||γ1||Lp′ (Ω,ω1) + ||h1||L∞(Ω)||u||p−1

W 1,p
0 (Ω,ω1,ω2)

)
||v||W 1,p

0 (Ω,ω1,ω2),
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and
|O2(u, v)|

≤
∫

Ω

|B(x, u,∇u)||∇v|ν2dx

≤
∫

Ω

(
γ2 + h2|u|q−1 + h3|∇u|q−1

)
|∇v|ν2dx

≤ ||γ2||Lq′ (Ω,ν2)||∇v||Lq(Ω,ν2) + ||h2||L∞(Ω)||u||q−1
Lq(Ω,ν2)||∇v||Lq(Ω,ν2)

+ ||h3||L∞(Ω)||∇u||q−1
Lq(Ω,ν2)||∇v||Lq(Ω,ν2)

≤ ||γ2||Lq′ (Ω,ν2)Cp,q||∇v||Lp(Ω,ω1) + ||h2||L∞(Ω)C
q−1
p,q ||u||

q−1
Lp(Ω,ω1)Cp,q||∇v||Lp(Ω,ω1)

+ ||h3||L∞(Ω)C
q−1
p,q ||∇u||

q−1
Lp(Ω,ω1)Cp,q||∇v||Lp(Ω,ω1)

≤
[
Cq
p,q

(
Cq−1

Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W 1,p
0 (Ω,ω1,ω2)

+ Cp,q||γ2||Lq′ (Ω,ν2)

]
||v||W 1,p

0 (Ω,ω1,ω2).

Analogously, using (A2), Hölder inequality, Remark 3.2 (ii) and Theorem 2.10, we obtain

|O3(u, v)|

≤
∫

Ω

|C(x, u)||v|ν1dx

≤
[
CΩCp,s||γ3||Ls′ (Ω,ν1) + Cs

p,sC
s
Ω||h4||L∞(Ω)||u||s−1

W 1,p
0 (Ω,ω1,ω2)

]
||v||W 1,p

0 (Ω,ω1,ω2).

Next, by applying Hölder inequality and Remark 2.11 (ii), we get

|O4(u, v)| ≤
∫

Ω

|u|p−1|v|ω2dx

≤
(∫

Ω

|u|pω2dx
)1/p′(∫

Ω

|v|pω2dx
)1/p

= ||u||p−1
Lp(Ω,ω2)||v||Lp(Ω,ω2)

≤ CΩ||u||p−1

W 1,p
0 (Ω,ω1,ω2)

||v||W 1,p
0 (Ω,ω1,ω2)

Hence, in (4.1) we obtain, for all u, v ∈ W 1,p
0 (Ω, ω1, ω2)

|O(u, v)|
≤
[
||γ1||Lp′ (Ω,ω1) + ||h1||L∞(Ω)||u||p−1

W 1,p
0 (Ω,ω1,ω2)

+ CΩCp,s||γ3||Ls′ (Ω,ν1)

+ Cp,q||γ2||Lq′ (Ω,ν2) + Cq
p,q

(
Cq−1

Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W 1,p
0 (Ω,ω1,ω2)

+ Cs
p,sC

s
Ω||h4||L∞(Ω)||u||s−1

W 1,p
0 (Ω,ω1,ω2)

+ CΩ||u||p−1

W 1,p
0 (Ω,ω1,ω2)

]
‖v‖W 1,p

0 (Ω,ω1,ω2).

Then O(u, .) is linear and continuous, for each u ∈ W 1,p
0 (Ω, ω1, ω2). Thus, there exists a linear and

continuous operator on W 1,p
0 (Ω, ω1, ω2) denoted by A such that

〈Au, v〉 = O(u, v), for all u, v ∈ W 1,p
0 (Ω, ω1, ω2).

Moreover, we have

‖Au‖∗
≤ ||γ1||Lp′ (Ω,ω1) + ||h1||L∞(Ω)||u||p−1

W 1,p
0 (Ω,ω1,ω2)

+ CΩCp,s||γ3||Ls′ (Ω,ν1)

+ Cp,q||γ2||Lq′ (Ω,ν2) + Cq
p,q

(
Cq−1

Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||u||q−1

W 1,p
0 (Ω,ω1,ω2)

+ Cs
p,sC

s
Ω||h4||L∞(Ω)||u||s−1

W 1,p
0 (Ω,ω1,ω2)

+ CΩ||u||p−1

W 1,p
0 (Ω,ω1,ω2)

,
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where

‖Au‖∗ := sup

{
|〈Au, v〉| = |O(u, v)| : v ∈ W 1,p

0 (Ω, ω1, ω2), ‖v‖W 1,p
0 (Ω,ω1,ω2) = 1

}
,

is the norm in
[
W 1,p

0 (Ω, ω1, ω2)
]∗

. Hence, we obtain the operator

A : W 1,p
0 (Ω, ω1, ω2) −→

[
W 1,p

0 (Ω, ω1, ω2)
]∗

u 7−→ Au.

However, the Problem (1.1) is equivalent to the operator equation

Au = T, u ∈ W 1,p
0 (Ω, ω1, ω2).

4.2.2. Monotonicity of the operator A

The operator A is strictly monotone. In fact.
Let v1, v2 ∈ W 1,p

0 (Ω, ω1, ω2) with v1 6= v2. We have

〈Av1 −Av2, v1 − v2〉
= O(v1, v1 − v2)−O(v2, v1 − v2)

=

∫
Ω

〈A(x,∇v1),∇(v1 − v2)〉ω1dx−
∫

Ω

〈A(x,∇v2),∇(v1 − v2)〉ω1dx

+

∫
Ω

〈B(x, v1,∇v1),∇(v1 − v2)〉ν2dx−
∫

Ω

〈B(x, v2,∇v2),∇(v1 − v2)〉ν2dx

+

∫
Ω

C(x, v1)(v1 − v2)ν1dx−
∫

Ω

C(x, v2)(v1 − v2)ν1dx

+

∫
Ω

|v1|p−2v1(v1 − v2)ω2dx−
∫

Ω

|v2|p−2v2(v1 − v2)ω2dx

=

∫
Ω

〈A(x,∇v1)−A(x,∇v2),∇(v1 − v2)〉ω1dx

+

∫
Ω

〈B(x, v1,∇v1)− B(x, v2,∇v2),∇(v1 − v2)〉ν2dx

+

∫
Ω

(
C(x, v1)− C(x, v2)

)(
v1 − v2

)
ν1dx

+

∫
Ω

(
|v1|p−2v1 − |v2|p−2v2

)(
v1 − v2

)
ω2dx

Thanks to (A3) and Proposition 2.12 (ii), we obtain

〈Av1 −Av2, v1 − v2〉

≥ α

∫
Ω

|∇(v1 − v2)|p ω1 dx+ βp

∫
Ω

(
|v1|+ |v2|

)p−2

|v1 − v2|2 ω2 dx

≥ α

∫
Ω

|∇(v1 − v2)|pω1dx

≥ α‖∇(v1 − v2)‖pLp(Ω,ω1).

Therefore, the operator A is strictly monotone.
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4.2.3. Coercivity of the operator A

In this step, we prove that the operator A is coercive. To this purpose let u ∈ W 1,p
0 (Ω, ω1, ω2),

we have

〈Au, u〉 = O(u, u)
= O1(u, u) + O2(u, u) + O3(u, u) + O4(u, u)

=

∫
Ω

〈A(x,∇u),∇u〉ω1dx+

∫
Ω

〈B(x, u,∇u),∇u〉ν2dx+

∫
Ω

C(x, u)u ν1dx+

∫
Ω

|u|pω2dx.

Moreover, from (A4) and Theorem 2.10(with ν = 1), we obtain

〈Au, u〉 ≥ β1

∫
Ω

|∇u|pω1dx+ β2

∫
Ω

|∇u|qν2dx+ β3

∫
Ω

|u|qν2dx+

∫
Ω

|u|pω2dx

≥ min(β1, 1)

[∫
Ω

|∇u|pω1dx+

∫
Ω

|u|pω2dx

]
+min(β2, β3)

[∫
Ω

|∇u|qν2dx+

∫
Ω

|u|qν2dx

]
≥ min(β1, 1)‖u‖p

W 1,p
0 (Ω,ω1,ω2)

.

Hence, we obtain
〈Au, u〉

‖u‖W 1,p
0 (Ω,ω1,ω2)

≥ min(β1, 1)‖u‖p−1

W 1,p
0 (Ω,ω1,ω2)

.

Therefore, since p > 1, we have

〈Au, u〉
‖u‖W 1,p

0 (Ω,ω1,ω2)

−→ +∞ as ‖u‖W 1,p
0 (Ω,ω1,ω2) −→ +∞,

that is, A is coercive.

4.2.4. Continuity of the operator A

We need to show that the operator A is continuous. To this purpose let ui −→ u in W 1,p
0 (Ω, ω1, ω2)

as i −→ ∞. Then ∇ui −→ ∇u in (Lp(Ω, ω1))n. Hence, thanks to Theorem 2.9, there exist a
subsequence (uij) and ψ ∈ Lp(Ω, ω1) such that

∇uij(x) −→ ∇u(x), a.e. in Ω

|∇uij(x)| ≤ ψ(x), a.e. in Ω.
(4.2)

We will show that Aui −→ Au in
[
W 1,p

0 (Ω, ω1, ω2)
]∗

. In order to prove this convergence we proceed

in several steps.
Step 1:
For k = 1, ..., n, we define the operator

Bk : W 1,p
0 (Ω, ω1, ω2) −→ Lp

′
(Ω, ω1)

(Bku)(x) = Ak(x,∇u(x)).

We need to show that Bkui −→ Bku in Lp
′
(Ω, ω1). We will apply the Lebesgue’s theorem and the

convergence principle in Banach spaces.
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(i) Let u ∈ W 1,p
0 (Ω, ω1, ω2). Using (A2) and Theorem 2.10(with ν = 1), we obtain

‖Bku‖p
′

Lp′ (Ω,ω1)
=

∫
Ω

|Bku(x)|p′ω1dx =

∫
Ω

|Ak(x,∇u)|p′ω1dx

≤
∫

Ω

(
γ1 + h1|∇u|p−1

)p′
ω1dx

≤ Cp

∫
Ω

(
γp
′

1 + hp
′

1 |∇u|p
)
ω1dx

≤ Cp

[
‖γ1‖p

′

Lp′ (Ω,ω1)
+ ‖h1‖p

′

L∞(Ω)‖∇u‖
p
Lp(Ω,ω1)

]
≤ Cp

[
‖γ1‖p

′

Lp′ (Ω,ω1)
+ ‖h1‖p

′

L∞(Ω)‖u‖
p

W 1,p
0 (Ω,ω1,ω2)

]
,

where the constant Cp depends only on p.

(ii) Let ui −→ u in W 1,p
0 (Ω, ω1, ω2) as i −→∞. By (A2) and (4.2), we obtain

‖Bkuij −Bku‖p
′

Lp′ (Ω,ω1)

=

∫
Ω

|Bkuij(x)−Bku(x)|p′ω1dx

≤
∫

Ω

(
|Ak(x,∇uij)|+ |Ak(x,∇u)|

)p′
ω1dx

≤ Cp

∫
Ω

(
|Ak(x,∇uij)|p

′
+ |Ak(x,∇u)|p′

)
ω1dx

≤ Cp

∫
Ω

[(
γ1 + h1|∇uij |p−1

)p′
+
(
γ1 + h1|∇u|p−1

)p′]
ω1dx

≤ Cp

∫
Ω

[(
γ1 + h1ψ

p−1
)p′

+
(
γ1 + h1ψ

p−1
)p′]

ω1dx

≤ 2CpC
′

p

∫
Ω

(
γp
′

1 + hp
′

1 ψ
p
)
ω1dx

≤ 2CpC
′

p

[
‖γ1‖p

′

Lp′ (Ω,ω1)
+ ‖h1‖p

′

L∞(Ω)‖ψ‖
p
Lp(Ω,ω1)

]
.

Hence, thanks to (A1), we get, as i −→∞

Bkuij(x) = Ak(x,∇uij(x)) −→ Ak(x,∇u(x)) = Bku(x), a.e. x ∈ Ω.

Therefore, by Lebesgue’s theorem, we obtain

‖Bkuij −Bku‖Lp′ (Ω,ω1) −→ 0,

that is,
Bkuij −→ Bku in Lp

′
(Ω, ω1).

Finally, in view to convergence principle in Banach spaces, we have

Bkui −→ Bku in Lp
′
(Ω, ω1). (4.3)

Step 2:
For k = 1, ..., n, we define the operator

Mk : W 1,p
0 (Ω, ω1, ω2) −→ Lq

′
(Ω, ν2)

(Mku)(x) = Bk(x, u(x),∇u(x)).

We will prove that Mkui −→Mku in Lq
′
(Ω, ν2).
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(i) Let u ∈ W 1,p
0 (Ω, ω1, ω2). Using (A2), Remark 3.2 (i) and Theorem 2.10(with ν = 1), we obtain

‖Mku‖q
′

Lq′ (Ω,ν2)

=

∫
Ω

|Bk(x, u,∇u)|q′ν2dx

≤
∫

Ω

(
γ2 + h2|u|q−1 + h3|∇u|q−1

)q′
ν2dx

≤ Cq

∫
Ω

[
γq
′

2 + hq
′

2 |u|q + hq
′

3 |∇u|q
]
ν2dx

≤ Cq

[
‖γ2‖q

′

Lq′ (Ω,ν2)
+ ‖h2‖q

′

L∞(Ω)‖u‖
q
Lq(Ω,ν2) + ‖h3‖q

′

L∞(Ω)‖∇u‖
q
Lq(Ω,ν2)

]
≤ Cq

[
‖γ2‖q

′

Lq′ (Ω,ν2)
+ ‖h2‖q

′

L∞(Ω)C
q
p,q‖u‖

q
Lp(Ω,ω1) + ‖h3‖q

′

L∞(Ω)C
q
p,q‖∇u‖

q
Lp(Ω,ω1)

]
≤ Cq

[
‖γ2‖q

′

Lq
′
(Ω,ν2)

+ Cq
p,q

(
Cq

Ω‖h2‖q
′

L∞(Ω) + ‖h3‖q
′

L∞(Ω)

)
‖u‖q

W 1,p
0 (Ω,ω1,ω2)

]
,

where the constant Cq depends only on q.

(ii) Let ui −→ u in W 1,p
0 (Ω, ω1, ω2) as i −→ ∞. According to (A2), Remark 3.2 (i) and the same

arguments used in Step 1 (ii), we obtain analogously,

Mkui −→Mku in Lq
′
(Ω, ν2). (4.4)

Step 3:
We define the operator

H : W 1,p
0 (Ω, ω1, ω2) −→ Ls

′
(Ω, ν1)

(Hu)(x) = C(x, u(x)).

In this step, we will show that Hui −→ Hu in Ls
′
(Ω, ν1).

(i) Let u ∈ W 1,p
0 (Ω, ω1, ω2). Using (A2) and Remark 3.2 (ii), we obtain

‖Hu‖s′
Ls′ (Ω,ν1)

=

∫
Ω

|C(x, u)|s′ν1dx

≤
∫

Ω

(
γ3 + h4|u|s−1

)s′
ν1dx

≤ Cs

∫
Ω

(
γs
′

3 + hs
′

4 |u|s
)
ν1dx

≤ Cs

[
‖γ3‖s

′

Ls′ (Ω,ν1)
+ ‖h4‖p

′

L∞(Ω)‖u‖
s
Ls(Ω,ν1)

]
≤ Cs

[
‖γ3‖s

′

Ls′ (Ω,ν1)
+ Cs

p,s‖h4‖p
′

L∞(Ω)‖u‖
s
Lp(Ω,ω1)

]
≤ Cs

[
‖γ3‖Ls′ (Ω,ω1) + Cs

p,sC
s
Ω‖h4‖s

′

L∞(Ω)‖u‖sW 1,p
0 (Ω,ω1,ω2)

]
,

where the constant Cs depends only on s.
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(ii) Let ui −→ u in W 1,p
0 (Ω, ω1, ω2) as i −→∞. By (A2) and Remark 3.2 (ii), we get

‖Huij −Hu‖s
′

Ls′ (Ω,ν1)

=

∫
Ω

∣∣∣Huij(x)−Hu(x)
∣∣∣p′ν1dx

≤
∫

Ω

(
|C(x, uij)|+ |C(x, u)|

)s′
ν1dx

≤ Cs

∫
Ω

(
|C(x, uij)|s

′
+ |C(x, u)|s′

)
ν1dx

≤ Cs

∫
Ω

[(
γ3 + h4|uij |s−1

)s′
+
(
γ3 + h4|u|s−1

)s′]
ν1dx

≤ Cs

∫
Ω

[(
γ3 + h4|ψ|s−1

)s′
+
(
γ3 + h4ψ

s−1
)s′]

ν1dx

≤ 2CsC
′
s

[
‖γ3‖s

′

Ls′ (Ω,ν1)
+ ‖h4‖s

′

L∞(Ω)‖ψ‖sLs(Ω,ν1)

]
≤ 2CsC

′
s

[
‖γ3‖s

′

Ls
′
(Ω,ν1)

+ Cs
p,s‖h4‖s

′

L∞(Ω)‖ψ‖sLp(Ω,ω1)

]
,

next, using condition (A1), we deduce, as i −→∞

Huij(x) = C(x, uij(x)) −→ C(x, u(x)) = Hu(x), a.e. x ∈ Ω.

Therefore, by the Lebesgue’s theorem, we obtain

‖Huij −Hu‖Ls′ (Ω,ν1) −→ 0,

that is,
Huij −→ Hu in Ls

′
(Ω, ν1).

We conclude, from the convergence principle in Banach spaces, that

Hui −→ Hu in Ls
′
(Ω, ν1). (4.5)

Step 4:
We define the operator

J : W 1,p
0 (Ω, ω1, ω2) −→ Lp

′
(Ω, ω2)

(Ju)(x) = |u(x)|p−2u(x).

In this step, we will demonstrate that Jui −→ Ju in Lp
′
(Ω, ω2).

(i) Let u ∈ W 1,p
0 (Ω, ω1, ω2). We have

‖Ju‖p
′

Lp′ (Ω,ω2)
=

∫
Ω

|Ju|p′ω2dx

=

∫
Ω

|u|(p−1)p′ω2dx

=

∫
Ω

|u|pω2dx

≤ ‖u‖p
W 1,p

0 (Ω,ω1,ω2)
.
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(ii) Let ui −→ u in W 1,p
0 (Ω, ω1, ω2) as i −→ ∞. Then ui −→ u in Lp(Ω, ω2). Hence, thanks to

Theorem 2.9, there exist a subsequence (uij) and ϕ ∈ Lp(Ω, ω2) such that

uij(x) −→ u(x), a.e. in Ω

|uij(x)| ≤ ϕ(x), a.e. in Ω.

Next, we get

‖Juij − Ju‖
p′

Lp′ (Ω,ω2)
=

∫
Ω

∣∣∣Juij(x)− Ju(x)
∣∣∣p′ω2dx

≤
∫

Ω

(
|Juij(x)|+ |Ju(x)|

)p′
ω2dx

≤ Cp

∫
Ω

(
|Juij(x)|p′ + |Ju(x)|p′

)
ω2dx

≤ Cp

∫
Ω

(
||uij |p−2uij |p

′
+ ||u|p−2u|p′

)
ω2dx

≤ Cp

∫
Ω

(
|uij |(p−1)p′ + |u|(p−1)p′

)
ω2dx

≤ Cp

∫
Ω

(
|uij |p + |u|p

)
ω2dx

≤ Cp

∫
Ω

(
|ϕ|p + |ϕ|p

)
ω2dx

≤ 2Cp

∫
Ω

|ϕ|pω2dx

≤ 2Cp‖ϕ‖pLp(Ω,ω2).

Therefore, by Lebesgue’s theorem, we obtain

‖Juij − Ju‖Lp′ (Ω,ω2) −→ 0,

that is,
Juij −→ Ju in Lp

′
(Ω, ω2).

We conclude, in view to convergence principle in Banach spaces, that

Jui −→ Ju in Lp
′
(Ω, ω2). (4.6)

Finally, let v ∈ W 1,p
0 (Ω, ω1, ω2) and using Hölder inequality, we obtain

|O1(ui, v)−O1(u, v)| = |
∫

Ω

〈A(x,∇ui)−A(x,∇u),∇v〉ω1dx|

≤
n∑
k=1

∫
Ω

|Ak(x,∇ui)−Ak(x,∇u)||Dkv|ω1dx

=
n∑
k=1

∫
Ω

|Bkui −Bku||Dkv|ω1dx

≤
n∑
k=1

‖Bkui −Bku‖Lp′ (Ω,ω1)‖Dkv‖Lp(Ω,ω1)

≤

(
n∑
k=1

‖Bkui −Bku‖Lp′ (Ω,ω1)

)
‖v‖W 1,p

0 (Ω,ω1,ω2),
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and by Remark 3.2 (i), we get

|O2(ui, v)−O2(u, v)| = |
∫

Ω

〈B(x, ui,∇ui)− B(x, u,∇u),∇v〉ν2dx|

≤
n∑
k=1

∫
Ω

|Bk(x, ui,∇ui)− Bk(x, u,∇u)||Dkv|ν2dx

=
n∑
k=1

∫
Ω

|Mkui −Mku||Dkv|ν2dx

≤

(
n∑
k=1

‖Mkui −Mku‖Lq′ (Ω,ν2)

)
‖∇v‖Lq(Ω,ν2)

≤ Cp,q

(
n∑
k=1

‖Mkui −Mku‖Lq′ (Ω,ν2)

)
‖∇v‖Lp(Ω,ω1)

≤ Cp,q

(
n∑
k=1

‖Mkui −Mku‖Lq′ (Ω,ν2)

)
‖v‖W 1,p

0 (Ω,ω1,ω2),

and by Remark 3.2 (ii), we get

|O3(ui, v)−O3(u, v)| ≤
∫

Ω

|g(x, ui)− g(x, u)||v|ν1dx

=

∫
Ω

|Hui −Hu||v|ν1dx

≤ ‖Hui −Hu‖Ls′ (Ω,ν1)‖v‖Ls(Ω,ν1)

≤ Cp,s‖Hui −Hu‖Ls′ (Ω,ν1)‖v‖Lp(Ω,ω1)

≤ Cp,sCΩ‖Hui −Hu‖Ls′ (Ω,ν1)‖v‖W 1,p
0 (Ω,ω1,ω2).

and by Step 4, we obtain

|O4(ui, v)−O4(u, v)| ≤
∫

Ω

∣∣∣|ui|p−2ui − |u|p−2u
∣∣∣|v|ω2dx

=

∫
Ω

|Jui − Ju||v|ω2dx

≤ ‖Jui − Ju‖Lp′ (Ω,ω2)‖v‖W 1,p
0 (Ω,ω1,ω2).

Hence, for all v ∈ W 1,p
0 (Ω, ω1, ω2), we have

|O(ui, v)−O(u, v)|

≤
4∑
j=1

∣∣∣Oj(ui, v)−Oj(u, v)
∣∣∣

≤
[ n∑
k=1

(
‖Bkui −Bku‖Lp′ (Ω,ω1) + Cp,q‖Mkui −Mku‖Lq′ (Ω,ν2)

)
+Cp,sCΩ‖Hui −Hu‖Ls′ (Ω,ν1) + ‖Jui − Ju‖Lp′ (Ω,ω2)

]
‖v‖W 1,p

0 (Ω,ω1,ω2).

Then, we get

‖Aui −Au‖∗ ≤
n∑
k=1

(
‖Bkui −Bku‖Lp′ (Ω,ω1) + Cp,q‖Mkui −Mku‖Lq′ (Ω,ν2)

)
+Cp,sCΩ‖Hui −Hu‖Ls′ (Ω,ν1) + ‖Jui − Ju‖Lp′ (Ω,ω2).
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Combining (4.3), (4.4), (4.5) and (4.6), we deduce that

‖Aui −Au‖∗ −→ 0 as i −→∞,

that is, Aui −→ Au in
[
W 1,p

0 (Ω, ω1, ω2)
]∗

. Hence, A is continuous and this implies that A is

hemicontinuous.
Therefore, by Theorem 2.13, the operator equation Au = T has exactly one solution u ∈

W 1,p
0 (Ω, ω1, ω2) and it is the unique solution for problem (1.1).

With this last step the proof of Theorem 4.1 is completed.

5. Example

Take Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, and consider the weight functions ω1(x, y) = (x2 + y2)
−1/2

,

ν2(x, y) = (x2 + y2)
−1/3

, ν1(x, y) = (x2 + y2)
−1

and ω2(x, y) = (x2 + y2)
−3/2

(
we have that ω1, ν2,

ν1, and ω2 are A4−weight, p = 4, q = 3 and s = 2
)

, and the functions B : Ω × R × R2 −→ R2,

A : Ω× R2 −→ R2 and C : Ω× R −→ R defined by

A
(

(x, y), ξ
)

= h1(x, y)|ξ|2ξ,

where h1(x, y) = 4e(x2+y2), and

B
(

(x, y), η, ξ
)

= h3(x, y)|ξ|ξ,

where h3(x, y) = 1 + cos2(xy), and

C
(

(x, y), η
)

= h4(x, y)η,

where h4(x, y) = 2− cos2(xy).
Let us consider the operator

Lu(x, y) = −div
[
ω1(x, y)A

(
(x, y),∇u

)
+ ν2(x, y)B

(
(x, y), u,∇u(x, y)

)]
+ ν1(x, y)C

(
(x, y), u

)
+ ω2(x, y)|u|p−2u

Therefore, by Theorem 4.1, the problem{
Lu(x, y) = cos(x+y)

(x2+y2)
− ∂

∂x

(
sin(x+y)
(x2+y2)

)
− ∂

∂y

(
sin(x+y)
(x2+y2)

)
in Ω,

u(x, y) = 0 on ∂Ω,

has exactly one solution u ∈ W 1,4
0 (Ω, ω1, ω2).
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