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Abstract

In the present paper, We introduce a new kind of Toeplitz operators on the spaces of 2π periodic
holomorphic functions on the upper halfplane equipped with an integral norm similar to the norm
of Lp spaces. We prove the boundedness of Toeplitz operators in the case of bounded symbols. Also,
we state some open problems for unbounded symbols and other cases in which our spaces are not
Hilbert spaces.
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1. Introduction

We begin by recalling some definitions, notations and results of [1]. Let G = {ω ∈ C : Im ω > 0}
denotes the upper halfplane. Also, let µ be a bounded positive non-atomic measure on (0,∞) with
µ((0, ϵ)) > 0 for all ϵ > 0. A function f : G −→ C is called 2π-periodic if f(ω + 2π) = f(ω) for
all ω ∈ G. For example f(ω) = eiω is a 2π-periodic function on G. For a holomorphic function
f : G −→ C and 1 ≤ p < ∞ we put

∥f∥pp,µ =
1

2π

∫ ∞

0

∫ π

−π

| f(x+ it) |p dxdµ(t),

Hp
2π,µ(G) = {f : G −→ C is 2π periodic, ∥f∥p,µ < ∞}
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and
L2(G) = {f | is measurable and ∥f∥p,µ < ∞}.

Here, we mean that f is measurable with respect to dxdµ as a product measure on G. We say
measure µ satisfies condition (B1) if there exists n ∈ N such that

∫∞
0

entdµ(t) = ∞ (See Example
1.2 of [1]).

It is well-known that:
(a) H2

2π,µ(G) is isomorphic to the Hilbert space l2(See Theorem 1.4 of [1]).
(b) For each f ∈ H2

2π,µ(G) there exist αk such that f(ω) =
∑∞

k=−∞ αke
ikω where the series converges

uniformly on compact subsets of G (See Lemma 2.4 of [1]).
(c) L2(G) is a Hilbert space with the usual inner product

∀ f, g ∈ L2(G) (f, g) =
1

2π

∫ ∞

0

∫ π

−π

f(x+ it)g(x+ it)dxdµ(t).

2. Preliminaries

In this section we provide necessary tools which for obtaining main results of this paper in the
next section. For readers which are not familiar with Toeplitz operator we refer the reader to [? ].
As first step we prove the following classical result for our case.

Lemma 2.1. H2
2π,µ(G) is a closed subspace of L2(G) and therefore a Banach space.

Proof . Suppose {fn} is a sequence in H2
2π,µ(G) such that ∥fn − f∥2,µ → 0 for some f ∈ L2(G). It

is well-known that , there is at least a subsequence {fnk
} of {fn} such that fnk

converges pointwise
to f . Since {fnk

}’s are 2π periodic so f is 2π periodic too. Also, fnk
are uniformly convergent to f

on compact subsets on G. This implies that f is holomorphic on G. Thus f ∈ H2
2π,µ(G) and we are

done. □
Now, we intend to present an orthonormal basis for the Hilbert space H2

2π,µ(G), but firstly we need
to prove that:

Lemma 2.2. (i) If µ does not satisfy condition (B1), then ∥eikω∥2,µ is finite for each k ∈ Z.
(ii) If µ satisfies condition (B1), then for each k ≥ −n+ 1 ∥eikω∥2,µ is finite.

Proof . (i): There is no n ∈ N with
∫∞
0

entdµ(t) = +∞ (equivalently µ does not satisfy condition
(B1)) and f(ω) =

∑∞
k=−∞ αke

ikω. By our definition for ω = x+ it we have

∥eikω∥22,µ =
1

2π

∫ ∞

0

∫ π

−π

| eikω |2 dxdµ(t)

=
1

2π

∫ ∞

0

∫ π

−π

| eikxe−kt |2 dxdµ(t)

=
1

2π

∫ ∞

0

∫ π

−π

| e−kt |2 dxdµ(t)

=

∫ ∞

0

e−2ktdµ(t)

If k ≥ 0 then e−2kt ≤ 1 and ∥eikω∥22,µ < µ((0,∞)). Since µ is a bounded measure so ∥eikω∥2,µ < ∞.
If k < 0 then −2k ∈ N. Since µ does not satisfy condition (B1), again ∥eikω∥2,µ < ∞.
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(ii): Let µ satisfy condition (B1) and n be the smallest integer such that
∫∞
0

entdµ(t) = ∞, then
f(ω) =

∑∞
k=−n+1 αke

ikω (See Lemma 2.7 of [1]). By the proof of Lemma 2.5 of [1] we have

| αk | ∥eikω∥2,µ = ∥αke
ikω∥2,µ ≤ ∥f∥2,µ < ∞. (2.1)

Since α′
ks in relation (2.1) are not necessarily zero, so for each k ≥ −n+1 ∥eikω∥2,µ < ∞. Here note

that αk = 0 for each k ≤ −n. □

Remark 2.3. Lemma 2.2 enable us to define an orthonormal basis for H2
2π,µ(G) independent of that

µ satisfies or does not satisfy condition(B1). Indeed it insure us for any f ∈ H2
2π,µ(G) and each k

which αk is not zero in the representation of f ∥eikω∥2,µ < ∞.

By Lemma Lemma 2.4 of [1], it is clear the set {eikω : k ∈ Z} spans H2
2π,µ(G) and since

(eikω, eik
′ω) =

1

2π

∫ ∞

0

∫ π

−π

(eikω(eik
′ωdxdµ(t)

=
1

2π

∫ ∞

0

∫ π

−π

ei(k−k′)xe(k−k′)tdxdµ(t)

= 0

whenever k ̸= k′, so eikωs are mutually orthogonal. Therefore ek(ω) = eikω

∥eikω∥2,µ is an orthonormal

basis for H2
2π,µ(G) and following definition make sense.

Definition 2.4. The orthogonal projection P : L2(G) −→ H2
2π,µ(G) is defined by

P (f) =
∞∑

k=−∞

(f, ek(ω))ek(ω)

=
1

2π

∞∑
k=−∞

∫ ∞

0

∫ π

−π

f(x+ it)ek(x+ it)dxdµ(t)ek(x+ it)

where ω = x+ it − π ≤ x ≤ π and t > 0.

In this step we must show that P in the above is really well defined i.e P (f) ∈ H2
2π,µ(G) for each

f ∈ L2(G). Equivalently, we must show that coefficients which appear in the representation of
Definition 2.4 are the same as αk’s which come from Lemma 2.4 of [1].

Lemma 2.5. The orthogonal projection P in Definition 2.4 is well defined.

Proof . Firstly we compute coefficients in the representation of P in Definition 2.4. Since ek(x+ it) =
e−ikxe−kt

∥eikω∥2,µ ,

P (f) =
1

2π

∞∑
k=−∞

1

∥eikω∥22,µ

∫ ∞

0

∫ π

−π

f(x+ it)e−ikxe−ktdxdµ(t)eikω.

This means in the representation of P (f) our coefficients are of the following form

βk =
1

2π∥eikω∥22,µ

∫ ∞

0

∫ π

−π

f(x+ it)e−ikxe−ktdxdµ(t). (2.2)
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By Lemma 2.4 of [1] coefficients which appear in the representation of an element f ∈ H2
2π,µ(G) are

αk’s with the following form

αk =
1

2π

∫ ∞

0

∫ π

−π

e−ikx+ktf(x+ it)dx
dµ(t)

µ((0,∞))
. (2.3)

( see the last assertion of Lemma 2.4 of [1]). Relations (2.2) and (2.3) are apparently different. In
order to show that the orthogonal projection P is really well-defined, we must show that αk = βk for
each k ∈ Z. Evidently, αk = βk if and only if

1

∥eikω∥2,µ
1

2π

∫ ∞

0

∫ π

−π

f(x+ it)e−ikxe−ktdxdµ(t) = ∥eikω∥2,µαk (2.4)

Since f(ω) = f(x + it) = eikω generates H2
2π,µ(G) it is enough to prove relation (2.4) for f(ω) . For

f(ω) = eikω we have αk = 1. Hence the right hand side of (2.4) is equal to ∥eikω∥2,µ, but the left
hand side of (2.4) is equal to

1

∥eikω∥2,µ
1

2π

∫ ∞

0

∫ π

−π

eikxe−kte−ikxe−ktdxdµ(t) =
1

∥eikω∥2,µ

∫ ∞

0

e−2ktdµ(t)

=
∥eikω∥22,µ
∥eikω∥2,µ

= ∥eikω∥2,µ.

which shows that αk = βk for each integer k. □
Now, consider a measurable function f from G into C. We intend to define a Toeplitz operator

Tf (with symbol f), from H2
2π,µ(G) into H2

2π,µ(G). Usually, Tf is defined by Tf (h) = P (fh) for each
h ∈ H2

2π,µ(G) if fh really belongs to L2(G) i.e ∥fh∥2,µ < ∞. If f ∈ H∞(G) (space of all bounded
holomorphic functions on the upper halfplane) then

∥fh∥22,µ =
1

2π

∫ ∞

0

∫ π

−π

| f(x+ it) |2| h(x+ it) |2 dxdµ(t)

≤ M2∥h∥22,µ
< ∞

where ∥f∥∞ = supω∈G | f(ω) |= M . Hence if f ∈ H∞(G) then fh ∈ L2(G) for each h ∈ H2
2π,µ(G).

For example f(ω) = eiω ∈ H∞(G). Hence we have the following definition.

Definition 2.6. Suppose f ∈ H∞(G). Toeplitz operator Tf : H2
2π,µ(G) −→ H2

2π,µ(G) can be defined
by Tf (h) = P (fh) for each f ∈ H2

2π,µ(G).

Here we give an example of a function which is not in H∞(G), while its multiplication by any element
of H2

2π,µ(G) is again an element H2
2π,µ(G).

Example 2.7. Put f(ω) = f(x + it) = ex+it = eω. Since | f(ω) |= ex so f /∈ H∞(G). But f is
bounded on the strip {x+ it : −π ≤ x ≤ π, t > 0} and e−π ≤| f(ω) |≤ eπ. Thus

∥fh∥22,µ ≤ eπ∥h∥22,µ < ∞.

Therefore fh ∈ L2(G) for each h ∈ H2
2π,µ(G).
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Remark 2.8. (i) As Example 2.7 shows assumption f ∈ H∞(G) in Definition 2.6 is only a sufficient
condition which guarantees Tf is well defined and it is not a necessary condition. Hence the set of
functions f such that fh ∈ L2(G) for each h ∈ H2

2π,µ(G) includes H∞(G). Also Example 2.7 revalues
that all the holomorphic functions which are bounded on the strip {x + it : −π ≤ x ≤ π, t > 0}
induces well defined Toeplitz operators. Therefore, characterizing the set of functions f such that
fh ∈ L2(G) for each h ∈ H2

2π,µ(G) is an open problem.
(ii) Note that for our aim, we need not necessarily assume that fh ∈ L2(G) for each h ∈ H2

2π,µ(G).
If we apply the definition of P to fh we have

P (fh) =
1

2π

∞∑
k=−∞

∫ ∞

0

∫ π

−π

f(x+ it)h(x+ it)ek(x+ it)dxdµ(t)ek(x+ it) (2.5)

another alternative for defining a class of well defined Toeplitz operators is finding a condition on f
such that the series of the right hand side of relation (2.6) converges uniformly on the compact subsets
of G. In many classical texts on reflexive Bergaman spaces (see [2,3,4,5,6]) a priori assumption
f ∈ L1 (for our case f ∈ L1(G)) is a usual sufficient condition in order to guarantee that series (2.6)
converges uniformly on the compact subsets of G. Here

P (fh) =
1

2π

∞∑
k=−∞

1

∥eikω∥22,µ

∫ ∞

0

∫ π

−π

f(x+ it)h(x+ it)dxdµ(t) (2.6)

looking at the proof of part (i) of Lemma 2.2 we see that the estimation for ∥eikω∥2,µ does not depend
on k. So there is not a straightforward way in order to show the convergence of the series of the
reight hand side of (2.6). Maybe a better converges estimation (depending on k) for

∑∞
k=−∞

1
∥eikω∥22,µ

can be worked out.

3. Main result

Toeplitz operator can be viewed from another aspect as a composition of multiplication operator
and projection operator. Indeed, if we consider Mf : H2

2π,µ(G) −→ L2(G) and P : L2(G) −→
H2

2π,µ(G) then Tf (h) = (P ◦Mf )(h) for any h ∈ H2
2π,µ(G). This motivates to characterize boundedness

Toeplitz operator in terms of boundedness of multiplication operator and projection operator. In the
following Theorem we characterize boundedness of multiplication operator.

Theorem 3.1. Following statements are equivalent.
(i) Multiplication operator Mf : H2

2π,µ(G) −→ L2(G) is bounded.
(ii) f ∈ H∞(G).
Besides, if Mf is bounded then ∥Mf∥ = ∥f∥∞.

Proof . (i) ⇒ (ii): Since Mf is bounded so the adjoint operator M∗
f is bounded too and ∥Mf∥ =

∥M∗
f ∥. for any fixed ω in G the evolutional function δω : L2(G) −→ C defined by δω(h) = h(ω) (h ∈

L2(G)) belongs to : L2(G)∗. We have

| f(ω) |=
∥M∗

fi(δω)∥
∥δω∥

≤ ∥M∗
f ∥ = ∥Mf∥ < ∞.

Since ω ∈ G is arbitrary so

sup{| f(ω) |: ω ∈ G} = ∥f∥∞ ≤ ∥Mf∥ < ∞.

(ii) ⇒ (i): Computation which has done before Definition 2.6 shows that ∥Mf∥ ≤ ∥f∥∞ whenever
f ∈ H∞(G). □
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Theorem 3.2. Let f ∈ H∞(G) and projection P be a bounded operator. Then the Toeplitz operator
of Definition 2.6 is bounded.

Proof . Since f ∈ H∞(G) Theorem 3.1 implies that the multiplication operator Mf is bounded.
Now, Tf as a composition of bounded operators is bounded too. □
The question of boundedness of Toeplitz operator for unbounded symbols is an open problem. How-
ever, we have obtained a partial result. Looking at Example 2.7 we have

Corollary 3.3. Let f be a holomorphic function on G such that f is bounded on the strip {x+ it :
−π ≤ x ≤ π, t > 0} (f is not necessarily in H∞(G)) and P be a bounded projection. Then the
Toeplitz operator of Definition 2.6 is bounded.

Open problems

1- We can try to define Toeplitz operators in a more general case on Hp
2π,µ(G) p ̸= 2 and char-

acterize its boundedness. Since in this situation Hp
2π,µ(G)’s are not Hilbert spaces so we probably

deal with a very big and complicated problem.
2- Characterizing of compactness of Teplitz operator of Definition2.6 as first step and then charac-
terizing of compactness of Teplitz operators on Hp

2π,µ(G) p ̸= 2.
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