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Abstract

In this paper, we propose to solve nonlinear functional equations given in an infinite-dimensional
Banach space by linearizing first and then discretizing the linear iterative equations. We establish
new sufficient conditions which provide new criteria for dealing with convergence results. These
conditions define a class of discretization schemes. Some numerical examples confirm the theoretical
results by treating an integro-differential equation.
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1. Introduction

Nonlinear functional equations are a fundamental tool for mathematical modeling derived from
physical, chemical, or other discipline processes. The solutions of these equations are typically given
in an infinite-dimensional Banach space, where an analytical determination is usually unavailable. A
nonlinear equation is illustrated here as:

Find φ ∈ O ⊂ X : F (φ) = 0, (1.1)
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where O is a nonempty open set of an infinite-dimensional Banach space X , F is a nonlinear operator
from O into X , φ is the solution, and 0 is the null vector of X .

The linearization of equation (1.1) by the Newton-Kantorovich method generates a sequence
(φ(k))k≥0 ⊂ O given by the relation

φ(k+1) = φ(k) − F ′(φ(k))−1F (φ(k)), k ≥ 0, φ(0) ∈ O, (1.2)

where F ′ denotes the Fréchet derivative of F and F ′(x)−1 denote the inverse of F ′(x). To approximate
the solution of equation (1.1), there are two options:

- Option (A): Discretizing equation (1.2) then solving numerically the corresponding finite dimen-
sional linear problem.

- Option (B): Discretizing equation (1.1) then applying Newton method to the discrete nonlinear
problem and then solving numerically the corresponding finite dimensional linear problem.

The authors of a recent work [1] investigate the use of options (A) and option (B) where they prove
that these options are not in general equivalent, and option (A) is more efficient than option (B).
Moreover, they show that under certain assumptions on the method of discretization, the iterated
solution converges towards the exact solution, contrary to option (B), in which the iterated solution
always converges towards the approximated vector (See also [2, 3, 4]).

In this paper, we apply option (A) where we prove that the iterated solution converges to the
exact solution under new conditions on the discretization process. These new sufficient conditions are
more applicable than those used in [3]. We show subsequently that these conditions generate variant
schemes, precisely the Sloan scheme also established in [3]. However, we present a new scheme, called
the interpolation Sloan discretization scheme, where we treat an integro-differential equation as a
first numerical application.

The paper is organized as follows. In section 2, we present the main theoretical convergence
results. In section 3, we illustrate these results with a numerical application showing the accuracy
and efficiency of our algorithms.

2. Theoretical Convergence Study

Let X be a complex Banach space, where its norm is denoted by ∥ · ∥. The space BL(X ) defines
the Banach algebra of bounded linear operators from X to itself, where its norm is given by:

∀A ∈ BL(X ), ∥A∥ = sup
{
∥Ax∥ : ∥x∥ ≤ 1

}
.

The main problem is set as

Find φ ∈ O ⊂ X : F (φ) = 0, (2.1)

where O is a nonempty open set, F is a nonlinear operator defined from O into X , φ is the solution
and 0 is the null vector of X . Applying the option (A) on (2.1) with a general discretization scheme

leads to the sequence (φ
(k)
n )k≥0 defined through the relation:

φ(k+1)
n = φ(k)

n − Σn(φ
(k)
n )F (φ(k)

n ), k ≥ 0, φ(0) ∈ O, (2.2)

where, for all x ∈ O and for n ≥ 1, the operator Σn(·) : O → BL(X ) is a numerical approximation
to F ′(x)−1.
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The next priori convergence theorem constitutes the main result of this work, where we establish
new sufficient conditions for the approximate operator Σn(·), to guarantee that the constructed

sequence (φ
(k)
n )k≥0 given by Eq (2.2) converges to φ, the zeros of Eq (2.1), such that n is fixed in N∗

and k tends to infinity.

Theorem 2.1. Assume that there exist φ ∈ O, µ > 0, R > 0, l > 0, β > 0 and α ∈]0, 1[ such that:

1. F (φ) = 0, F ′(φ) is invertible and ∥F ′(φ)−1∥ ≤ µ.

2. The closed ball BR(φ) is included in O, such that F ′(·) : BR(φ) → BL(X ) is (l, α) Hölder
continuous.

3. There exists γn ∈]0, 1
3
[ such that

sup
x,y∈Br(φ)

∥∥∥(I − Σn(x)F
′(x)

)(
I − Σn(y)F

′(y)
)∥∥∥ ≤ γn, r = min

{
R,

(
1

2µl

) 1
α}

.

4. Let
sup

x∈BR(φ)

∥∥∥I − Σn(x)F
′(x)

∥∥∥ ≤ β. (2.3)

5. The starting function φ
(0)
n and the first approximation φ

(1)
n are included in Bρn(φ) such that

ρn = min
{
r,
( 1− 3γn
8lµ(1 + β)2

) 1
α
}
, φ(1)

n = φ(0) − Σn(φ
(0))F (φ(0)).

Then, for all k ≥ 2 we find that φ
(k)

n ∈ Bρn(φ), and

∥φ(k)
n − φ∥ ≤ ρn

(
1− γn

)k → 0 as k → +∞.

Proof . We show first that, for all x ∈ Br(φ), the bounded operator F ′(x) is invertible and

∥F ′(x)−1∥ ≤ 2µ.

Indeed, we can see that

F ′(x) = F ′(φ)
(
I − F ′(φ)−1

(
F ′(φ)− F ′(x)

))
.

Since ∥∥∥F ′(φ)−1
(
F ′(φ)− F ′(x)

)∥∥∥ ≤ µ
∥∥F ′(φ)− F ′(x)

∥∥ ≤ µ l ∥φ− x∥α ≤ µlrα ≤ 1

2
.

Then using Neumann series, we can find that

F ′(x)−1 =
(
I − F ′(φ)−1

(
F ′(φ)− F ′(x)

))−1

F ′(φ)−1,

and

∥F ′(x)−1∥ ≤ µ

+∞∑
k=0

∥∥∥F ′(φ)−1
(
F ′(φ)− F ′(x)

)∥∥∥k

≤ 2µ. (2.4)

Now, regarding Σn(x), we remark that

∀x ∈ Br(φ), Σn(x) =
(
I −Gn(x)

)
F ′(x)−1, Gn(x) = I − Σn(x)F

′(x).
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Hence, according to (2.3) we conclude that∥∥Σn(x)
∥∥ ≤ 2µ

(
1 + β

)
.

Next, from (2.2) we find that

∀k ≥ 0 φ(k+1)
n − φ = φ(k)

n − φ− Σn(φ
(k)
n )

(
F (φ(k)

n )− F (φ)
)
. (2.5)

So, using the residual integral expression, we get:

F (φ(k)
n )− F (φ) =

∫ 1

0

F
′(
(1− t)φ(k)

n + tφ
)
(φk

n − φ)dt,

then remplace this formula in (2.5), we find that

φ(k+1)
n − φ =

∫ 1

0

(
I − Σn(φ

(k)
n )F

′(
(1− t)φ(k)

n + tφ
))

(φ(k)
n − φ)dt.

Thereafter, we add and subtract F ′(φ
(k)
n ) from F

′(
(1− t)φ

(k)
n + tφ

)
, we obtain

φ(k+1)
n −φ = I−Σn(φ

(k)
n )F ′(φ(k)

n )(φ(k)
n −φ)+Σn(φ

(k)
n )

∫ 1

0

(
F ′((1−t)φ(k)

n +tφ
)
−F ′(φ(k)

n )
)
(φ(k)

n −φ)dt.

(2.6)
Now let’s put  Gn(φ

(k)
n ) = I − Σn(φ

(k)
n )F ′(φ

(k)
n ),

Hn(φ
(k)
n , φ) = Σn(φ

(k)
n )

∫ 1

0

(
F ′((1− t)φ(k)

n + tφ
)
− F ′(φ(k)

n )
)
dt.

Then from (2.6), we can show for all k ≥ 1

φ(k+1)
n − φ = Gn(φ

(k)
n ) (φ(k)

n − φ) +Hn(φ
(k)
n , φ) (φ(k)

n − φ),

φ(k)
n − φ = Gn(φ

(k−1)
n ) (φ(k−1)

n − φ) +Hn(φ
(k−1)
n , φ) (φ(k−1)

n − φ).

So, we conclude that

φ(k+1)
n − φ = Gn(φ

(k)
n )

(
Gn(φ

(k−1)
n ) (φ(k−1)

n − φ) +Hn(φ
(k−1)
n , φ) (φ(k−1)

n − φ)
)

+Hn(φ
(k)
n , φ) (φ(k)

n − φ).

Supposing now that for k ≥ 1, φ
(k−1)
n , φ

(k)
n ∈ Bρn(φ). Since, the ball Br(φ) is convex, then for

t ∈ [0, 1], we can see that (1− t)φ
(k)
n + tφ ∈ Br(φ). Using the estimate,∥∥∥F ′((1− t)φ(k)

n + tφ
)
− F ′(φ(k)

n )
∥∥∥ ≤ l∥φ(k)

n − φ∥α,

thus, we have three relations,∥∥∥Gn(φ
(k)
n )Gn(φ

(k−1)
n ) (φ(k−1)

n − φ)
∥∥∥ ≤ γn∥φ(k−1)

n − φ∥,

∥∥∥Gn(φ
(k)
n )Hn(φ

(k−1)
n , φ) (φ(k−1)

n − φ)
∥∥∥ ≤

(
β 2µ(1 + β) l∥φ(k−1)

n − φ∥α
)
∥φ(k−1)

n − φ∥

≤
(
2µl(1 + β)2∥φ(k−1)

n − φ∥α
)
∥φ(k−1)

n − φ∥,
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and ∥∥∥Hn(φ
(k)
n , φ) (φ(k)

n − φ)
∥∥∥ ≤

(
2µ(1 + β) l∥φ(k)

n − φ∥α
)
∥φ(k)

n − φ∥

≤
(
2µl(1 + β)2∥φ(k)

n − φ∥α
)
∥φ(k)

n − φ∥.

Then, we substitute these three relations in (2.7), we can find that

∥φ(k+1)
n − φ∥ ≤

(
γn + 2µl(1 + β)2

(
∥φ(k−1)

n − φ∥α + ∥φ(k)
n − φ∥α

))(
∥φ(k)

n − φ∥+ ∥φ(k−1)
n − φ∥

)
≤

(1− γn
2

)(
∥φ(k)

n − φ∥+ ∥φ(k−1)
n − φ∥

)
≤ (1− γn)ρn.

Since 1− γn < 1, the previous inequality implies that φ
(k+1)
n ∈ Bρn(φ) and that

∥φ(k)
n − φ∥ ≤ ρn

(
1− γn

)k

→ 0, as k → +∞,

which completes the proof. □
We note that the hypothesis established in our Theorem 2.1 are more applicable than those of [3].

The following proposition shows that under adequate assumption, the first approximation function
φ
(1)
n can be found in Bρn(φ), if φ

(0) ∈ Bρn(φ), where

φ(1)
n = φ(0) − Σn(φ

(0))F (φ(0)), ρn = min
{
r,
( 1− 3γn
4lµ(1 + β)2

) 1
α
}
.

Proposition 2.1. Under the same assumptions of Theorem 2.1, if φ(0) ∈ Bρn(φ) and for all h ∈ X ,

Σn(φ
(0))h −→ F ′(φ(0))−1 h as n → ∞,

then for n large enough, φ
(1)
n ∈ Bρn(φ).

Proof . We define first the function g ∈ X such that

g = φ(0) − F ′(φ(0))−1F (φ(0)),

then, using the same technics as in proof of Theorem 2.1, we can find that

g − φ = (φ(0) − φ)− F ′(φ(0))−1
(
F (φ(0))− F (φ)

)
= (φ(0) − φ)− F ′(φ(0))−1

∫ 1

0

F ′((1− t)φ(0) − tφ)(φ(0) − φ)dt

= (φ(0) − φ)− F ′(φ(0))−1

∫ 1

0

F ′(φ(0))(φ(0) − φ)dt

−F ′(φ(0))−1

∫ 1

0

(
F ′((1− t)φ(0) − tφ)− F ′(φ(0))

)
(φ(0) − φ)dt

= −F ′(φ(0))−1

∫ 1

0

(
F ′((1− t)φ(0) − tφ)− F ′(φ(0))

)
(φ(0) − φ)dt.

So,

∥g − φ∥ =
(
2µl(1 + β)∥φ(0) − φ∥α

)
∥φ(0) − φ∥ ≤ (1− γn)ρn ≤ ρn,
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which implies that g ∈ Bρn(φ). On the other side, we can see that

g − φ(1)
n =

(
Σn(φ

(0))− F ′(φ(0))−1
)
F (φ(0)).

As, for all h ∈ X ,
(
Σn(φ

(0))− F ′(φ(0))−1
)
h −→ 0, thus for n large enough, φ

(1)
n ∈ Bρn(φ). □ In the

next section, we will prove that by applying the option (A) with the use of the Sloan discretization
scheme, all the assumptions of Theorem 2.1 and of Proposition 2.1 are satisfied.

3. Sloan Discretization Scheme

Following [1, 3], we consider a Fréchet-differentiable nonlinear compact operator K : O −→ X ,
where its derivative is denoted by T = K ′. The kind of the nonlinear equation to be treated is,

Find φ ∈ O : φ−K(φ) = f, (3.1)

where f is given in X . Let πn be a projection given in a subspace of X such that

∀h ∈ X , πnh −→ h.

Using the Sloan projection discretization to the iterative equations issued from the linearization
process, we get:

Find φ(k+1)
n ∈ X : φ(k+1)

n − T (φ(k)
n ) πnφ

(k+1)
n = g(k)n , where g(k)n = K(φ(k)

n )− T (φ(k)
n )πnφ

k
n + f.

Now, we assume that equation (3.1) has a solution φ ∈ O, I−T (φ) is invertible and the operator
T (·) : O → BL(X ) is (l, α)−Hölder. In the sequel, we show that the hypotheses of Theorem 2.1 and
of Proposition 2.1 are satisfied.

Let µ > 0 and R > 0 be such that BR(φ) ⊆ O and ∥
(
I − T (φ)

)−1∥ ≤ µ. We fix r =

min
{
R,

(
1
2µl

) 1
α
}
, we can show that, as in the proof of Theorem 2.1, for all x ∈ Br(φ), the op-

erator I − T (x) is invertible and ∥
(
I − T (x)

)−1∥ ≤ 2µ. We note that the discretization process is
based upon the approximation

∀x ∈ BR(φ), Tn(x) = T (x)πn, .

We state the first two lemmas which will be needed in the proof of our main results.

Lemma 3.1. For all x ∈ BR(φ), if M(x) is a compact operator in BL(X ), then

lim
n→∞

sup
x,y∈BR(φ)

∥∥∥(Tn(x)− T (x)
)
M(y)

∥∥∥ = 0.

Proof . Since, for all h ∈ X , Tn(x)h = T (x)πnh → T (x)h and the set

W =
{
M(x)h : x ∈ BR(φ), h ∈ X , ∥h∥ = 1

}
,

is relatively compact, then by the Banach-Steinhaus Theorem (See Corollary 9.2 of [5]), we find that

lim
n→∞

sup
x,y∈BR(φ)

∥∥∥(Tn(x)− T (x)
)
M(y)

∥∥∥ = 0.

□
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Lemma 3.2. For all x ∈ BR(φ) and for n large enough, there exists C > 0 such that

sup
x∈BR(φ)

∥∥∥(I − T (x)
)−1(

Tn(x)− T (x)
)∥∥∥ ≤ C.

Proof . For all x ∈ BR(φ), we remark that∥∥∥(I − T (x)
)−1(

Tn(x)− T (x)
)∥∥∥ ≤ 2µ

∥∥∥(Tn(x)− T (x)
)∥∥∥ ≤ 2µ

∥∥∥T (x)(πn − I
)∥∥∥.

As, for all h ∈ X , πnh −→ h then the Uniform Boundedness Principle (See Theorem 9.1 of [5]) shows
that there exists C > 0 such that

sup
x∈BR(φ)

∥∥∥(I − T (x)
)−1(

Tn(x)− T (x)
)∥∥∥ ≤ C.

□

Proposition 3.1. For all x ∈ BR(φ) and for n large enough, the approximate inverse Σn(x) =(
I − Tn(x)

)−1
, exists and is uniformly bounded on BR(φ).

Proof . For all x ∈ BR(φ), we remark that

I − Tn(x) =
(
I − T (x)

)(
I −

(
I − T (x)

)−1(
Tn(x)− T (x)

))
.

In addition,∥∥∥((I − T (x)
)−1(

Tn(x)− T (x)
))2∥∥∥ ≤ 2µ

∥∥∥(Tn(x)− T (x)
)(
I − T (x)

)−1
T (x)(πn − I)

∥∥∥
≤ 2µ

∥∥∥(Tn(x)− T (x)
)(
I − T (x)

)−1
T (x)

∥∥∥.
PuttingM(x) = (I−T (x))−1T (x), for all x ∈ BR(φ), thenM(x) is a compact operator. So, according
to Lemma 3.1, we can find that for n large enough,∥∥∥((I − T (x)

)−1(
Tn(x)− T (x)

))2∥∥∥ ≤ 1

2
.

Hence, using Neumann series, we get

Σn(x) =
∞∑
k=0

((
I − T (x)

)−1(
Tn(x)− T (x)

))k(
I − T (x)

)−1

=
( ∞∑

k=0

((
I − T (x)

)−1(
Tn(x)− T (x)

))2k

+
∞∑
k=0

((
I − T (x)

)−1(
Tn(x)− T (x)

))2k+1)(
I − T (x)

)−1

=
(
I +

(
I − T (x)

)−1(
Tn(x)− T (x)

)) ∞∑
k=0

((
I − T (x)

)−1(
Tn(x)− T (x)

))2k(
I − T (x)

)−1
.

Therefore, according to Lemma 3.2, we obtain

∥Σn(x)∥ ≤ 2µ(1 + C)
∞∑
k=0

(∥((I − T (x))−1(Tn(x)− T (x)))2∥)k ≤ 4µ(1 + C).

□
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Proposition 3.2. For all x ∈ Br(φ), we have

1. There exists β > 0 such that:

sup
x∈Br(φ)

∥∥∥I + Σn(x)
(
I − T (x)

)∥∥∥ ≤ β.

2. There exists γn ∈
]
0, 1

3

[
such that:

sup
x,y∈Br(φ)

∥∥∥(I + Σn(x)
(
I − T (x)

))(
I + Σn(y)

(
I − T (y)

))∥∥∥ ≤ γn.

Proof . Firstly, for all x ∈ Br(φ), we remark that

I − Σn(x)
(
I − T (x)

)
= Σn(x)

(
I − Tn(x)− I + T (x)

)
= Σn(x)

(
T (x)− Tn(x)

)
.

Hence, there exists β > 0 such that

sup
x∈Br(φ)

∥∥∥I + Σn(x)
(
I − T (x)

)∥∥∥ ≤ β.

Secondly, for all x, y ∈ Br(φ), we put Gn(x) = I + Σn(x)
(
I − T (x)

)
, then

Gn(x)Gn(y) =
(
Σn(x)

(
T (x)− Tn(x)

))(
Σn(y)

(
T (y)− Tn(y)

))
= Σn(x)

(
T (x)− Tn(x)

)
Σn(y)T (y) (I − πn).

Hence, there exists C1 > 0 such that

∥Gn(x)Gn(y)∥ ≤ C1∥
(
T (x)− Tn(x)

)
Σn(y)T (y)∥.

Since,

Σn(y)−
(
I − T (y)

)−1
= Σn(y)

(
T (y)− Tn(y)

)(
I − T (y)

)−1
.

So, we conclude that for all h ∈ X (
T (x)− Tn(x)

)
Σn(y)h → 0.

Using Lemma 3.1, we can show that for n large enough, there exists γn ∈
]
0, 1

3

[
such that

sup
x,y∈Br(φ)

∥Gn(x)Gn(y)∥ ≤ γn.

This completes the proof. □

3.1. The Numerical Implementation

In this section, we show that the numerical computation of (φ
(k)
n )k≥1 which is generated by the

Sloan discretization scheme (for Sloan method see [6] and [7]), requires to solve an n × n linear

system. In other words, by solving k linear systems of order n, we get an approximation (φ
(k)
n )k≥1 of

any desired accuracy.
Defining a projection πn : X → X spanned by an order basis

en = [en,1, · · · , en,n] ∈ X n,
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where e∗n = [e∗n,1, · · · , e∗n,n] ∈ (X ∗)n is an adjoint order basis to en. We denote by ⟨ , ⟩ the duality
brackets between X and X ∗. We note that for all x ∈ X

πnx =
n∑

j=1

⟨x, e∗n,j⟩en,j,

Remark that, for all 1 ≤ j ≤ n
πnen,j = en,j.

To simplify the description of matrices and linear combination we use the following notation: for all
x ∈ Cn

enx =
n∑

j=1

x(j)en,j.

We recall that the Sloan discretization scheme is given by

Find φ(k+1)
n ∈ O :

(
I − T (φ(k)

n )πn

)
φ(k+1)
n = g(k)n , where g(k)n = −πnT (φ

(k)
n )φk

n +K(φ(k)
n ) + f.

So, if we put

πnφ
(k+1)
n =

n∑
j=1

x(k+1)
n (j)en,j,

then the function φ
(k+1)
n is given by:

φ(k+1)
n = T (φ(k)

n )enx
(k+1)
n +K(φ(k)

n )− πnT (φ
(k)
n )φk

n + f,

where the unknown x
(k+1)
n is a column vector in Cn satisfying the linear system,

(In −M (k)
n )x(k+1)

n = b(k)n ,

where for 1 ≤ i, j ≤ n:

M (k)
n (i, j) = ⟨T (φ(k)

n )en,j, e
∗
n,i⟩, b(k)n (j) = ⟨K(φ(k)

n ), e∗n,j⟩ − ⟨T (φ(k)
n )φ(k)

n , e∗n,j⟩+ ⟨f, e∗n,j⟩.

We note that the operators T (x) andK(x) are functional operators, hence the exact computations

ofK(φ
(k)
n ) and T (φ

(k)
n ) are almost always difficult. So, to go over this difficulty, in the next subsection,

we propose a new interpolation scheme of the option (A), where the numerical implementation is
much easier.

3.2. Interpolation Sloan discretization scheme

Using the same notations as in the previous sections, we define the new interpolation scheme of
the option (A) as

φ(k+1)
n,m = φ(k)

n,m − Σn

(
πmφ

(k)
n,m

)
F
(
πmφ

(k)
n,m

)
, k ≥ 0 φ(0)

n,m ∈ O,

where m,n are fixed in N.

Theorem 3.3. Under the same assumptions of Theorem 2.1, then for m large enough, we have

∥φ(k)
n,m − φ∥ ≤ ρn

(
1− 2

3
γn

)k

→ 0 as k → +∞.
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Proof . Remark that

φ(k+1)
n,m = φ(k)

n,m − Σn

(
φ(k)
n,m

)
F
(
φ(k)
n,m

)
+ Σn

(
φ(k)
n,m

)(
F
(
φ(k)
n,m

)
− F

(
πmφ

(k)
n,m

))
+
(
Σn

(
φ(k)
n,m

)
− Σn

(
πmφ

(k)
n,m

))
F
(
πmφ

(k)
n,m

)
,

which implies that

φ(k+1)
n,m − φ = φ(k)

n,m − φ− Σn(φ
(k)
n,m)

(
F (φ(k)

n,m)− F (φ)
)
+ Σn(φ

(k)
n,m)

(
F (φ(k)

n,m)− F (πmφ
(k)
n,m)

)
+
(
Σn(φ

(k)
n,m)− Σn(πmφ

(k)
n,m)

)
F (πmφ

(k)
n,m),

So, we use the same techniques as in the proof of Theorem 2.1, we find that

∥φ(k+1)
n,m − φ∥ ≤ 1

2
(1− γn)

(
∥φ(k)

n,m − φ∥+ ∥φ(k−1)
n,m − φ∥

)
+ ∥Σn(φ

(k)
n,m)∥ ∥F (φ(k)

n,m)− F (πmφ
(k)
n,m)∥

+ ∥Σn(φ
(k)
n,m)− Σn(πmφ

(k)
n,m)∥∥F (πmφ

(k)
n,m)∥.

Using the regularity and the boundedness of Σn(x) and F (x), then there exists C > 0 such that

∥φ(k+1)
n,m − φ∥ ≤ 1

2
(1− γn)

(
∥φ(k)

n,m − φ∥+ ∥φ(k−1)
n,m − φ∥

)
+ C∥(πm − I)φ(k)

n,m∥.

As, πmh → h as m → ∞, for all h ∈ X . Then we can obtain that for m large enough:

∥φ(k+1)
n,m − φ∥ ≤ 1

2
(1− γn)

(
∥φ(k)

n,m − φ∥+ ∥φ(k−1)
n,m − φ∥

)
+

1

3
γn∥φ(k)

n,m − φ∥.

Hence, assuming that φ
(k)
n,m, φ

(k−1)
n,m ∈ Bρn(φ), wa can find that

∥φ(k+1)
n,m − φ∥ ≤ ρn(1−

2

3
γn) ≤ ρn,

that implies that φ
(k+1)
n,m ∈ Bρn(φ) and

∥φ(k)
n,m − φ∥ ≤ ρn(1−

2

3
γn)

k → 0, as k → ∞.

The proof is complete. □
Defining the Sloan discretization scheme as before on the interpolation one, we get

Find φ(k)
n,m ∈ X :

(
I − T

(
πmφ

(k)
n,m

)
πn

)
φ(k+1)
n,m = g(k)n,m,

where
g(k)n,m = −πnT

(
πmφ

(k)
n,m

)
φ(k)
n,m +K

(
πmφ

(k)
n,m

)
+ f.

So, we put

πnφ
(k+1)
n,m =

n∑
j=1

x(k+1)
n,m (j)en,j,

then the function φ
(k+1)
n,m is given by:

φ(k+1)
n,m = T

(
πmφ

(k)
n,m

)
enx

(k+1)
n,m − πnT

(
πmφ

(k)
n,m

)
φ(k)
n,m +K

(
πmφ

(k)
n,m

)
+ f,

where the unknown x
(k+1)
n,m is a column vector in Cn solving the linear system:(

In −M (k)
n,m

)
x(k+1)
n,m = b(k)n,m, (3.2)

where for 1 ≤ i, j ≤ n:

M (k)
n,m(i, j) =

〈
T (πmφ

(k)
n,m)en,j, e

∗
n,i

〉
, b(k)n,m(j) =

〈
K(πmφ

(k)
n,m), e

∗
n,j

〉
−
〈
T (πmφ

(k)
n,m)φ

(k)
n,m, e

∗
n,j

〉
+
〈
f, e∗n,j

〉
.
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3.3. Numerical example

In this subsection, we establish an academic example showing the comportment of the Sloan
discretization scheme with an interpolatory projection. Consider a Banach space X = C1([0, 1],R)
of all continuous differentiable functions defined on the interval [0, 1], which is equipped with the
uniform norm

∥u∥ = max
s∈[0,1]

|u(s)|+ max
s∈[0,1]

|u′(s)|, for u ∈ X . (3.3)

We consider the nonlinear integro-differential equation

φ(s)−
∫ 1

0

k(s, t, φ(t), φ′(t))dt = f(s), s ∈ [0, 1],

where ∥∥∥∥∥∥∥
k,

∂k

∂s
are both in C([0, 1]× [0, 1]× R× R),

f is given a function in X .

The projection πn is built upon a uniform grid in [0, 1] given by:

hn =
1

n− 1
, tj = (j − 1)hn, 1 ≤ j ≤ n, n ≥ 2.

The canonical basis en = [en,1, · · · , en,n] ∈ C([0, 1]) is generated by the hat functions,

ej,n(t) =

 1− |t− tj|
hn

for tj−1 ≤ t ≤ tj+1,

0 otherwise.

e1,n(t) =


t2 − t

hn

for t1 ≤ t ≤ t2,

0 otherwise.

en,n(t) =


t− tn−1

hn

for tn−1 ≤ t ≤ tn,

0 otherwise.

The kernel k is defined by

k(s, t, x, y) = λ(exp(t)x2 − exp(−t) y2), t, s ∈ [0, 1], x, y ∈ R,

where λ is given in R. The main nonlinear problem is set as: Find φ ∈ X such that

φ(s) = λ

∫ 1

0

(
exp(s) (φ(t))2 − exp(−s) (φ′(t))2

)
dt+ f(s), s ∈ [0, 1],

φ ′(s) = λ

∫ 1

0

(
exp(s) (φ(t))2 + exp(−s) (φ ′(t))2

)
dt+ f ′(s), s ∈ [0, 1].

Applying the option (A) on the previous equations with the Sloan discretization scheme, we show
that by solving k linear system of order 2n we get an approximation solution in which converges to
the exact solution.
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The next tables (Table 1 and Table 2) show the numerical results using two different starting
function φ(0), where the function f is given by

f(s) =
√
1 + s+

λ

4

(
6 exp(s)− log(2) exp(−s)

)
, s ∈ [0, 1],

and the exact solution φ is:
φ(s) =

√
1 + s. s ∈ [0, 1].

The error formula is defined by:

Ek
n,m = max

1≤j≤n

{
|φ(tj)− y

(k)
{n,m,j}|, |φ

′(tj)− z
(k)
{n,m,j}|

}
,

and
x
(k)
{n,m} = (y

(k)
{n,m}, z

(k)
{n,m}) ∈ C2n,

is calculated through the system (3.2).

Table 1: Numerical results with φ(0) = 0 and λ = 0.1

n=10 Ek
n,m n=100 Ek

n,m

m=10 m=100

k=2 4.141171392047060 e-01 k=2 4.141171392047060 e-01
k=6 1.731801805729800 e-02 k=6 1.722637261440900 e-02
k=10 3.348482261129049 e-04 k=10 2.880658280443038 e-04
k=14 4.876077139859270 e-05 k=14 6.617005265940890 e-06
k=18 5.589562884833477 e-05 k=18 4.648402012197295 e-07

Table 2: Numerical results with φ(0) = f and λ = 0.1

n=10 Ek
n,m n=100 Ek

n,m

m=10 m=100

k=2 2.200328874691180 e-01 k=2 2.198300274707410 e-01
k=6 5.115776414219000 e-03 k=6 5.046035023891000 e-03
k=10 1.715094568838227 e-04 k=10 1.251126470973030 e-04
k=14 5.494202775446766 e-05 k=14 3.912001588446401 e-06
k=18 5.593171308415634 e-05 k=18 5.070256147154950 e-07

Conclusion

As a general conclusion, this paper shows new theoretical conditions that provide a new class
of interpolation discretization scheme. The treatment of the nonlinear equation is starting first by
linearizing, then discretizing, where the numerical results prove its efficiency and accuracy. However,
there are a lot of open problems concerned with the resolution of nonlinear integral equations in
particular the integral equation of the first type. therefore as a perspective, we will apply these
methods of resolution on the nonlinear integral equations of the first types.
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