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Abstract

The Liu estimator has been consistently demonstrated to be an attractive shrinkage method to
reduce the effects of Inter-correlated (multicollinearity). The negative binomial regression model is
a well-known model in the application when the response variable is non-negative integers or counts.
However, it is known that multicollinearity negatively affects the variance of the maximum likelihood
estimator of the negative binomial coefficients. To overcome this problem, a negative binomial
Liu estimator has been proposed by numerous researchers. In this paper, a Jackknifed Liu-type
negative binomial estimator (JNBLTE) is proposed and derived. The idea behind the JNBLTE is to
decrease the shrinkage parameter and, therefore, the resultant estimator can be better with a small
amount of bias. Our Monte Carlo simulation results suggest that the JNBLTE estimator can bring
significant improvement relative to other existing estimators. In addition, the real application results
demonstrate that the JNBLTE estimator outperforms both the negative binomial Liu estimator and
maximum likelihood estimators in terms of predictive performance.

Keywords: Multicollinearity; Liu estimator; negative binomial regression model; shrinkage; Monte
Carlo simulation.

1. Introduction

Negative binomial regression model (NBRM) is widely applied for studying several real data
problems, such as in mortality studies where the aim is to investigate the number of deaths and
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in health insurance where the target is to explain the number of claims made by the individual
[4, 18, 19, 22].

In dealing with the NBRM, it is assumed that there is no correlation among the explanatory
variables. In practice, however, this assumption often not holds, which leads to the problem of
multicollinearity. In the presence of multicollinearity, when estimating the regression coefficients for
NBRM using the maximum likelihood (ML) method, the estimated coefficients are usually become
unstable with a high variance, and therefore low statistical significance [1, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 23, 28, 29, 30, 31, 32, 34, 37, 38, 39, 43].Numerous remedial methods have been proposed
to overcome the problem of multicollinearity. The ridge regression method [21] has been consistently
demonstrated to be an attractive and alternative to the ML estimation method.

Liu [26] proposed the Liu estimator having the advantages of being a linear function of the shrink-
age parameter as well. This estimator has the advantages of ridge estimator and Stein estimator.
Liu [27] showed the superiority of the Liu-type estimator, which is a two-parameter estimator, over
ridge regression. Actually, this estimator uses advantages of both ridge estimator and Liu estimator.
In Liu-type estimator, one can use a large shrinkage value, because there is another parameter to
make the estimator give a good fit.

Although there are valuable characteristics of the Liu-type estimator, but it have a smaller bias.
It is possible to reduce bias by applying a jackknife procedure to a biased estimator. This procedure
enables processing of experimental data to get statistical estimator for unknown parameters. A
truncated sample is used to calculate a specific function of the estimators. The advantage of the
jackknife procedure is that it presents an estimator that has a small bias while still providing beneficial
properties of large samples [42, 43].

In this paper, an extend of Akdeniz Duran and Akdeniz [2], Yıldız [45] is proposed and derived
for the Liu-type negative binomial estimator. The idea behind our proposed estimator is to decrease
the shrinkage parameter and, therefore, the resultant estimator can be better with small amount of
bias.

2. Negative binomial regression model

Most popular distribution when analyzing count data is Negative Binomial regression, where this
type of data used in health, social and physical science , when the dependent variable comes in
the form of non-negative integers, the conditional distribution is yi|xi , hi ∼ Poisson (hi, µi) , i =
1, 2, 3, . . . , n where hiis a random variable which is γ (θ + θ) distributed , xi is a p×1 vector of
covariates , β is a p×1 vector of parameters and µi = exp(x́i β).
The marginal density function of yi is

pr (y = yi|xi) =
Γ (θ + yi)

Γ (θ) Γ(1 + yi)
(

θ

θ + µi

)
θ

(
µi

θ + µi

)
yi

(2.1)

The conditional mean and variance of the distribution are given respectively as :

E(yi|xi) = µi (2.2)

V (yi|xi) = µi

(
1 +

1

θ
µi

)
(2.3)
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This model is usually estimated by the maximum likelihood (ML) estimator which is found by
maximizing the log-likelihood function

l (θ, β) =
n∑

i=1

{(
yi=1∑
t=0

log(t+ θ)

)
− logyi!− (yi + θ) log

(
1 +

1

θ
exp(x́iβ)

)
+ yi log

(
1

θ

)
+ yix́iβ

}
(2.4)

Them the ML can be obtained by solving the following equation :

s (β) =
∂l (θ, β)

∂β
=

n∑
i=1

yi + µi

1 +
(
1
θ

)
µi

xi = 0. (2.5)

Since equation (2.5) is non-linear in, by using weighted least square algorithm, we have:

β̂NBR = (
´

XŴX)
−1 ´
XŴẐ (2.6)

where Ẑ is a vector with the ith element equaling log (ûi) + (yi − ûi)/ûi, and Ŵ = diag(ûi/(1 +

ûi)/θ̂i. The ML estimator of β is normally distributed with asymptotic mean vector E(β̂ML)=0 and
asymptotic covariance matrix

Cov(β̂ML) = (X ′ŴX)−1 (2.7)

the asymptotic mean –square error (MSE) based on the asymptotic covariance matrix equal

MSE(β̂ML) = tr(
´

XŴX)
−1

=

p∑
j=1

1

λj

(2.8)

where λj is the eigenvalue of
´

XŴX matrix. When there is a multicollinearity problem, the explana-
tory variables are highly intercorrelated . In that situation the weighted matrix of cross products,
´

XŴ1X, is often ill-conditioned which leads to some eigenvalues being small . in that situation, it
is very hard to interpret the estimated parameters since the vector of estimated coefficients become
too long. To avoid this problem the Negative Binomial ridge regression proposed by Mansson and
Shukur [33]. By minimizes the weighted sum of squares error (WSSE). Hence β̂ML is given by:

β̂NBRR =
´

(XŴX +KI)
−1 ´
XŴX β̂NBML 0 < k < 1

= X́ŴX +KI )
−1 ´
XŴŜ (2.9)

In mansson and shukur (2011) it is shown that the MSE of this estimator equals :

MSE(β̂NBRR) =
J∑

j=1

λj

(λj + k)2
+ k2

J∑
j=1

αj
2

(λj + k)2
= γ1 (k) + γ2(k)

= Var(β̂NBRR) +Bias(β̂NBRR) (2.10)

where γ1 (k) is the variance and γ2 (k) is the bias part of β̂NBRR

The MSE of β̂NBRR is lower than estimate such that when we found (where may take on value
between zero and infinity) such that the reduction in the variance part is greater than the increase of
the squared part, for this reason NBRR estimation is better than ML, furthermore NBRR is simple
method since it dose not require any changes of the negative binomial regression.
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3. Liu-type negative binomial regression estimator

Most popular biased estimator is Liu [26] which is adopted in negative binomial regression model
(NBLE) is defined as follows:

β̂NBLE =
´

(XŴX + I)
−1 ´
(XŴX + dI) β̂NBML (3.1)

where the MSE of β̂NBLE is lower than MSE of [Kibria et al. (2015)] which is equal:

β̂NBLE =
J∑

j=1

(λj + d)2

λj (λj + I)2
+ (d− I)2

J∑
j=1

αj
2

(λj + I)2
(3.2)

where is defined as the j-th element of γβ, γ is the eigenvector defined XŴX = γ′Λγ and Λ is the
diagonal matrix with elements equal to λj.

For the estimator β̂NBLE the matrix of cross-products used in Liu [26] replaced with the weighted
matrix of cross-products and the ordinary least square estimator of β with the ML estimator [32].

The MSE of β̂NBLE is

MSE(β̂NBLE) = E(β̂NBLE − β)́(β̂NBLE − β)

= tr
[
(β̂ML − β)′(β̂ML − β)S ′S

]
+ β′k2 (X ′WX = kI)

−2
β.

By taking the trace for the equation above, we have:

MSE(β̂NBLE) =
J∑

j=1

(λj + d)2

λj (λj + I)2
+ (d− I)2

J∑
j=1

αj
2

(λj + I)2

MSE
(
β̂NBLE

)
= ω (d)1 + ω(d)2.

(3.3)

From equation (3.3) the MSE of β̂NBLE is equal to which is the variance and the biased part which
is represent by w(d)2.

To show that the MSE(β̂NBLE) < MES(βML) we taking the first derivative of equation (3.3))
with respect to d as follows [5]:

∂
(
MSE(β̂PLE)

)
∂(d)

= 2
J∑

j=1

λj + d

λj(λj + I)2
+ 2(d− I)

J∑
j=1

α2
j

(λj + I)2
. (3.4)

Since, by inserting on equation (3.4), we have:

∂
(
MSE(β̂PLE)

)
∂(d)

= 2
J∑

j=1

λj + 1

λj(λj + I)2
= 2

J∑
j=1

1

λj(λj + I)
, λj > 0.

The optimal value dj of the value can be found by setting equation (3.4) to zero and solve for dj,
then it may be show as:

dj =
α2
j − 1
1

λj+α2
j

. (3.5)
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Liu upgraded by proposing Liu type to overcome the problem of sever multicollinearity, Liu type
estimator is defined as follows [10]

β̂NBLTE =
´

(XŴX +KI)
−1 ´
(XŴX − dI) β̂NBML, (3.6)

where −∞ < d < ∞ and k ≤ 0. Liu type estimator has superior over ridge estimator [26]. Liu note
that when there exists sever mulicollinearity, the shrinkage ridge parameter may not fully address the
illconditioning problem, Therefore he modified liu estimator and he has suggest Liu type estimator.
The MSE of β̂NBLE is

MSE(β̂NBLTE) =
J∑

j=1

(λj − d)2

λj (λj + I)2
+ (d+K)2

J∑
j=1

αj
2

(λj +K)2
(3.7)

4. The proposed estimator: Jackknifed Liu-type estimator

In this section, the new estimator is introduced and derived. Let M = (m1,m2, . . . ,mp) and Λ =
diag(λ1, λ2, . . . , λp respectively, be the matrices of eigenvectors and eigenvalues of the a symmetric
matrix C = X ′WX has an eigenvalues and eigenvectors decomposition of the form C = TΛT ′, where
T is an orthogonal matrix and Λ is a diagonal matrix. Consequently, the negative binomial regression
estimator of Eq. (2.6), β̂NBR, can be written as

γ̂NBR = Λ−1ST Ŵ v̂

β̂NBR = Mγ̂NBR

(4.1)

[26] proposed a new estimator for γ where this estimator is biased and it’s called Liu-type esti-
mators (LTE), as follows:

γ̂NBLTE (k, d) = ( Λ + kI)−1 (Mý − d γ̂NBR) = (Λ + kI)−1 (Mý − dΛ−1Mý)

=
[
I − (Λ + kI)−1 (k + d)

]
γ̂NBR = H (k, d)γ̂NBR (4.2)

where

H(k, d) = (Λ + kl)−1(Λ− dI) (4.3)

γ̂NBR has bias vector defined as

bias (γ̂NBLTE) = (H (k, d)− I) γ (4.4)

and covariance matrix is as

COV (γ̂NBLTE) = H (k, d) Λ−1H(k, d).K (4.5)

By using [17, 20, 35, 40] we can propose the Jackknifed from γ̂NBLTE. [36] and [41] introduced
the Jackknife method so as to reduce the value of the bias. [20] stated that with a few exceptions,
where the jackknife technique can be applied to balanced models. The jackknifed estimator after
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some algebraic manipulations is obtained by deleting the i-th observation (m′
j, yi)

γ̂NBLTE (k, d) =
(
M

′

−iŴ−iM−i + kI
)−1 (

M
′

−iŴ−iM−i − dI
)
(M

′

−iŴ−iM−i)
−1
M

′

−iy−i

=
(
A−M

′

−iŴ−iM−i

)−1 (
M

′
y −miyi

)
=

{
A−1 +

A−1miwim
′
iA

−1

1−miA−1mi

}
= A−1Mý−A−1miyi

(
A−1miwim

′
iA

−1

1−m
′
iA

−1mi

Mý − A−1miwim
′
iA

−1

1−m
′
iA

−1mi

miyi

)
= γ̂NBLTE (k, d) + A−1miyi

(
1 +

m
′
iA

−1mi

1−m
′
iA

−1mi

)
+

A−1miwim
′
i

1−m
′
iA

−1mi

γ̂NBLTE(k, d)

= γ̂NBLTE (k, d)− A−1mi

A−1mi

(
yi −m

′
iγ̂NBLTE(k, d)

)
1−m

′
iA

−1mi

= γ̂NBLTE − A−1miei
1− fi

,

(4.6)

wherem′
i is the i

th row of the matrixM , ei= yi −m
′
i γ̂NBLTE (k, d) is the Liu-type residual,M ′

−iŴ−iM−i =

M ′ŴM − miŵim
′
i, M ′

−iy−i = My′ − miyi and fi = m′
iA

−1mi is the distance factor and A−1 =
(Λ + kl)−1(I − dΛ−1) = H(k, d)Λ−1.
The bias part and variance of γ̂JNBLTE(k, d) are obtained as, respectively,

bias (γ̂JNBTE(k, d)) = −( I −H (k, d))2γ (4.7)

COV (γ̂JNBTE(k, d)) = σ2 (2I −H (k, d))H (k, d)A−1H(k, d)
′
(2I −H (k, d))

′
(4.8)

The MSEMs of JNBLTE and NBLTE are given as follows

MSEM(γ̂JNBLTE(k, d)) = cov (γ̂JNBLTE(k, d)) +Bias (γ̂JNBLTE(k, d)) Bias (γ̂JNBLTE(k, d))
′

= (2I −H (k, d))H (k, d)A−1H (4.9)

MSEM(γ̂JNBLTE) = H (k, d)A−1H(k, d)
′
+ (H (k, d)− I) γγ

′
(H (k, d)− I)MSEM (γ̂JNBLTE(k, d))

(4.10)

5. Simulation results

In this section, a Monte Carlo simulation experiment is used to examine the performance of the
new estimator with different degrees of multicollinearity. The response variable of n observations
is generated from negative binomial regression as NB(µi, µi + θµ2

i ) with µi = exp(x)iTβ. Here,
β = (β0, β1, . . . , βp) with

∑p
j=1 β

2
i = 1 and β1 = β2 = . . . = βp [24, 33]. In addition, because the

value of intercept, β0, has an effect on µi, three values are chosen β0 ∈ {1, 0,−1}, where decreasing
the value of β0 leads to lower average value of µi , which leads to less variation [16, 33].

The explanatory variables XT
i = (xi1, xi2, . . . , xin) have been generated from the following for-

mula
xij = (1− ρ2)1/2wij + ρwij, i = 1, 2, . . . , p, (5.1)

where ρ represents the correlation between the explanatory variables and w′
ijs are independent stan-

dard normal pseudo-random numbers. Because the sample size has direct impact on the prediction
accuracy, three representative values of the sample size are considered: 30, 50 and 100. In addi-
tion, the number of the explanatory variables is considered as p=4 and p=8 because increasing the
number of explanatory variables can lead to increase the MSE. Further, because we are interested in
the effect of multicollinearity, in which the degrees of correlation considered more important, three
values of the pairwise correlation are considered with ρ = {0.90, 0.95, 0.99}. For a combination of
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these different values of n, p, β0 and ρ the generated data is repeated 1000 times and the averaged
mean squared errors (MSE) is calculated as

MSE(β̂) =
1

1000

1000∑
i=1

(β̂ − β)T (β̂ − β) (5.2)

where β̂ is the estimated coefficients for the used estimator.
The estimated MSE of Eq. (5.2) for MLE, NBLE, NBLTE, and JNBLTE, for all the combination

of n, p, β0 and ρ are respectively summarized in Tables 1 - 3. Several observations can be made.
First, in terms of ρ values, there is increasing in the MSE values when the correlation degree

increases regardless the value of n, p, β0. However, JNBLTE performs better than NBLTE, NBLE,
and MLE for all cases. For instance, in Table 1, when p=4, n=100, and ρ = 0.95, the MSE of
JNBLTE was about 70.098%, 22.422%, and 14.413% lower than that of MLE, NBLE, and NBLTE,
respectively.

Second, regarding the number of explanatory variables, it is easily seen that there is increasing in
the MSE values when the p increasing from four variables to eight variables. Although this increasing
can affected the quality of an estimator, JNBLTE is achieved the lowest MSE comparing with the
other used estimators, for different n, p, β0 Third, with respect to the value of n, The MSE values
decreases when increases, regardless the value of ρ, p, β0 and ρ. However, JNBLTE still consistently
outperforms the others by providing the lowest MSE.

Fourth, in terms of the value of the intercept and for a given values of ρ, p, n, JNBLTE is always
show smaller MSE comparing with other estimators.

To summary, all the considered values of n, ρ, p, β0, the proposed estimator, JNBLTE, is superior
to NBLTE and NBLT, clearly indicating that the new proposed estimator is more efficient.

Table 1: MSE values when β0 = −1

ML NBLE NBLTE JNBLTE

ρ
p=4 n=30 0.90 5.205 1.244 1.091 0.783

0.95 5.833 1.475 1.324 1.232
0.99 6.231 2.125 1.973 1.764

n=50 0.90 3.576 0.877 0.724 0.694
0.95 4.651 1.149 0.996 0.803
0.99 4.843 1.466 1.313 1.693

n=100 0.90 3.419 0.679 0.526 0.665
0.95 3.629 0.803 0.65 0.692
0.99 4.384 1.829 1.676 1.468

p=8 n=30 0.90 5.31 1.446 1.293 0.975
0.95 5.929 1.677 1.524 1.424
0.99 6.344 2.327 2.174 1.956

n=50 0.90 3.845 1.079 0.926 0.886
0.95 4.988 1.351 1.198 0.995
0.99 5.313 1.668 1.515 1.885

n=100 0.90 3.755 0.871 0.718 0.857
0.95 4.03 0.995 0.843 0.884
0.99 4.588 2.021 1.868 1.66

6. Conclusions

In this paper, a new estimator of negative binomial Liu-type estimator is proposed to overcome
the multicollinearity problem in the negative binomial regression model. According to Monte Carlo
simulation studies, the new estimator, Jackknifed Liu-type estimator, has better performance than
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Table 2: MSE values when β0 = 0

ML NBLE NBLTE JNBLTE

ρ
p=4 n=30 0.90 4.794 0.833 0.68 0.372

0.95 5.422 1.064 0.913 0.821
0.99 5.82 1.714 1.562 1.353

n=50 0.90 3.165 0.466 0.313 0.283
0.95 4.24 0.738 0.585 0.392
0.99 4.432 1.055 0.902 1.282

n=100 0.90 3.008 1.488 0.508 0.354
0.95 3.218 0.392 0.239 0.281
0.99 3.973 1.418 1.265 1.057

p=8 n=30 0.90 4.899 1.035 0.882 0.564
0.95 5.518 1.266 1.113 1.013
0.99 5.933 1.916 1.763 1.545

n=50 0.90 3.434 0.668 0.515 0.475
0.95 4.577 0.94 0.787 0.584
0.99 4.902 1.257 1.104 1.474

n=100 0.90 3.344 0.46 0.307 0.446
0.95 3.619 0.584 0.432 0.473
0.99 4.177 1.61 1.457 1.249

Table 3: MSE values when β0 = 1

ML NBLE NBLTE JNBLTE

ρ
p=4 n=30 0.90 5.397 1.436 1.283 0.975

0.95 6.025 1.667 1.516 1.424
0.99 6.423 2.317 2.165 1.956

n=50 0.90 3.768 1.069 0.916 0.886
0.95 4.843 1.341 1.188 0.995
0.99 5.035 1.658 1.505 1.885

n=100 0.90 3.611 2.091 1.111 0.957
0.95 3.821 0.995 0.842 0.884
0.99 4.576 2.021 1.868 1.66

p=8 n=30 0.90 5.502 1.638 1.485 1.167
0.95 6.121 1.869 1.716 1.616
0.99 6.536 2.519 2.366 2.148

n=50 0.90 4.037 1.271 1.118 1.078
0.95 5.18 1.543 1.39 1.187
0.99 5.505 1.86 1.707 2.077

n=100 0.90 3.947 1.063 0.91 1.049
0.95 4.222 1.187 1.035 1.076
0.99 4.78 2.213 2.06 1.852

MLE, NBLT, and NBLTE, in terms of MSE. In conclusion, the use of the new estimator, JNBLTE,
is recommended when multicollinearity is present in the NBRM.
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