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Abstract

Multi-label data classification differs from traditional single-label data classification, in which each
input sample participated with just one class tag. As a result of the presence of multiple class tags,
the learning process is affected, and single-label classification can no longer be used. Methods for
changing this problem have been developed. By using these methods, one can run the usual classifier
classes on the data. Multi-label classification algorithms are used in a variety of fields, including
text classification and semantic image annotation. A novel multi-label classification method based
on deep learning and feature selection is presented in this paper with specific meta-label-specific
features. The results of experiments on different multi-label datasets demonstrate that the proposed
method is more efficient than previous methods.

Keywords: Machine Learning, Classification, Multi-Label, Meta-Label-Specific Features, Deep
Learning.

1. Introduction

One of the most important topics in machine learning is classification. The goal of classification
is to develop a computational model that can correctly classify new unlabeled samples using a set of
labelled samples. A well-established paradigm of machine learning is single-label classification. The
model predicts accurately and quickly in a wide array of fields. Single-label classification involves
learning from a set of samples which are associated with a single label, such as binary classification
and multi-class classification. Multi-label classification (MLC) assigns a set of relevant labels to an
instance simultaneously, unlike traditional classification. Recent developments and applications of
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MLC include diagnostics, music analysis, emotion detection, and image/video annotation. Each of
these unseen instances must be labeled. Among many molecular functions that can be tied to one
gene sequence in bioinformatics, for instance. In-text categorization, a new article can cover multiple
aspects of an event, thus being assigned to a set of multiple topics [31, 18, 28].

MLC tasks can be solved using either problem transformation or algorithm adaptation. In the
former, the MLC task is converted into a single-label classification task, called label ranking (LR)
[25]. In the latter, traditional machine learning algorithms are adapted to handle multi-label data
sets (MLDs). In general, Binary Relevance (BR), Label Powerset (LP) and Classifier Chains (CC)
are the three most common methods for transforming problems. This method converts a multi-
label problem into an independent binary problem. Following that, a traditional classifier is used
to process each binary problem [20, 1, 17, 13]. By identifying each sets of labels uniquely, the LP
creates a multi-class dataset from the original MLD. It is then used to train a regular classification
algorithm, which predicts classes and returns subsets of labels. Many multi-label ensemble-based
methods are based on both BR and LP. By considering the label correlation task, CC overcomes the
BR limitations [22].

Algorithms are adapted to accommodate MLC-specific changes as part of the algorithm adapta-
tion process. An MLD is implemented by revisiting the single-label classification process. Multilabel
k Nearest Neighbors (MLKNN), multiclass multilabel perceptron (MMP), and Ranking Support
Vector Machine (Rank-SVM) have all been proposed as adaptations of traditional classifiers [40, 23].

MLC suffers from the imbalanced nature of the data space, where the samples are not evenly
distributed, and the labels are not uniformly positioned. It is not effective for coping with the
imbalance problem in an MLC to apply problem transformation and adaptation techniques [14,
35, 11]. The imbalanced nature of datasets presents a significant challenge for many real-world
applications, such as fraud detection, risk management, and medical diagnosis. A diagnostic problem
involving a disease that is rare as compared to healthy people within a population, for instance,
requires the task to look for people with diseases. A classification model that could properly label
rare patterns is hence an effective one. With single-label classification, imbalanced class distributions
have been extensively studied using commonly used approaches, such as resampling methods. As a
result of imbalances between labels and label-sets, the existing strategies cannot directly address an
MLC’s imbalanced problem. Having more labels complicates the imbalance problem [30].

Three important criteria for classifying and comparing multi-label classifiers are presented in the
following due to their importance and widespread use [33].

Firstly, how well the learning algorithm deals with multi-label data sets is the first criterion. On
multi-label data, supervised-based learning methods can be divided into two general categories. The
first group of problems is called transitional problems, while the second group is called adaptation
methods [38].

Transitional learners map the problem to a single label. On the other hand, the second category
includes methods that can directly apply multi-label data [8, 27, 9].

In addition, the classification based on the output generated by multi-label learners is important.
The output of a multi-label learner is either a classification model or a label rating model. For
each test sample, a model that performs multi-label classification can specify relevant and unrelated
labels. In label rating, however, all available tags are ranked for every sample.

An integrated Deep learning and selection method is proposed in this paper for the classification
of multi-label datasets. In this method, the features are presented as graph models, and the selected
feature sets are then selected using a deep learning-based model in order to perform the multi-label
classification.

In the reminder of this paper, in section 2 the related works are reviewed, in section 3 the details
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Figure 1: Publishing trends for Imbalanced Multi-label Classification.

of proposed method are explained, then the performance of the proposed method is evaluated in
section 4, and finally the overall of this paper is concluded.

2. Related Works

A Multi-Label Classification (MLC) is a method of arranging data by categorizing it by more
than one label at once. A wide range of application domains has contributed to the growth of MLC
in recent years. In multi-label datasets, the problem of class imbalance has, however, become a
characteristic of the data set, where the samples and their corresponding labels are not distributed
randomly over the space. In Fig. 1, the number of imbalanced multi-label publications is presented
from 2006-2019. In comparison to other periods, the number of publications has grown steadily
between 2012 and 2015, and between 2016 and 2019. A decrease in the number of publications
occurred in 2016 in comparison to 2015, followed by an increase in subsequent years. Over the past
few years, imbalanced MLC has been the subject of many new publications. Research has focused
extensively on imbalanced MLC, suggesting that the topic continues to be of value to researchers.
The research literature on multi-classification will be reviewed in this section [2, 21, 41].

2.1. Transfer models

In this category, methods attempt to break down the multi-tag data set into single tags. Other-
wise, you need to break down the original multi-tag data set. The data set is then classified using
single-tag classifiers. As a result, each classifier is combined to produce a multi-tag classifier.

It was suggested in [2] that multi-labeled datasets can be converted to single labeled datasets by
using six different techniques:

� Pick the most relevant tag set for each instance based on its index.

� To select a label for each sample, find the one with the lowest index among its associated tag
sets.

� Make copies of the samples so that each copy is assigned only one sample tag.
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� We assign weights to every pair (sample, label) as before

� Randomly selecting one of the samples

� If a sample has more than one tag, delete it.

It is a disadvantage of these methods that they destroy much of the data in an initial multi-tag data
set. Some tags are lost in the samples. Because of this, the learning algorithm will not incorporate all
the information from the initial data set. This model is clearly less efficient than one created from the
entire initial training dataset. [21] proposes that a new technique, ”K-way Tree based eXtreme Multi-
Label Classifier (KTXMLC)” is useful for maintaining correlations between features using feature-
label representation technique and node partitioning with clustering algorithm. Furthermore, in [41],
a new re-weighting algorithm for multi-label classification problems is introduced. Using multi-label
classification, dual aggregated networks are proposed in [36]. An approach was developed to identify
discriminant multiscale information about different target objects from image data by aggregating
both feature and classifier levels. For the development of data-driven label clustering, a new label
dependence criterion was presented in [34].

A methodology described in [32] provides four common tricks associated with data analysis.
Multi-labeled datasets are each divided into single-labeled datasets by each of these programs. These
methods include: One Versus Rest (OVR), One Versus One (OVO), One By One (OBO), and
Label Powerset (LP). In addition, a deep learning-based approach combined with label-attention
and domain-specific pre-training is proposed for the classification of multi-label legal documents [24].
An algorithm for multilabel feature selection based on optimization is proposed in [6]. The paper
uses an improved NSGA III algorithm and two archives to enhance the diversity and convergence of
NSGA III.

2.2. Adaptation models

Data analysis and algorithm development are combined in a method called adaptation. For the
first category of algorithms, a multi-label classifier is produced that can consider all instances and
all classes in the training dataset at once. Second, a single-label classifier can be improved, and
multi-label datasets can be subdivided into subsets. The second method has produced and designed
several efficient and effective multi-label classification algorithms.

Methods currently used in adaptation are based on dependence rule learners, decision trees,
sample-based methods, neural networks, and SVM classifiers.

MMAC, which is a technique presented in [26], creates classification rules by using a set of
dependencies explored in that paper. After that, it removes the instances that follow these rules,
and repeats the rule search on the remaining data. As long as, at least one rule is followed, all
samples will be considered. Compared to other methods, this method is suited to training samples,
as its flexibility on new data is reduced.

3. Proposed Method

To improve classification accuracy for multi-label data, a deep learning-based approach is pre-
sented in this section. Graph-based feature selection is also used in this method to reduce data
dimensions.

There are many attributes associated with data. In the case of data mining applications, many
of these features are irrelevant or redundant. These unrelated and redundant features negatively
affect the machine learning algorithm and increase computational complexity. The reduction of data



Integration of deep learning model and feature selection for multi-label classification 2875

size is therefore a fundamental task of data mining and machine learning. Models with reduced
features are more generalizable than original models. For a classification task with n dimensions and
C classes, a minimum of 10 X n X C is required. Whenever it is not practicable to provide this much
training data, reducing the features reduces the amount of training data needed. Consequently, the
classification algorithm’s performance improves [3, 10, 29].

Managing large data dimensions is harder than managing small data dimensions or performing
computations and analyses. In light of this, dimensionality is a crucial part of knowledge discovery.
Despite the opportunities they create, multidimensional data platforms present many computational
challenges. Large data sets have the disadvantage that most of the time all the features are not
important to finding the knowledge hidden within. Dimensionality reduction is therefore important
in many fields.

There are two main methods for reducing dimensions:
Methods that map a multidimensional space into a smaller one are known as feature-based extraction
methods. When they combine the values of existing attributes, they create fewer attributes that
contain all (or most) of the information in the original attributes. In general, there are two categories
of methods: linear and nonlinear. Multidimensional spaces can be mapped into smaller spaces
using feature extraction methods. A linear method and a nonlinear method belong to two different
categories. The simplest and easiest linear methods are those that seek out a sub-public space.
Nevertheless, nonlinear methods seek to find subliminal spaces, which are extremely difficult to
analyze.
Methods based on feature selection: These methods reduce data size by selecting a subset of the
primary features. When analyzing data, reduction spaces, or classification are favored over main
spaces. Feature selection is a common solution to the problem of reducing dimensions. By removing
the irrelevant and redundant attributes, a subset of the primary attributes is selected. There is a
limitless space of possible subsets in the search space for identifying the most appropriate features.

In this paper, a deep learning-based feature selection method is used to reduce the initial dimen-
sion of a dataset. Figure 2 illustrates the general flowchart of the proposed method.

To apply the graph-based methods, the solution space of the feature selection must be demon-
strated by a weighted graph. To this end, in the first step, the initial features are shown with a graph
Graph =< G,E >, where G = {G1, G2, ..., Gn} is a set of original features in which each feature
shows a node in the graph, E = {(Gi, Gj) : Gi, Gj ∈ G} denotes the set of edges of the graph, and wij

indicates the similarity between two features Gi and Gj that are linked by the edge (Gi, Gj). This
study employs the Pearson similarity criteria [19] to compute the similarity value between different
features. This similarity between the two features Gi and Gj is calculated as below:

wij =

∣∣∣∣∣∣
∑

p (xi − xi) (xj − xj)√∑
p (xi − xi)

2
√∑

p (xj − xj)
2

∣∣∣∣∣∣ (3.1)

Where xi and xj denote the vectors of features Gi and Gj, respectively. Variables xi and xj

indicate the average of vectors xi and xj, over p samples. Greater similarity between the two features
causes the Pearson criterion between the two features to be closer to one, and reciprocally the
dissimilarity of the two features will cause the Pearson criterion of the two features to be closer to 0.

The initial features are grouped in several clusters in the second step of the proposed feature
selection. Based on their similarity, feature clustering is designed to divide the primary features into
several groups. Accordingly, each cluster has many features in common, and a different cluster has
fewer features in common. Prior to implementing the clustering algorithm, the number of clusters is
generally determined [12]. This means, most of these methods require the user to specify the clusters
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Figure 2: Overall flowchart of the proposed method

in parameter k. A number of clusters can only be determined by trial and error as a function of
the initial characteristics of the work, not by formulae. Therefore, we used a community detection
algorithm to cluster the data in this paper, called Louvain [4]. It maximizes a modularity function
to detect communities in a graph. Identification of communities in large networks is simple, efficient,
and easily implemented. Due to its computational complexity of O(n log n ∗ n), which can be used
to detect communities in very large networks within short computing times, the algorithm can be
used to detect communities in very large networks. In two steps, the method detects communities
in a network. The first step involves assigning each node to a community, in order to increase the
specificity of the network. The second step involves merging the previously defined communities to
create a brand new network. The process iterates until networks are significantly improved in terms
of modularity. Two advantages are associated with this method. As a first advantage, its steps are
intuitive and easy to follow; as a second advantage, the algorithm is extremely fast.

The third stage involves selecting the appropriate features from each cluster. Here, using the
concept of term variance, the proposed method is intended to find the optimal feature subset. This
step involves selecting a number of features from each cluster that are well suited to represent all the
characteristics of that cluster. When features from each cluster are clustered and the most effective
features are selected, the selected features cover all of the features that matter. Utilizing the variance
criterion, the most important features are selected from each. This is one of the minimally complex
and highly efficient term variance (TV) criteria. By analyzing the term variation criterion, we
determine the strength of the attribute as below:

TVi =
1

| G |

|G|∑
j=1

(Attr(j, i)− Attr(i))2 (3.2)

where, Attr(j, i) indicated attribute j of the nodes i in dataset and | G | shows the number of all
features in dataset.
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The final classification step follows the feature selection step. Multi-label classification is handled
at this stage by using the deep learning algorithm. In the construction industry, deep learning
has become a topic of interest over the past few years. Deep learning has been gaining popularity
in many fields for data recognition, processing, and decision-making. Modern records management
technologies provide large amounts of information requiring manual parsing and processing, a lengthy,
inefficient, and error-prone process. By automating these tasks, variances would be able to be
detected faster and respond to negative impacts quickly. In a daily construction cycle, deep learning
has proven to be a highly effective tool for identifying objects or tracking processes that would vastly
improve daily operation. One of the advantages of deep learning is its ability to create predictive
models without pre-defining relationships. Despite its hefty size, the construction industry still
faces a number of challenges. Project success is traditionally determined by factors such as time,
cost, and quality. A project’s status can be determined by tracking metrics during its development.
Construction projects can, however, face delays or exceed their budget. There are many variables and
quantifiable metrics that determine the success of a project, but uncertainties can delay and damage
projects. We could greatly benefit from automatic anomaly detection onsite. The monitoring of
structures and infrastructure post-construction is crucial for the prompt detection of damage. The
purpose of this paper is to show how deep learning can help solve many of the problems that modern
construction projects face. An effective infrastructure management and project control solution can
be delivered using such a solution.

Over the past few years, the number of studies on deep learning in construction has grown expo-
nentially and applications have spread to many areas of construction since their introduction. The
use of deep learning in these applications includes tracking and monitoring construction operations,
equipment usage, worker productivity, and uncovering ways to improve project performance and
efficiency. In addition, deep learning can be used to detect unsafe work and monitor workers. In
addition, deep learning can be used to automatically identify construction workers and pair them
with their respective qualifications so that they are working within the scope of their expertise.

Computers can learn from past experiences through deep learning, a subset of machine learning.
It imitates biological neural networks by using artificial neural networks and other machine learning
algorithms. By combining these layers, we may extract features, transform them, and analyze pat-
terns using supervised or unsupervised learning. Similar to the brain, DL categorizes and labels the
data it receives to understand it. Despite the fact that some machine learning algorithms might not
be able to differentiate and learn multiple complexity levels from a variety of data sets, this technique
can. Also, it can handle unstructured and unlabeled data without supervision. As there are many
layers in it, it is regarded as ’deep’. An DL model typically consists of three layers: input (received
data), hidden (extracts patterns), and output (produces the results). As one-layer outputs, the next
layer receives it as an input.

Deep learning has drastically enhanced many industries due to its ability to automate tasks that
were previously manual and time-consuming, which is the reason for its increasing popularity in this
digital age. Natural language processing, speech recognition, image processing, and video and voice
recognition are some areas where deep learning techniques are applied.

After selecting an appropriate subset of features, these features are used as the input of the
classification model. Accurate features selection, as well as the use of efficient prediction model
to analyze data, will lead to higher classification. A variety of machine learning algorithms for
classification are proposed in the previous works. The machine learning classification algorithm
such as such as support vector machine, artificial neural network, deep learning, fuzzy system, and
ensemble learning models are used for the multi-label classification.

In this paper Convolutional Neural Network (CNN) is utilized for final classification. The Convo-
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lutional Neural Network is one of the most widely used methods for deep learning. Based on living
creatures’ natural perception mechanisms, these images were created. These feed-forward networks
consist of multiple convolutional, pooling, and fully connected layers and require large datasets to
train [3, 10, 29, 19]. In the convolutional layer, input characteristics are identified and studied. They
can identify objects such as shapes and objects such as edges and lines using this method. In the
pooling layer, the number of features fed into it is minimized by acting as a funnel between two
convolutional layers [36]. In each layer the role is to deliver an output regarding the classification
of messages (depending on how complex the system needs to be). Information is summarized in the
fully connected layers usually at the end. The CNN is used to identify features in an image by incor-
porating values from its pixels. The strength of this method is extracting features and constructing
representations, while its weakness is maintaining parameter tuning. In addition to the standard
CNN method, there are variations that incorporate regions-based CNN (or R-CNN), fast R-CNN,
and faster R-CNN [12, 4, 7].

Through a differentiable function, a CNN architecture transforms the input volume into an output
volume (e.g. holding class scores). Layers are commonly used in a few different ways. Further
information is provided below.

3.1. Convolutional layer

A CNN’s core building block is the convolutional layer. In this layer, the parameters are learned
filters (or kernels) that have a small receptive field, but extend to the depth of the input volume.
For each filter, the dot product between the entries and the input volume is computed during the
forward pass to produce a 2-dimensional activation map. By learning filters like this, the network
can detect certain types of features when they occur at specific positions in the input [39].

3.2. Local connectivity

As a result, it is not possible to connect all neurons in a previous volume with high-dimensional
inputs such as images since such a network architecture lacks spatial sensitivity. The convolutional
network exploits spatially local correlation by forcing sparse connectivity among neurons in adjacent
layers: each neuron is only connected to a small region of the input volume.

This connectivity is measured by a hyperparameter called the receptive field of the neuron.
During a given input volume’s depth, the total number of connections is always local (across width
and height). With such an architecture, the learned filters react strongly to an input pattern that is
spatially local [15].

3.3. Spatial arrangement

The depth, stride, and padding size of the convolutional layer determine the output volume of
the layer.

Input volume depth determines how many neurons connect to a particular region within an input
volume. Different features in the input cause these neurons to fire. With the raw image taken as
input, the first convolutional layer may activate different neurons in response to oriented edges or
blobs of color.

Height and width columns are assigned based on the stride. If the stride is 1, then we move the
filters one pixel at a time. This leads to heavily overlapping receptive fields between the columns,
and to large output volumes. For any integer S > 0 a stride S means that the filter is translated S
units at a time per output. In practice, S > 3 is rare. Greater stride means smaller overlaps between
receptive fields and smaller volumetric output dimensions.
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Occasionally, padding the input volume with zeros (or other values) on the boundary of the input
is convenient. A third hyperparameter controls the size of this padding. By padding the output
volume, the spatial size of the output can be controlled. A ”same” padding is a way to retain the
spatial size of an input volume, especially when it is desirable [16, 5, 37].

The size of the output volume depends on the size of the input volume W , the kernel field size K
of the convolutional layer neurons, the stride S, and the amount of zero padding P on the border.
The number of neurons that ”fit” in a given volume is then:

W −K + 2P

S
+ 1

In all other cases, the strides are incorrect, and the neurons cannot be tiled to fit across the input
volume in a symmetric manner. If the stride is S = 1 and the zero padding is set to P = (K − 1)/2,
the input volume and output volume will have the same spatial size. Using every neuron from the
previous layer is not necessary in every case. In the design of neural networks, the padding may be
used only for part of the calculation.

4. Experimental Results

A comparison of proposed multi-label classification methods is presented in this section. In this
context, one of the new methods in this field is compared to the proposed one.

MATLAB programming language is used in this article to implement feature selection methods.
Also, all the tests in this article were performed on a system with a 2.3 GHz Corei3 processor and 2
GB of internal memory (RAM). In the rest of this section, the data sets used to identify accident-
affected areas, as well as practical results, are described, respectively.

We conducted experiments on a variety of real-world multi-label datasets, including Emotions,
Scene, Yeast and Genbase datasets.

In the reminder of this section, we introduce the classification evaluation criteria that we use to
evaluate the performance of the proposed systems.

The three criteria that are mainly used to evaluate the quality of performance of algorithms for
detecting damaged areas are Sensitivity, Specificity, and Classification Rate, are used.

Execution time is also a criterion used in this article to compare different methods. This criterion
is used to assess the computational complexity of different methods. It is clear that an automatic
classifier will be more efficient and less computationally complex the longer it takes to identify dam-
aged areas. Data sets are randomly divided into training and experimental data during experiments
on the proposed method. A data set consisting of 70% educational data and 30% experimental data
will be used for this purpose. The method of classification was also applied ten times in all experi-
ments. The method of classification was compared using an average of ten different implementations
after identifying the educational and experimental sets.

In Tables 1,2,3,4, the proposed deep learning-based method, is compared with Multi-Label Classi-
fication with weighted classifier [31]. In this table, Sensitivity, Specificity, and Classification rates are
evaluated in the proposed method and the base paper method. As the results of these experiments
show, in all cases, the proposed method is more accurate than the method compared.

Also, Figure 3 shows the average accuracy of the proposed method on different datasets. Also,
Figure 3 shows the average accuracy of the proposed method on different datasets. As can be seen
in this figure, the proposed method has a higher average accuracy than the base paper method.

Moreover, Table 5 also shows the execution time for the proposed method and Multi-label clas-
sification with weighted classifier, respectively. As the results of this experiment show, the proposed
method has a shorter execution time.
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Table 1: Comparison of the proposed method with Multi-label classification with weighted classifier on Emotions
dataset

Table 2: Comparison of the proposed method with Multi-label classification with weighted classifier on Scene dataset

Table 3: Comparison of the proposed method with Multi-label classification with weighted classifier on Yeast dataset

Table 4: Comparison of the proposed method with Multi-label classification with weighted classifier on Genbase dataset

Figure 3: Average accuracy of the proposed method on different datasets and average accuracy of the proposed method
on different datasets
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Table 5: Comparison of expectation time in proposed method and Multi-label classification with weighted classifier

Execution Time Multi-label classification
with weighted classifier

Proposed method

1 119 86
2 118 81
3 112 80
4 115 84
5 118 90
6 125 76
7 113 81
8 108 80
9 118 91
10 121 79

Average 114.7 84.6

5. Conclusion

Using large amounts of data, data mining aims to find patterns and rules hidden in the data and
to make sense of it. It can be argued that any data set can provide valuable information, and the key
point is that any amount of data can contain something valuable, and we can access that by analyzing
the data. As a form of data analysis, classification enables us to build models to describe data or
construct directional mirrors for data. In multi-label classification, each data point is tagged with
one or more tags. These tags are referred to as related tags. multi-label learners are designed to map
multi-label data to group of related tags. As a data mining learning algorithm, multi-label classifiers
are a popular learning pattern. Graph-based feature selection and deep learning are combined in
this paper to improve the accuracy of multi-label classification. According to the numerical results,
the proposed method has a higher accuracy than previous methods, as well as a lower computational
complexity.
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