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Abstract

Estimating the central mean subspace without requiring to designate a model is achieved via MAVE
method. The original p predictors are replaced with d-linear combinations (LC) of predictors in
MAVE, where d < p without loss of any information about the regression. However, it is known that
the interpretation of the estimated effective dimension reduction (EDR) direction is not easy due to
each EDR direction is a LC of all the original predictors. The PACS method is an oracle procedure. In
this article, a group variable selection method (SMAVE-PACS) is proposed. The sufficient dimension
reduction (SDR) concepts and group variable selection are emerged through SMAVE-PACS. SMAVE-
PACS produces sparse and accurate solutions with the ability of group identification. SMAVE-PACS
extended PACS to multi-dimensional regression under SDR conditions. In addition, a method for
estimating the structural dimension was proposed. The effectiveness of the SMAVE-PACS is checked
through simulation and real data.

Keywords: Variable selection, Group identification, MAVE, Pairwise absolute clustering and
sparsity.

1. Introduction

Regression analysis can be highly challenging because the dimension p of predictor vector x is large.
A useful tool to deal with high dimensional data is to shrinkage the dimensions of x without the loss
of the regression information and without assuming a specific model.
Cook (1998)[2] introduced the sufficient dimension reduction (SDR) theory to reduce the dimensions
of x while saving the regression information. For regression problems, Let y is a response and
x=(x1, . . . ,xp)T is a p × 1 predictor vector. The SDR searches for a p × d matrix B, such that
y á x∣xTB, where á indicates independence. The column spanned by B is known as the dimension

∗Corresponding author
Email address: ali.alkenani@qu.edu.iq - http://orcid.org/0000-0001-5067-2321 (Ali Alkenani )

Received: May 2021 Accepted: October 2021

http://dx.doi.org/10.22075/ijnaa.2022.6024


2922 N. M. Hammood, Z. Y. Algamal

reduction subspace (DRS). The intersection of all DRS is called the central subspace, which is denoted
by Sy∣x. The Sy∣x contains all the regression information of y, given x (Yu and Zhu, 2013)[21]. Many
methods were proposed for finding Sy∣x. For example, SIR (Li, 1991)[7], SAVE (Cook and Weisberg,
1991)[4] and PHD (Li, 1992)[8].
The idea of the central mean subspace, which is denoted by SE(y∣x), was introduced in Cook and Li
(2002)[3] for SDR when the mean function is of interest. In order to estimate SE(y∣x), many methods
were proposed, such as the iterative Hessian transformation (Cook and Li, 2002) and MAVE (Xia et
al., 2002)[20].
The merits of MAVE method can be summarised as follow. Firstly, in order to obtain a faster
consistency rate for the estimated parameters, the nonparametric link function estimator must un-
dersmooth in the majority of the existing methods. In contrast, for MAVE method there is no need
to undersmooth the estimator of the function to obtain a faster consistency rate. The dimension of
the space can be estimated consistently via MAVE because it achieves a faster consistency rate for
the estimators of parameter. Secondly, MAVE is applicable to a vast range of models and it is easy
to implement with fewer restrictions on the probabilistic structure of x.
SDR methods were proved as efficient methods; however, the problem of these methods is that each
DR component is a linear combination of all of the predictors, which may not be simple to explain
the resulting estimates.
The selection of predictors is important in constructing the regression model. In addition, the predic-
tion accuracy can be improved through the selection of appropriate subset of predictors. Moreover,
in practice, it is simple to interpret the model with a small number of predictors. The regularisation
methods were used significantly in the classical least squares problems. For example, Lasso (Tibshi-
rani, 1996)[17], SCAD (Fan and Li, 2001)[5], Elastic Net (Zou and Hastie, 2005)[25], adaptive Lasso
(Zou, 2006)[24] and MCP (Zhang, 2010[23]).
Under the framework of SDR, many researchers proposed to combine the ideas of regularisation
with SDR. For example, Li et al. (2005)[9], Ni et al. (2005)[14], Li and Nachtsheim (2006)[10], Li
(2007)[6], Li and Yin (2008)[11] and so on. Wang and Yin (2008)[18] proposed to combine Lasso
with MAVE to obtain SMAVE. Wang et. al. (2013)[22] proposed the penalised MAVE (P-MAVE)
method. A penalty of bridge was employed to penalise l1-norms of the basis matrix. Alkenani and Yu
(2013)[1] suggested to combine MAVE with SCAD, adaptive Lasso and the MCP penalties. Wang
et. al. (2015)[19] proposed to merge Lasso with group-wise MAVE.
The omission of insignificant predictors and combining the predictors of indistinguishable coefficients
(ICs) are two important matters in the search for the correct model (Sharma et al., 2013)[15]. The
above-mentioned regularisation penalties do well with removing unimportant predictors but fail in
merging predictors with ICs. PACS (Sharma et al., 2013) can achieve both aims. Moreover, PACS
was shown as oracle method (Sharma et al., 2013). In order to make the concept of “ group identifi-
cation” clear, we can cite the following sentences from Sharma et al. (2013) ”if the coefficients of two
predictors are truly equal in magnitude, we would combine these two columns of the design matrix
by their sum and if a coefficient were truly zero, we would exclude the corresponding predictor”.
In this article, MAVE-PACS method is proposed. The MAVE-PACS method has the ability to
omit insignificant predictors and combine the predictors with ICs under the framework of the SDR.
MAVE-PACS has advantages over the SMAVE, SPMAVE and P-MAVE methods. It benefits from
the strength of PACS in deleting unimportant predictors and merging the predictors with ICs, which
does not hold for the above mensioned penalties.
The rest is organised as follows. In Section 2, a short review of SDR and MAVE is mentioned. The
MAVE-PACS method is proposed in Section 3. Simulations are carried out in Section 4. In Section
5, the methods are applied on real data. In Section 6, conclusions are given.
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2. SDR and MAVE

In this section, SDR and MAVE are briefly reviewed. Assume the following model:

y = f (x1,x2, . . . ,xp) + ε, (2.1)

where y is the response on a p × 1 vector x of predictors and ε is the error., Also, E (y∣x) =
f (x1,x2, . . . ,xp) and E (ε ∣x) = 0. SDR for mean function investigates a subspace S such that

y á E (y∣x) ∣Psx, (2.2)

where P(.) refers to an operator of projection. Cook and Li (2002) stated that the subspaces satisfying
(2.2) are the mean DR subspaces. If d = dim (S) and B = (β1,β2, . . . ,βd) is a basis for S, x will
replace with β1

Tx,β2
Tx, . . . ,βd

Tx, d ≤ p without loss any information on E (y∣x). The central
mean subspace, which is denoted by SE(y∣x), is the intersection of all subspaces satisfying (2.2) (Cook
and Li, 2002). One of the most popular methods for estimating SE(y∣x) is the MAVE.
The MAVE method was proposed in (Xia et al., 2002). The matrix B is obtained by

min
B

{E[y−E (y∣BTx)]2} , (2.3)

where BTB=Id and

σ2
B (BTx) = E [{y−E (y∣BTx)}2 ∣BTx] . (2.4)

Thus,

min
B

E[y−E (y∣BTx)]2=min
B

E{σ2
B (BTx)} . (2.5)

For any given x0, σ2
B (BTx) can be locally approximated as follows:

σ2
B (BTx0) ≈

n

∑
i=1

{yi−E (yi∣xT
i B)}2ωi0

≈
n

∑
i=1

[yi−{a0 + bT0BT (xi− x0)}]
2
ωi0,

where ωi0 ≥ 0 are the kernel weights with ∑n
i=1 ωi0 = 1. So, B can be found by solving the following

minimisation:

min

B∶BTB=Im (
n

∑
j=1

n

∑
i=1

[yi−{aj + bTj BT (xi− xj)}]
2
ωij) . (2.6)

3. The SMAVE with PACS penalty (SMAVE-PACS)

The SMAVE method was proposed by Wang and Yin (2008)[18] through incorporating l1 penalty
into (2.6). It minimises:

n

∑
j=1

n

∑
i=1

[yi−{aj + bTj BT (xi− xj)}]
2
ωij + λ

p

∑
k=1

∣βm,k∣, (3.1)
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for m = 1, . . . , d.
The preceding authors assumed that d is known and then they proposed to estimate it according to
BIC. Alkenani and Yu (2013)[1] proposed another version of sparse MAVE by combining the adaptive
Lasso, SCAD and MCP penalties with MAVE in (2.6).
Choosing the true model needs the omission of unimportant predictors and merging the predictors
of ICs. SMAVE and SPMAVE employed penalties that failed to combine the predictors with ICs.
The PACS penalty able to achieve the two aims.
In this study, sparse MAVE with PACS penalty (SMAVE-PACS) is proposed to minimise

n

∑
j=1

n

∑
i=1

[yi−{aj + bTj BT (xi− xj)}]
2
ωij

+ λ
⎧⎪⎪⎨⎪⎪⎩

p

∑
j=1

ωj ∣βm,j ∣ + ∑
1≤j<k≤p

ωjk(−) ∣βm,k −βm,j ∣ + ∑
1≤j<k≤p

ωjk(+) ∣βm,k +βm,j ∣
⎫⎪⎪⎬⎪⎪⎭
, (3.2)

The penalty in (3.2) consists of λ{∑p
j=1 ωj ∣βm,j ∣} that encourages sparseness,

λ{∑1≤j<k≤p ωjk(−) ∣βm,k −βm,j ∣} that enables the coefficients with same sign to set as equal and

λ{∑1≤j<k≤p ωjk(+) ∣βm,k +βm,j ∣} that enables the coefficients with different sign to set in magnitude
as equal.
The choice of suitable adaptive weights plays a crucial role for PACS to be an oracle procedure. As a
result, Sharma et al. (2013) proposed adaptive PACS that incorporates into the weights correlations
as follows:

ωj = ∣β̃j ∣
−1
, ωjk(−) = (1 − rjk)−1∣β̃k − β̃j ∣

−1
and ωjk(+) = (1 + rjk)−1∣β̃k + β̃j ∣

−1
for 1 ≤ j < k ≤ p, (3.3)

where β̃ is a
√
n consistent estimator of β and rjk is Pearson’s correlation.

3.1. SMAVE-PACS

The algorithm of SMAVE-PACS is as below:
1. Let m = 1, and B=β0, any arbitrary p × 1 vector.
2. when B is known, get (aj,bj) where j = 1, . . . , n , by solving

min
aj ,bj ,j=1,...,n

(
n

∑
j=1

n

∑
i=1

[yi−{aj + bTj BT (xi− xj)}]
2
ωij) . (3.4)

3. when (âj, b̂j) are given, j = 1, . . . , n, solve βmSMAVE−PACS from the following:

min

B∶BTB=Im
⎛
⎝

n

∑
j=1

n

∑
i=1

⎡⎢⎢⎢⎢⎣
yi−{âj + b̂

T

j (β̂1, β̂2, . . . ,β̂m−1,βm)T (xi− xj)}
⎤⎥⎥⎥⎥⎦

2

ωij

+ λ

⎧⎪⎪⎨⎪⎪⎩

∑p
j=1 ωj ∣βm,j ∣ +∑1≤j<k≤p ωjk(−) ∣βm,k −βm,j ∣

+∑1≤j<k≤p ωjk(+) ∣βm,k +βm,j ∣

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

(3.5)

4. Replace the mth column of B by β̂mSMAVE−PACS and repeat till convergence the steps 2 and 3.
5. Update B by (β̂1SMAVE−PACS, β̂2SMAVE−PACS , . . . ,β̂mSMAVE−PACS,β0) , and set m to be m + 1.
6. If m < d, continue steps 2 to 5 until m = d.
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We employed Gaussian kernel which was suggested by Xia et al. (2002) in computing the weights:

ωij =Kh {B̂
T (xi− xj)} /

n

∑
i=1

Kh {B̂
T (xi− xj)},

where K is Gaussian product kernel function and h is the bandwidth of the weights ωij.
The minimisation method of (3.5) contains of two parts. The first is the loss function of MAVE.
The second is PACS penalty, which consists of λ{∑p

j=1 ωj ∣βm,j ∣}, λ{∑1≤j<k≤p ωjk(−) ∣βm,k − βm,j ∣} and

λ{∑1≤j<k≤p ωjk(+) ∣βm,k + βm,j ∣}.
The minimisation in (3.5) can be obtained using PACS algorithms. The βmSMAVE−PACS is the PACS
estimator for the regression of Ys on the data matrix Vs, where Ys and Vs are as described in step
2 of the “OLS formulation” of MAVE in Section 2.2 of Wang and Yin (2008).
In summary, SMAVE-PACS is a procedure of two-steps: first, use MAVE to get the dimension d,
Ys and Vs; secondly, compute βmSMAVE−PACS via the PACS approach.
The predictors are standardised in the simulation studies and real data analysis. The Gaussian
product kernel and hopt = A̵ (d)n−1/(4+d), which are reported in (Silverman, 1986)[16], are used,

where ? (d) = { 4
(d+2)}

1/(4+d)
.

SMAVE-PACS combines PACS into “OLS formulation” of MAVE. Under the settings of MAVE and
PACS, the algorithm of SMAVE-PACS converges to the global minimum. Our simulation experiments
indicated that the proposed algorithm converges within five to ten iterations. The PACS algorithm
is an efficient with order of computation is similar to a single OLS fit (Sharma et al., 2013)[15].
The penalty of SMAVE-PACS appears in the “OLS formulation” of MAVE. Consequently, SMAVE-
PACS is as efficient as MAVE. Under some conditions, the PACS is

√
n-consistent (Sharma et al.,

2013), while the consistency rate for the estimator of MAVE is O (h3optlog(n))(Xia et al., 2002)[20].
Because of that the estimator of MAVE has a lower consistency rate than the consistency rate of
PACS, the consistency rate for SMAVE-PACS is controlled by that of MAVE. Under the conditions
of Sharma et al. (2013) and Xia et al. (2002), it can be shown that the estimator of SMAVE-PACS
has consistency rate similar to that of MAVE estimator.
As a simple illustration, an example was implemented to show the necessity of SMAVE-PACS.
Let y = 5cos (xTβ) + exp (−(xTβ)2) + ε,
where β = (2,2,2,1,1,0,0,0,0,0)T and X ∈ R10 . Also, xi and ε are i.i.d from N (0,1), with
SE(y∣x) = span (B1). The first three predictors and the second two are correlated with correlation is
0.7 and the values of coefficients are equal in magnitude. The rest are uncorrelated. A single but
representative simulated data set with size n = 120 was generated, and the direction estimates were:
MAVE = (1.273,1.571, 1.353,0.673, 0.554,0.048, 0.181,0.042, 0.114,0.022)
SMAVE-PACS = (1.858,1.858, 1.858,0.879, 0.879,0, 0.034,0, 0.042,0)
SMAVE = (1.359,1.619, 1.389,0.789, 0.503,0, 0.121,0.056, 0.089,0)
ALMAVE = (1.649,1.759, 1.689,0.827, 0.764,0, 0,0, 0.065,0)
SCAD-MAVE = (1.479,1.659, 1.449,0.799, 0.680,0, 0.091,0, 0.069,0)
MCP-MAVE = (1.455,1.640, 1.429,0.788, 0.669,0, 0.097,0, 0.071,0)
Note that none of MAVE, SMAVE, ALMAVE, SCAD-MAVE and MCP-MAVE perform grouping
and the overall estimation accuracy is poor. An important gain in selection accuracy and grouping
accuracy has achieved by SMAVE-PACS.
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3.2. Estimation of the dimension d

Xia et al. (2002)[20] extended the cross-validation method of Yao and Tong (1994) to propose method
for determining the dimension d. The authors estimated d by d̂1 = {argmin0≤k≤pCV k }, where

CV k = n−1
n

∑
i=1

⎛
⎜
⎝
yi −
∑j≠i yjKh {B̂

T (xl− xi)}

∑l≠iKh {B̂
T (xj− xi)}

⎞
⎟
⎠

2

, (3.6)

where k is the estimate of the dimension.
Wang and Yin (2008) modified the BIC criterion to estimate d. The authors estimated d by d̂2 =
min{ℵ ∶ ℵ = argmin0≤k≤p (BICk) }, where

BICk = log (
RSSk

n
) + log (n) k

nhk
(3.7)

where RSSk is as follows:

RSSk =
n

∑
j=1

n

∑
i=1

[yi−{âj + b̂
T

j (β̂1, β̂2, . . . ,βk)
T
(xi− xj)}]

2

ωij, (3.8)

In this section, we combined (3.6) and (3.7) in one formula to estimate d as follows:

d̂ =min{d̂1, d̂2} (3.9)

4. Simulation study

In this section, the behaviour of the SMAVE-PACS is demonstrated through the use of many simula-

tion examples. The methods were assessed in terms of model error (ME) which is (β̂ − β)
′

V (β̂ − β),
where V is the covariance matrix of X. We report the median and standard error of ME. In addition,
we computed and reported the SA which is the percentage of correct models identified, the GA
which is the percentage of correct groups identified and the percentage of selection and grouping
accuracy together (SGA). None of the ALMAVE, SCAD-MAVE, MCP-MAVE, SMAVE and sparse
SIR perform grouping. The optimal λ in the PACS estimation can be selected by using the tenfold
Cross-validation. The sample sizes were 60 and 120 and the simulation was replicated 200 times.

4.1. The estimation of directions and variable selection

Example 4.1. R = 200 datasets with size n = 60 and 120 were generated from y=xTβ+ε, xi and ε are
independent and are identically distributed (i.i.d) from an N (0,1) and β = (2,2,2,0,0,0,0,0)T , X ∈
R8 with d = 1. The first three predictors have correlation equal to 0.7 and the values of their coeffi-
cients in magnitude were equal. The rest are uncorrelated. The model is y=2x1+2x2+2x3+ε.

Example 4.2. R = 200 datasets with size n = 60 and 120 were generated from y=xTβ+ε, xi and
ε are i.i.d from an N (0,1) and β = (0.5,1,2,0,0,0,0,0)T , X ∈ R8 with d = 1. The first three
predictors have correlation equal to 0.7 and the values of their coefficients are different. The rest are
uncorrelated. The model is y=0.5x1+1x2+2x3+0.5 ε.
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Example 4.3. R = 200 datasets with size n = 60 and 120 were generated from y = exp (xTβ) + ε,
where β = (1,1,1,0.5,1,2,0,0,0,0)T , X ∈ R10 with d = 1, xi and ε are i.i.d from an N (0,1) . The
first three predictors have correlation equal to 0.3 and the values of their coefficients are equal. The
pairwise correlation of the second three is 0.7 with different magnitudes for the coefficients. The rest
are uncorrelated. The model is y=exp (x1+x2+x3+0.5x4+x5+2x6) + ε.

Example 4.4. R = 200 datasets with size n = 60 and 120 were generated from y = 5cos (xTβ) +
exp (−(xTβ)2) + ε, where β = (2,2,2,1,1,0,0,0,0,0)T , X ∈ R10. xi and ε are i.i.d from N (0,1),
with with d = 1. The first 3 and the second 2 predictors have correlation equal to 0.7 and the values
of their coefficients in magnitude are equal. The rest are uncorrelated.

Example 4.5. R = 200 datasets with size n = 60 and 120 were generated from the model

y= xTβ1

0.5+(1.5+xTβ2)
+ε, where xi and ε are i.i.d from an N (0,1). Also, β1 = (2,2,2,0,0,0,0,0)T and

β2 = (0,0,0,0,0,2,2,2)T . X ∈ R8 with d = 2. For β1, the first 3 predictors have correlation equal to
0.7 and the values of their coefficients are equal in magnitude. The rest are uncorrelated. For β2,
the first 5 predictors are uncorrelated, while last 3 predictors have correlation equal to 0.7 and the
values of their coefficients are equal in magnitude.

Table 1: Results of Example 4.1

n Criterion
Sparse

SIR
SMAVE ALMAVE SCAD-MAVE MCP-MAVE SMAVE-PACS

60

ME
(s.e)

0.1170
(0.0083)

0.1062
(0.0079)

0.0697
(0.0107)

0.0727
(0.0079)

0.0811
(0.0077)

0.0447
(0.0108)

SA 61 61 79 79 76 64

GA 0 0 0 0 0 82

SGA 0 0 0 0 0 59

120

ME
(s.e)

0.0531
(0.0046)

0.0423
(0.0055)

0.0288
(0.0033)

0.0302
(0.0034)

0.0331
(0.0042)

0.0040
(0.0014)

SA 69 70 91 92 86 84

GA 0 0 0 0 0 92

SGA 0 0 0 0 0 79

From Table, the ME of SMAVE-PACS is the lowest for all sample sizes. Although the ALMAVE,
SCAD-MAVE and MCP-MAVE have the highest SA, it is obvious that they do not perform grouping.
It is clear that SMAVE-PACS identifies the groups of predictors, as seen in GA and SGA.
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Table 2: Results of Example 4.2

n Criterion
Sparse
SIR

SMAVE ALMAVE SCAD-MAVE MCP-MAVE SMAVE-PACS

60

ME
(s.e)

0.1677
(0.0079)

0.1087
(0.0085)

0.0828
(0.0144))

0.0901
(0.0117)

0.1105
(0.0122)

0.1341
(0.0080)

SA 59 60 71 62 60 55

NG 100 100 100 100 100 98

SNG 58 59 70 60 59 48

120

ME
(s.e)

0.0743
(0.0070)

0.0409
(0.0051)

0.0314
(0.0052)

0.0302
(0.0020)

0.0383
(0.0048)

0.0531
(0.0028)

SA 68 70 87 84 72 67

NG 100 100 100 100 100 100

SNG 67 69 86 84 69 69

In Table 2, we reported NG which is refer to no groups found and the percentage of selection and
no-grouping (SNG) instead of GA and SGA, respectively. In terms of prediction and selection, it can
be seen that the SMAVE-PACS does not work as well, while ALMAVE, SCAD-MAVE and MCP-
MAVE do the best. The methods do well in not identifying the group. Thus, the SMAVE-PACS is
not an advisable when the correlations are high but the important coefficients not in a group.

Table 3: Results of Example 4.3

n Criterion Sparse SIR SMAVE ALMAVE SCAD-MAVE MCP-MAVE SMAVE-PACS

60

ME
(s.e)

0.1832
(0.0123)

0.1680
(0.0178)

0.1393
(0.0143)

0.1443
(0.0114)

0.1550
(0.0093)

0.1389
(0.0196)

SA 47 47 79 75 70 59

GA 0 0 0 0 0 59

SGA 0 0 0 0 0 39

120

ME
(s.e)

0.0778
(0.0060)

0.0692
(0.0051)

0.0430
(0.0031)

0.0441
(0.0030)

0.0456
(0.0035)

0.0350
(0.0056)

SA 42 43 86 86 83 75

GA 0 0 0 0 0 81

SGA 0 0 0 0 0 61

Table 3 displays that the best SA are for ALMAVE, SCAD-MAVE and MCP-MAVE; however,
the SMAVE-PACS do better according to ME. In this setting, it is clear that the SMAVE-PACS
method identifies the significant group with high GA and SGA.
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Table 4: Results of Example 4.4

n Criterion
Sparse
(SIR)

SMAVE ALMAVE SCAD-MAVE MCP-MAVE SMAVE-PACS

60

ME
(s.e)

0.1933
(0.0126)

0.1750
(0.0170)

0.1695
(0.0128))

0.1698
(0.0161)

0.1705
(0.0105))

0.1700
(0.0149)

SA 52 52 71 69 60 59

GA 0 0 0 0 0 50

SGA 0 0 0 0 0 39

120

ME
(s.e)

0.0802
(0.0063)

0.0630
(0.0056)

0.0496
(0.0037)

0.0527
(0.0050)

0.0559
(0.0042)

0.0555e
(0.0076)

SA 57 58 83 81 76 74

GA 0 0 0 0 0 68

SGA 0 0 0 0 0 50

Table 4 demonstrates that the ALMAVE, SCAD-MAVE and MCP-MAVE have the best SA. In
terms of ME, it is clear that the ALMAVE and SCAD-MAVE have better results than the SMAVE-
PACS method. According to GA and SGA, it is clear that SMAVE-PACS does well in identifying
the groups.

Table 5: Results of Example 4.5

β1 β2

n Criterion
Sparse
(SIR)

SMAVE ALMAVE
SCAD-
MAVE

MCP-
MAVE

SMAVE-
PACS

Sparse
(SIR)

SMAVE ALMAVE
SCAD-
MAVE

MCP-
MAVE

SMAVE-
PACS

60

ME
(s.e)

0.1664
(0.0107)

0.1518
(0.0127)

0.1308
(0.0120)

0.1325
(0.0122)

0.1370
(0.0093)

0.1186
(0.0119)

0.1680
(0.0107)

0.1551e
(0.0127)

0.1318
(0.0120)

0.1343
(0.0122)

0.1392
(0.0093)

0.1213
(0.0131)

SA 56 56 75 74 68 62 55 55 74 74 67 61

GA 0 0 0 0 0 66 0 0 0 0 0 66

SGA 0 0 0 0 0 59 0 0 0 0 0 50

120

ME
(s.e)

0.0770
(0.0057)

0.0629
(0.0058)

0.0482
(0.0037)

0.0517
(0.0044)

0.0547
(0.0044)

0.0400
(0.0038)

0.0816e
(0.0063)

0.0674
(0.0063)

0.0520
(0.0041)

0.0553
(0.0042)

0.0583
(0.0042)

0.0440
(0.0041)

SA 63 64 87 87 81 79 62 64 86 86 81 79

GA 0 0 0 0 0 80 0 0 0 0 0 79

SGA 0 0 0 0 0 64 0 0 0 0 0 64

In Table 5, the dimension d = 2, it can be seen that the performance of SMAVE-PACS is not affected
by d. In general, the performance of SMAVE-PACS was stable and did not change with the changing
of d from 1 to 2. In terms of SA, the ALMAVE, SCAD-MAVE and MCP-MAVE have the largest
SA values, respectively. In terms of ME, the results of ALMAVE and SCAD-MAVE are still better
than the results of SMAVE-PACS. According to GA and SGA the performance of SMAVE-PACS is
the best.



2930 N. M. Hammood, Z. Y. Algamal

4.2. Estimation of the dimension d

The proposed method in (3.9) for estimating d was evaluated in this section. Data were generated
according to the settings of example 5. The d value is 2. The results were reported for the sample
sizes n = 100 and 200. We used 200 datasets for each case. The frequency of estimated d out of 200
datasets was summarised in Table 6. The results of the proposed method were compared with the
results from CV in (3.6) and BIC in (3.7). It is clear that proposed formula in (3.9) produced highly
consistent estimation for n = 100 and 200. It slightly outperforms the CV in (3.6) and BIC in (3.7).

Table 6: Frequency of d̂ out of 200 datasets

CV BIC Min(CV,BIC)

n d = 1 d = 2 d = 3 d ≥ 4 d = 1 d = 2 d = 3 d ≥ 4 d = 1 d = 2 d = 3 d ≥ 4

100 8 157 31 4 7 158 30 5 7 160 32 1

200 1 180 17 2 2 183 12 3 3 184 13 0

5. Analysis of real data

The performance of SMAVE-PACS with a number of existing selection methods is illustrated through
real data. The NCAA data (Mangold et al., 2003) were analysed. The ALMAVE, SCAD-MAVE,
MCP-MAVE (Alkenani and Yu, 2013), SMAVE (Wang and Yin, 2008), sparse SIR (Ni et al., 2005)
and SMAVE-PACS methods were applied to the data. The response variable is centred and the
predictors were standardised.
The data set was randomly split into a training and testing set, with 20% of the data used for testing.
For stable comparisons, the data sets were split 100 times. SMAVE-PACS was applied to find d̂. We
find d̂ = 1. The mean squared prediction error (MSPE) and the effective model size were reported.
The effects of sociodemographic indicators and the sports programs were studied through the NCAA
sport data. The data are available at the website:

(http://www4.stat.ncsu.edu/∼boos/var.select/ncaa.html).
The data size is n = 94 and p = 19 predictors. The dependent variable is the average of a

six-year graduation. The predictors are students in top 10% HS (x1), COMPOSITE (x2), living
on campus (x3), undergraduates (x4), enrolment/1000 (x5), courses taught (x6), basketball ranking
(x7), tuition/1000 (x8), room and board/1000 (x9), avg. BB attendance (x10), salary of prof. (x11),
student/faculty (x12), white (x13), salary of assist. Prof. (x14), city popul.(x15), PhD (x16), accept.
rate (x17), receiving loans (x18) and out of state (x19).

Table 7: Results of NCAA sports data

Criteria MAVE
Sparse
(SIR)

SMAVE ALMAVE SCAD-MAVE MCP-MAVE SMAVE-PACS

Model Size 19 12 12 10 10 11 9

MSPE 0.65 0.63 0.62 0.55 0.58 0.58 0.53
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Table 7 makes it obvious that SMAVE-PACS method is significantly better than the considered
approaches in terms of MSPE. The effective model size is 9 for SMAVE-PACS.

6. Conclusion

In this study, SMAVE-PACS is developed to incorporate PACS into MAVE. Since MAVE can
efficiently estimate SE(y∣x) while PACS does consistent group identification and variable selection,
SMAVE-PACS can simultaneously achieve the two aims. PACS is extended to multi-dimensional
regression without needing any specific model through SMAVE-PACS. SMAVE-PACS is proved to
have an effective computational algorithm. According to the results of our simulations, the proposed
criterion for estimating the dimensionality d significantly improves MAVE and SMAVE in correctly
estimating the dimensionality over using CV (Xia et al., 2002) and modified BIC (Wang and Yin,
2008), respectively. This work shows that SMAVE-PACS can yield promising predictive precision,
as well as identify related groups.
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