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Abstract

In this paper our main goal is to study the climatology and variability of the frequency of thunder-
storm days over Bangladesh region throughout the year. It has been found that the mean thunder-
storm days increase significantly from March to May, i.e. during the pre-monsoon season, although
the graphical devices show that there does not seem to be much deviation from the occurrences of
thunderstorms each year. The mean monthly and seasonal thunderstorm days were maximum in
1993, followed by that in 1997; whereas it was a minimum in the year 1980, with an extension in its
frequency in the subsequent years 1981 and 1982. The coefficient of variation of both annual and
seasonal thunderstorm days is minimum over the areas of maximum frequency of mean thunderstorm
days and vice-versa. The time-domain analysis confirms that the occurrence happened to be maxi-
mum in the year 1991, although each and every state did not witness thunderstorms every year. Also
some other time-domain models like autocorrelation and seasonal integrated moving average provide
adequate evidence for exploring the number of thunderstorms which happen to confirm the trend of
occurrence of thunderstorm over the years.
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1. Introduction

Thunderstorms are the meso-scale phenomena, which develop from cumulonimbus clouds and are
characterised by lightning discharges. They usually occur in the form of strong gusts, hail and heavy
rainfall, thus causing a huge amount of hazard to aviation and river navigation, as well as damage
to standing crops, especially in a coastal country like Bangladesh, although in some regions it is
found that despite heavy destruction, the shower has a positive impact on agriculture[1].These winds
or thunderstorms are locally called “Nor’westers” or kalbaisakhi, and occur during the pre-monsoon
season, i.e. between March and May when the temperature in these areas is very high. Here we try
to picture out the occurrence of thunderstorms in Bangladesh in the form of time series analysis. We
have used here Minitab 17 and SPSS 20 to serve our purpose.

Time series modelling is a vast research area which has attracted the attention of researchers over
the last few decades. The main aim of time series modelling is to carefully collect and rigorously
study the past observations of a time series to develop an appropriate model which can best describe
the inherent structure of the series; this model can then be used to generate future values for the
series, i.e. to make forecasts[2].Generally a time series {x (t) , t = 0, 1, 2, . . . } is assumed to follow
certain probability model[3] which describes the joint distribution of the random variable xt and the
sequence of observations of the series is actually a sample realization of a stochastic process that
produced it. A usual assumption is that the time series variables xt are independent and identically
distributed (i.i.d.) following the normal distribution. While building a proper time series model,
the principle of parsimony is accounted for [4, 5, 7, 8]. The idea of model parsimony is similar to the
famous Occam’s razor principle[6]. As discussed by Hipel and McLeod[6], one aspect of this principle
is that when faced with a number of competing and adequate explanations, the simplest one is picked
– this forms a basis to logical analysis.

The objective of this project is to present a systematic and comprehensive mathematical analysis
of the total frequency of the thunderstorms occurring in Bangladesh annually. We observe that in
some years, there is zero occurrence of thunderstorm for a particular state; whereas in the same
year, the meteorologists record a huge number of thunderstorms for another state. So, we ignore any
fluctuations occurring in different districts and take into account the entire country for a period of
37 years i.e. from 1980-2016. Here we have incorporated mathematical tools to serve our purpose,
focussing particularly on the use of stochastic models and differential equations. The pre-monsoon
season includes the months of March-May when most of the thunderstorms occur in Bangladesh. The
space and time distribution of the number of thunderstorms and their variability together with their
probabilistic frequency are very essential especially for aviation and navigation purposes. It is im-
portant to note that the thunderstorms’ days are actually the days which include only thunderstorm
but no precipitation at the time of observation. Slight or moderate thunderstorm occurs without
hail but may be accompanied by rain and/ or snow at the time of observation. Heavy thunderstorm
may be combined with dust storm or sandstorm as well as hail at the time of observation[9].

2. Preliminaries

ARIMA Methodology:
Auto-Regressive Integrated Moving Average (ARIMA) Model introduced by Box and Jenkins (1976)
includes autoregressive as well as moving average parameters, and explicitly includes differencing in
the formulation of the model. Specially, the three types of parameters in the model are: the autore-
gressive parameters (p), the number of differencing passes (d), and moving average parameters (q).
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ARIMA models are summarized as ARIMA (p, d, q).

Identification: Input series of ARIMA needs to be stationary, that is, it should have a constant
mean, variance and autocorrelation throughout the time period. Therefore the series need to be
differenced until it is stationary. The number of times the series need to be differenced is reflected in
the d parameter. The appropriate level of differencing can be determined by examining the plot of
the data and autocorrelogram. At identification stage we also need to decide about the appropriate
number of autoregressive (p) and moving average (q) parameters, which is necessary to yield an ef-
fective but still parsimonious model of the process. Generally, the number of the p and q parameters
very rarely needs to be greater than two.

Estimation and Forecasting: Parameters are estimated using function minimization procedure,
so that the sum of squared residuals is minimized. The estimates of the parameters are used in the
last stage to calculate new predicted values of the series and confidence intervals for the predicted
values. The estimation process is performed on transformed or differenced data and before the fore-
casts are generated, the series needs to be integrated, so that the forecasts are expressed in values
compatible with the input data. This automatic integration feature is represented by the letter I in
the name of the methodology ARIMA – Auto-Regressive Integrated Moving Average.

Identification of Number of parameters to be estimated: Before estimation, for ARIMA, one
needs to identify specific number and type of ARIMA parameters to be estimated. For identification
of parameters, plot of the series, correlograms of auto correlation (ACF) and partial autocorrelation
(PACF). An empirical time series patterns can be sufficiently approximated using one of the five basic
models that can be identified based on the shape of ACF and PACF. Also, the number of parameters
of each kind is almost never greater than two; it is often practical to try alternative models on the
same data.

Parameter ACF PACF Correlation
One autore-
gressive (p)

Exponential decay Spike at lag 1 No correlation
for other lags

Two autore-
gressive (p)

A sine-wave shape
pattern or a set
of exponential de-
cays

Spikes at lags 1
and 2

No correlation
for other lags

One moving
average (q)

Spike at lag 1 Damps out ex-
ponentially

No correlation
for other lags

Two moving
average (q)

Spikes at lags 1
and 2

A sine-wave
shape pattern
or a set of
exponential
decays

No correlation
for other lags

One autore-
gressive (p)
and One mov-
ing average
(q)

Exponential decay
starting at lag 1

Exponential
decay starting
at lag 1
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Materials and Methods: The data of thunderstorms is collected for 37 years from Bangladesh
region from 1980 to 2016. For analyzing the data, time series based model named as ARIMA (Auto-
Regressive Integrated Moving Average Model) is used using SPSS software. ARIMA models are a
very general class of time series models. Their construction is based on the phenomenon of autocor-
relation. These models form the basis for the forecasting method known as Box–Jenkins method [7].
They can be used to model stationary time series and those non-stationary time series which can be
transformed into stationary ones.

There are three basic models of this class such as autoregression models (AR), moving average
models (MA) and mixed autoregression and moving average models (ARMA). The symbol I used
in the model name indicates that a time series was subject to differencing. In order to formulate
an ARIMA model (p, d, q) a notation stipulating the row of individual model components is used:
autocorrelation – p, differencing – d, moving average – q. The process of model construction consists
of parts relating to: identification, estimation, diagnostic checking [1, 3]. The general form of ARIMA
(p,d,q) model can be written as follows:

Yt = µ+ ϕ1Y t−1 + ϕ2Y t−2 + · · ·+ ϕpY t−p − θ1et−1 − θ2et−2 − · · · − θqet−q (2.1)

Where, Yt is the observed value of the time series at the stage of t, et is the deviation of time series at
the stage of t, {ϕ1, ϕ2, . . . ., ϕp} is the autoregressive coefficients, and{θ1, θ2, . . . ., θq} is the moving
average coefficient and µ is constant. When p=0, the model is called the moving average model,
denoted by MA(q); when q=0, the model is called autoregressive model, denoted by AR(p).

3. Modelling Process

Modelling process is as follows

Figure-1
Figure-1: The process of building ARIMA model [10].

In the first stage, the initial identification of a time series in terms of stationarity is made through
checking the function of autocorrelation (ACF) and partial autocorrelation (PACF). The fact that
in stationary processes the autocorrelation function decreases (as a rule, quite rapidly) is used to
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determine whether the process is stationary or non-stationary. If the decrease of the autocorrelation
function is very slow, it means that the time series is non-stationary and should be reduced to the
stationary form using differencing. During the second phase the parameters of given models are
estimated.

The identification phase provides information on the possible variants of the process. The final
choice is based on an analysis of several criteria: relevance/validity of (the) model parameters, mean
squared error, information criterion. Then the model is subject to the analysis of properties of the
model residuals. If the model residuals are a white noise process and there are no significant values
of functions ACF or PACF of the model residuals, the model can be used in forecasting. Otherwise,
another model should be chosen or the model should be identified again.

Having estimated the model parameters and their statistical significance checked, an assessment
of model fit should be made [3, 9]. From the goodness of fit tests based on the analysis of correlation
of residuals, the Q test should be used as

Q = n (n+ 2)
m∑
τ=1

(n− τ)−1r2τ (a)

where rτ (a) is the function of autocorrelation of residuals, and m is the maximum delay of this
function. The Q statistics has the distribution of (m-p-q) degrees of freedom. For testing the
significance of parameters as well as for building confidence intervals for the forecasts, it is important
that a white noise has normal distribution. Finally, the model should be used to make a forecast.
The basic difficulty in the use of ARIMA models is the fact that there is no way to automate the
procedure for their construction. The thunderstorm data were used for forecasting the thunderstorms
by ARIMA models using Box-Jenkins methodology. The Box-jenkins procedure is concerned with
fitting a mixed Auto Regressive Integrated Moving Average (ARIMA) model to a given set of data.
The main objective of fitting the ARIMA model is to identify the stochastic process of the time
series and predict the future values accurately. First appropriate values of different parameters of
ARIMA model i.e. p, q and d were found. The tools used for identification are the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) and the resulting correlograms and
partial correlograms through SPSS 20.0.

4. Data Smoothing

The sequence plot of frequency of Thunderstorm from 1980 to 2006 in Bangladesh is given below:
The below figure captioned as Figure-2 which indicates that the time series is having increase
trend. So the time series is not stationary. To apply time series forecasting model (ARIMA, i.e.
Auto-Regressive Integrated Moving Average) series should be stationary, i.e. it should have the
following three aspects: a zero average value, constant variance and correlation coefficient only
related to time interval and independent of specific time. So to achieve stationary condition for
the series, it need to be differenced once, i.e. d=1. After differencing once the result is as follows.
Sequence plot of Frequency of Thunderstorm from 1980 to 2006 in Bangladesh.
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Figure-2
Figure-2: The process of building ARIMA model [10].

Figure-3

Figure-3: Lag (1) time series which show the stationarity.Figure (3) shows the stationarity, so
ARIMA model can be used.
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5. Model Identification

Model identification involved the following steps : (1) determine the which model should be adopted,
AR (p), MA (q) or ARIMA (p,d,q) and (2) determine the value of p, d and q. The above identifica-
tion depends on the ACF & PACF properties. The table given below indicate the criteria of order
determination.

ACF PACF Model Deter-
mination

Tailing Order p tail-
ing

AR(p)

Order q tailing Tailing MA (q)
Tailing Tailing ARIMA (p,d,q)

Table 1: Order determination of ARIMA model

The analysis of Fig 4 & Fig 5 indicated that the ARIMA (p,d,q) model is appropriate.
Now to finalize appropriate ARIMA (p,d,q) model, we need to decide how many autoregressive (p)
and moving average (q) parameters are necessary to develop the effective model. To identify the
number of parameters we need to use plot of series, correlograms of auto correlation (ACF) and
partial autocorrelation (PACF)

Autocorrelations of Frequency of Thunderstorms in Bangladesh (1980 -2016)

Figure-4

Figure-4: Auto-correlation of series.
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Figure-5

Figure-5: Partial autocorrelations of the series.

ACF (Fig.4) and PACF (Fig. 5) plots indicate that there are no visible patterns. Plots of Auto corre-
lation function (ACF) and Partial Auto correlation function (PACF) are based on first difference, i.e.
d=1. So, we get the following four possible models: ARIMA(0,1,0), ARIMA(0,1,1) , ARIMA(1,1,0)
,ARIMA(1,1,1).

Comparison of these models using SPSS is given below in table 2

Model Smooth R-
Square

MAPE Normalize BIC

ARIMA(0,1,0) .405 ≈ .41 9.830 ≈ .98 11.559 ≈ 11.56
ARIMA(1,1,0) .452 ≈ .45 9.631 ≈ .96 11.605 ≈ 11.61
ARIMA(0,1,1) .489 ≈ .49 9.234 ≈ .92 11.534 ≈ 11.53
ARIMA(1,1,1) .490 ≈ .49 9.191 ≈ .92 11.662 ≈ 11.66

Table 2: Comparison of ARIMA models

As per the results listed in Table 2, it can be seen that the smooth R-square represents the estimation
value of the total variation explained by the models, and the larger the value, the better the fitting
degree. MAPE represents the average absolute percentage error. The smaller the value of MAPE,
the better model is. Also, one of the best criteria used for evaluation of model, the smaller the value
of normalize BIC, the better it is. It is quite obvious that, the final model will be different with
different evaluation criterion. So considering the model fitting degree of the history data, i.e. using
the MAPE and normalize BIC, we choose ARIMA (0,1,1) model.
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6. Model Parameter Estimation

The parameters of ARIMA (0,1,1) (simple exponential smoothing) model can be evaluated by SPSS
and are represented under in table 3. The model can be as follows:

Yt(predicted) = Yt−1 − θ1et−1; Where et−1 = Yt−1 − Yt−1(predicted)

Estimate SE t Sig.
Difference 1
MA Lag 1 .433 .156 2.773 .009
Numerator Lag 0 .013 .014 .967 .340

Table 3: ARIMA (0,1,1) model

7. Model Validation

For model validation, we need to test the residual series to determine whether the model has reached
the optimum. If the residual series is a white noise series, which means all residuals are random and
that it cannot be used to make further improvements to the model, then the model has reached its
optimum and can be used for forecast. Fig. 6 shows that all correlation coefficients fall within the
range randomly, and the residual series is a white noise series.

Figure-6
Figure-6: ACF & PACF of residual series in ARIMA (0,1,1) model.
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Table 4 given below represents the thunderstorm forecasting data in Bangladesh from 2017 to 2022
with upper and lower control limits. Fig. 7, also represents graphically the forecasted / estimated
values of frequency of thunderstorms in Bangladesh from 1980 to 2022.

Model 2017 2018 2019 2020 2021 2022
Forecast 2421.06 2448.28 2475.51 2502.76 2530.03 2557.30
UCL 3007.85 3122.83 3227.65 3325.20 3417.21 3504.82
LCL 1834.26 1773.73 1723.38 1680.32 1642.84 1609.78

.

Table 4: Thunderstorm forecasting in Bangladesh from 2017 to 2022

Figure-7

Figure-7: Plot of observed and predicted values of thunderstorms in Bangladesh(1980-2022).

Year Observed Fre-
quency of Thun-
derstorms

Predicted Fre-
quency of thun-
derstorms

Error

1980 1291 . .
1981 1588 1317.72 270.28
1982 1569 1516.18 52.82
1983 1863 1573.54 289.46
1984 1648 1765.10 -117.1
1985 1721 1725.43 -4.43
1986 1906 1749.71 156.29
1987 1953 1865.13 87.87
1988 2419 1941.77 477.23
1989 2207 2239.19 -32.19
1990 2769 2247.78 521.22
1991 2879 2570.17 308.83
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1992 2574 2772.15 -198.15
1993 3214 2686.68 527.32
1994 2573 3012.57 -439.57
1995 2161 2790.25 -629.25
1996 2418 2460.39 -42.39
1997 2897 2463.30 433.7
1998 2406 2736.16 -330.16
1999 2116 2575.93 -459.93
2000 2774 2342.13 431.87
2001 2743 2613.99 129.01
2002 2698 2714.14 -16.14
2003 2515 2732.01 -217.01
2004 2485 2636.00 -151
2005 2758 2577.43 180.57
2006 2714 2706.87 7.13
2007 2725 2737.99 -12.99
2008 2761 2757.71 3.29
2009 2520 2786.68 -266.68
2010 2451 2662.59 -211.59
2011 2394 2569.75 -175.75
2012 2456 2497.24 -41.24
2013 2175 2501.01 -326.01
2014 2174 2343.33 -169.33
2015 2469 2274.50 194.5
2016 2380 2411.98 -31.98
2017 2421.06
2018 2448.28
2019 2475.51
2020 2502.76
2021 2530.03
2022 2557.30

Table 5: ARIMA (0, 1, 1) based predicted values

8. Discussions and Conclusions

This paper has mainly tried to find different ways to approach the analysis of the thunderstorms in
Bangladesh. At the end of the work, we observe that a quadratic model can well define the trend of
the occurrences of thunderstorms for nearly the last four decades; but an exponential model can more
specifically highlight the trend of the thunderstorm pattern over the years. Two other techniques of
mathematical curve fitting were tried through differential equation tools which also yield satisfactory
results. Thus, it can be seen that probabilistic models and stochastic processes are giving satisfactory
results when time series analysis is concerned.

The target was to highlight the years which are having some remarkable effects. Along with it, a
somewhat subtle low-frequency movement buried in the larger trend and seasonal pattern was high-
lighted such as the years which are having lower or unexpectedly higher occurrences of thunderstorms
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in some of the states. These degrees of refinement of models in this series of data can have some
impact on the meteorology-oriented time series for decision making purposes[11]

Time series forecasting is a fast growing area of research and as such provides many scope for future
works. One of them is the Combining Approach, i.e. to combine a number of different and dissimilar
methods to improve forecast accuracy. A lot of works have been done towards this direction and
various combining methods have been proposed by analysts; also there is a wide scope of finding an
efficient combining model in future, where further studies on time series modelling and forecasting
can be done[12], [13], [14]

An important decision-making tool can be obtained by making use of ARIMA models. The advan-
tage of using this type of models is that, despite many problems connected with their construction
and testing, we obtain information about the time series structure and mechanism of its creation.
Creating models for thunderstorm is interesting and due to its complex structure and sensitivity to
environmental conditions. The study shows that the ARIMA (0, 1, 1) model is not only stable but
also the most suitable model to forecast the thunderstorms. Predicted results give signals to policy
makers to do the necessary arrangement in advance to deal with thunderstorms.

9. Future Scope with open problems

In this article we have mainly focused the uses of the seasonal patterns of the Bangladesh landmass
only. The forecasting tools used are particularly related to this kind of weather pattern. However,
similar approaches can be tried out with other weather patterns as well with a bit modification.
Since Bangladesh currently lacks detailed and reliable information on diurnal and spatio-temporal
characteristics of thunderstorms, it is hoped that the database developed in this study will prove
invaluable in efficient management of thunderstorm-related disasters. It is also possible to carry out
a compare and contrast study of thunderstorms and lightning characteristics of Bangladesh. Asso-
ciation of thunderstorm with meteorological parameters for Bangladesh is therefore warranted. We
suggest that similar types of research can be undertaken for other regions of the world where data is
sparse[15] and can be studied.
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