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Abstract

The skewness and scale parameters of the asymmetric Laplace distribution are estimated with
Bayesian methods using quadratic loss function and the weighted quadratic loss function, respec-
tively, based on the functions of the prior of the gamma distribution and the exponential distribution
for each of the skewness and scale parameters. These estimates were compared using integral mean
square error, which was based on the real data technique of the stock prices the Iraqi market. The re-
sults revealed that the bayes estimator outperformed the quadratic loss function under the weighted
quadratic loss function.

Keywords:  Asymmetric Laplace distribution, Bays estimator underweighted quadratic loss
function, Quadratic loss function, Lindley approximation.

1. Introduction

The skewed Laplace distribution (asymmetric) is one of the skewed distributions, and the signifi-
cance of the distribution is evident in the financial statements, which are characterized by asymmetry
with the presence of a sharp peak around the origin and the density of the tail when compared to
the normal symmetric Laplace distribution.

Skewness is defined as a distribution’s degree of symmetry or distance from symmetry. The
frequency curve of a distribution with a larger tail to the right is said to be right-skewed (positive
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skew), while the frequency curve of a distribution with a long tail to the left is said to be left-skewed
(negative skewness).

The presence of outliers or extreme observations is one of the reasons for the expansion of one
end of the distribution. In addition to the importance of this distribution, it stands out in that it
is a monomodal distribution, and thus provides a suitable alternative to the AL distribution is one
of the stable geometric distributions and this is what appears in the financial statements models [4].
The results showed that these distributions have an accurate mathematical form, and the practical
aspect of these distributions is easily implemented. In addition to that, the researcher [2] estimated
the parameter of the exponential distribution in the presence of symmetric and asymmetric loss
functions and the comparison among them as well as with the estimator of the possible function and
they found that the unconventional estimator is better than the conventional [2].

2. Asymmetric Laplace Distribution

The AL distribution is one of the marginal distributions for independent and symmetrically
distributed random variables with a specific variance. For other symmetric distributions, The p.d.f
can be defined as in the following [4].

ﬁ k o(-372) , x>0
o

2.1
1+k2 | (&) (2.1)

f(x,o, k)=

) x <0

where k skewness parameter and o scale parameter. Figure .shows p.d.f for the AL distribution by
choosing more than one value for k when the value of k = 1 makes the p.d.f for the ALdistribution
reduced to the Symmetric Laplace distribution, while The value of k<1 makes the p.d.f of the
ALdistribution skewed to the right as in the black colored curve compared with the blue colored
curve which represents the SLdistribution and in this case the skewness is positive.but if the value of
k>1.this makes the p.d.f function of the ALdistribution skewed to the left as shown The curve has
a dot black color compared to the SL distribution, and the skewness is negative. It is worth noting
that the ALdistribution suffers from skewness if the tail of the curve is longer than the other side of
the distribution curve [3] .

For the cumulative distribution function (cdf) with respect to the AL distribution (o, k) through
the following equation [4] :-

Flrok) =4 47F ’ (2.2)
<0

Figure .shows the cumulative distribution function of the function curve with a fixed value for the
scale parameter c=1 and a variable value for the skewness parameter k. The curve in blue shows the
cdf function with respect to the SLdistribution, because the value of k = 1. While the black curve
shows the cdf function for the AL distribution is right skewed, because the value of k<1. But if the
value of k>1, this makes the cdf function for the AL distribution skewed to the left and this is shown
by the a dot black curve [3] .
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Figure 1: shows the probability density function of the asymmetric Laplace distribution (AL).

10

Figure 2: shows the cumulative function of the asymmetric Laplace distribution AL(c k)
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3. The Bayesian Method For Estimating The Parameters of The Asymmetric Laplace
Distribution

The bayes theory dates back to the middle of the eighteenth century, and the bayes method is
considered one of the important methods for obtaining the best estimator for the parameters of a
particular distribution, This method of estimation assumes that the parameter to be estimated is a
random variable, and in the event of its estimation, preliminary information must be available about
it with a probability distribution called Prior distribution[]:

Joint Density Function Using The Prior Functions of The Gamma Distribution and
The Exponential Distribution

To obtain an estimate of the skewness and scale parameters of the ALdistribution, we assume the
skewness parameter k has an initial distribution 7 (.) follows the distribution of k ~ TI'(a, b)

Also, we assume that the scale parameter ¢ has an initial distribution my(.)follows the distribution
of ¢ ~ exp (¢ ) where they are independent of each other:

m (k) = , a>0 ,b>0 k>0 (3.1)
My (0)=Ce @ C>0, ¢>0 (3.2)

Because of the difficulty of finding the best estimators for the parameters of the skewness k and
the scale o of the AL distribution by integration, the method of lindley approximation was used, as
follows [7] .

~ 1 1
FE (k"g) %k—i—Plulan—l—g (LgoulO'%l) —|—§ (L12U10'110'22) (33)

And the j.p.d.f for both the skewness and scale parameters o, k is as follows:

(b) * (k) “'e” —eo

m(o,k) = Ta) .Ce

Ln 7 (0,k) = aln (b) + (a — 1) Lnk — bk + Ln (¢) — co
or  a-—1

h=% =%
oP

P, — _

T 00 ¢

When :
Lij= LnL f(x,0k) i,7=0,1,2,3

LnLf(x,0,k) = §Ln2 — nLno + nLnk — nln (1 + &%) — £ kZm—l— Zm

i=1

That is, (Lj2) represents the first derivative with respect to the parameter k with the second derivative
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Quadratic Loss Function

The quadratic loss function is one of the most common and widely used loss functions. It is an
asymmetrical function and the mathematical formula is as follows[5] :-

Thus, the bayes estimator for the skewness and scale parameters, respectively, under quadratic
loss function ]ACS , 0, 1s as follows:

s=E(k|x) (3.4)
s=FE(o|z) (3.5)

Q) 7
Il

a) Bays Estimator For The Skewness Parameter k Using Quadratic Loss Function

To get the bayes estimator for the skewness parameter k under the quadratic loss function, we
assume that:

~Ou(o,k) _ Ou(o, k)

u(k,o) =k, U= = 1, Up=— = 0

Substitute the equations into the law of lindley approximation into eq (3.3)):-
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Substitute eq (3.6)) into eq (3.4]) as follows:
ko ~ E(kl|z)

X (3.6)

b) Bayes Eestimator For The Scale Parameter o Using The Quadratic Loss Func-
tion
To get the bayes estimator for the scale parameter under the quadratic loss function, we assume

the following:
ou (k,o)

Jo

_Ou(k,o)

= 0, U= 90 =1

u(k,o) = o, Uy

~ 1
E(o|z) =0 + pausoas + B (Lo3u20§2)

R a3k
E(g |£) 0 + (_C) (n (2\/§k2$ _ Qﬁx—ak))

2
n 1 _2_n+6\/§Knx B 6v/2nx a3k (3.7)
2 o ot otK n (2\/§k2x - 2\/§x—ak) '

Substitute Equation (3.7)) into eq (3.5)) as follows:

E(olz) ~ 0,

Weighted Quadratic Loss Function
The weighted quadratic loss function is considered an asymmetric function, so the formula for the
skewness parameter k is as follows [6]:-
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by = St P

k>0 ,a;,7=0.1,2, ...t
k: is a positive integer number and c is a constant

Thus, the bayess estimator for the skewness parameter k under the weighted quadratic error loss
function is as follows:

- aB (g | z) B (s | 2) + -+ aE (= | 2)
k= 1 1 1 (3-8)
Wk (% | z) + B (7 |2) + - + @B (7= | z)

Therefore, the bayes estimator for the scale parameter ¢ under the weighted quadratic loss function
is as follows:

abB (7= |2) v aB (s o)+ +aB (=t |2)
wkB (% |z )+aB(Z |2)++a, E(z |2)

(3.9)

a) Bays Estimator For The Skewness Parameter k Using The Weighted Quadratic
Loss Function:-

To get a bayes estimator, let us suppose each of (t = 1, ¢ = 0) and substitute it in equation (3.8]) as
follows:

> B (k|z)taE (k| z)

S 3.10
10 ap+a1 E (k| z) (8.10)
ou(o, k Ou(o, k
U(U, k) :kz, Ulz%: Qk, U11:%: 2,
, 51 1 oy 1
Bk |z) =~ k + B (ur1011) + pruron + B (L30U1011) + B (Li2u1011022)
51 k? <1%2+1> %6
ER |z)~k += |2 - - - - -
2 n (2\/§k4x + k5 G+ 4v2k2x — 4 Gk3 + 2421 — 8k>
o /n 2
. B (2 41) s
—l—( — — ) (2k) - - - - — | +etc (3.11)
k n (2v2hiz + K5 + 4v2h20 — 45K° + 2120 — Gk

And by substituting equations (3.6)), (3.11)) with eq (3.10) to find a bayes estimator for the skewness

parameter k under the weighted quadratic loss function as follows:

> ao(’;‘s) + a1(l%§)
klO = =
ag + afl(ks)

~ 7a0+a1E(k|g )

= 3.12
11 aOE(%@ )+CL1 ( )
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We find the value of E (3 |z )using lindley approximation

1 ou(o, k _ 0%u _
u(o, k) = 7 U= g?k ):—k 2, Ull—%:2k 3
E(1|) 1+1( ) + +1(L 2)+1(L )
—lz)~=+ = (u — =
Lt A 11011 h1u1011 5 30U1071, 9 12U1011022
. 2
1 1 1 k;3 <k’2 + 1> g a—1 Ly
By la) =5 + 5 (27 (= b)) (k)
k n (2v2hiz + K5 + 4v2k20 — 45k° + 2v20 — 5k) \ b
+ etc (3.13)
Substituting eq . in eq (3.12)) as follows:
. k.
k 11 = %1() (3‘14)
Qo (Z ) -+ aq
when (t =1, C = 2)
~ E 1 +
k12= alo i 2) *a (3.15)
wE (= |z)+aB (3 [z)
1 ou(o, k) 3 *u(o, k) —4
U(O’, k) = ﬁ; 1= ok =—2k ) U11= k2 6k ’
E(1|) 1+1( )+ +1(L 2)+1(L )
— |\ %A_ p— i p—
2 T Ty U11011) T P1u1011 5 30U107; 9 12U1011022
. 2
) - (k1) s

E(—|z) ~ + 5(—215—3 )+etc  (3.16)

)
(2\/_k4x+k5 +4\/_k2x—40k3+2\/_x—ak:>

By substituting equations (3.16)) and (3.13)) with eq (3.15)), it becomes as follows:

~ g <L> +aq
k2=

o (i)t ()

7 aoE(k|z )+a1E(K*|z )+a E(K3|z )
20 aota1 E ( k|x) +asE(k?|x)

_Oulok) s 0*u(o, k)
= ok =—3k s Ufll_T_E;k

(3.17)

u(o, k) = k?,

>
—_

1 1
E(k|z ) =~k + 5@11@1)(?1“1011 + 5 (L30U10%1) + §(L12U1011022)
i (1) %

n (2\/512:% 1+ kS G+ 4V2k2r — 4 Gk3 4+ 2020 — EF]%)

(R )~k + L (6 Vbete  (3.18)
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By substituting equations (3.18)), (3.11)) and (3.6) with eq (3.17)), it becomes as follows:

ao (k, )+a1 (k?) Fas(k3)

a0+a1 —|—a2 (

kao=

~  apta E(klz )+axE(K*z)
k:21: 1
aF ( 1]z) +a1+asE(k|z )

By substituting equations (3.6)), (3.11]) and (3.13)) with eq (3.19)), it becomes as follows:

ap E( t|z)+ ay +az E(k|z)

o=
P a0 E( /2 )+ aB(Ha )+a

By substituting equations (3.6)), (3.16]) and (3.13)) with eq ([3.20]), it becomes as follows:

ag ( i) + ay +ay (k)

ho= ag ( )+ al( )—l—a2
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(3.19)

(3.20)

b) Bayes Estimator For The Scale Parameter o Using The Weighted Quadratic Loss

Function:

To find Bayes estimator when (t = 1, C = 0) by substituting in eq (3.9)), we get the following:

N aE(olz )+ aE(o®x )
O’ pr—
ap+ a1 E(o|x)

0 k 0 k
u (o, k) = o?, UQZ%: 20, U,QQZ%: 2
2 ~2 1 1 2
E(o%z )~ 0"+ 5 5 (U22022) + Pauia0as + 3 (L03U2022)
) o 1 3k
E(c°|z) %0—1—5(2) + etc

n(2v2h 2 — 2v2 2 - &%)
Where k& & estimators by (mle)
By substituting equations (3.7)), (3.22) with eq (3.21)), it becomes as follows:

5. _ (s) + a1 (G27)
10 CLO+6L1 (O's)

(3.21)

(3.22)
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on = a0 E( %‘Q) T oa
1 ou (o, k) 9 ou (o, k) 3

U(O’, k) = ;7 U= 9o - 5 U= 902 =2 5
B(z) )~ =+ 2 (unom) + 1 (Logmnod) +2(L )

o z ~ 5735 U22022 DP2U2022 5 03U2099 5 21U2011092

1 1 1 3k
E(_|£)>%:+—(—0_2 — — +etc

o G2 n<2\/2_k a:—2\/2_:c—8k;)

And by substituting equations (3.7)), (3.24]) with eq (3.23)), it becomes as follows:

. ap + ax (05)

011 =
ap (a\%)—i— ai

 aE(f]z ) ta
aoE(5zlz )+a1B(; |z )

~

012

1 ou(o, k _ 0?u(o, k _
'LL(O', k’) :;, Ug = —8<0' ) = —20 3, U22:—8(0'2 ) = 6o 4
E(1|)~1+1( ) + +1(L 2)+1(L )
o2 z N82 5 U22022 P2U2022 5 03U2099 5 21U2011022
1 1 1, 3k
E(_2|$) RN+ B (60 4) - =
o g n (2\/§k2x — 222 — Jk)

R N 2
i3 (k2 n 1) G

- - ~ ~ - + etc
n (2\/§k4x 455 + 4/2h2r — 4Gh3 + 221 — 8k>

+(=)(=2077)

And by substituting equations (3.26)), (3.24]) with eq (3.25)), get the following:

~ o E(olz)+a,E (0? | z) +ayE (03 | z)
YT ataE (0| z) ta:E (0% z)

_Ou(o,k)
o

0 k
u(o, k) = o®, Us = 302, U222M260‘
do?

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)



Comparsion between weighted quadratic loss function and quadratic ...

g 1 1
E(o'?”& )%0’34__ U22022) —|—p2U20'22+§ (L03'LL20'§2)

5 (
3k

g 1
E(o®|z ) ~5°+ = (20)

2

n<2m2x— 2\/2_x—87€>

And by substituting equations (3.7)), (3.22)) and (3.28) with eq (3.27)), get the following:

- ag( Gy)+ai( Gs)+as (57)
20= = =
aptay ( 0s) +a2(<7§)

. apta1E(o|z)+ayE(0°|z)
O21—= 1
aoE(;|z)+ai+axE(o|z)

~

022=

aoE (L] 2) +a1+a:E (o | 2)
CL(]E (ig ’ @) +CL1E (— | .'17) “+asg

ao (al +ay+as (O5)

ao(z7)+ar+as (%)

O0922=

4. Application

+etc
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(3.28)

(3.29)

(3.30)

This part includes estimating the parameters of the asymmetric Laplace distribution using the
current stock prices of the Bank of Baghdad, which were obtained from the Iraqi Stock Exchange,
and then the comparison between these methods is done according to the statistical criterion, the
mean of the integral error squares. The data was collected from the financial statements that were

obtained from the Iraqi market for securities.

The data obtained from all companies and sectors is classified. The Iraqi Listed Company, on
the Iraq Stock Exchange, during the period (2019) which consists of (90) regular companies. During

the study years .was distributed over (8) different sectors. for the final sample size (30).
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Table 1: It Shows The Classification of The Sample Size according To The Special Sectors in The
Iraqi Market

Number Sector Name Number of Companies|Number of Companies|Study Sample
1 Banks 38 38 13
2 Insurance 5 5 1
3 Invest 6 6 1
4 Services 9 9 4
5 Industry 14 14 3
6 Hotels and tourism 10 10 1
7 Agriculture 6 6 6
8 contacts 2 2 2
Total — 90 90 30

Comparison of Estimating Parameters of The Asymmetric Laplace Distribution

The bayes method, under the loss function, weighted quadratic, is better. estimating method for
estimating Parameters of the AL distribution, so that this method can be applied to real data, where
the results of the estimators (IMSE) of the bayesian estimator are under (the quadratic loss function,
and the weighted quadratic loss function) as shown in Table 2]

Table 2: TheValues of The Parameter Estimators and The Results Comparsion between (WSELF
&SELF)

Parameter Estimator distribution Parameter Estimators
IMSE Bayes(k) 9.5601e-04
0.0017
IMSE Bayes () 2.3490
IMSE B k 8.6969¢-04
Ayes Bwno © 3.12096-05
IMSE Bayes o190 0.5304
IMSE B k 8.3079¢-04
ayes Fwul © 0.0750
IMSE Bayes Gy 41.7434
IMSE B k 7.9344e-05
ayes Fwa © 2.26520-06
IMSE Bayes 99 0.0278
IMSE B k 7.2835¢-05
W Bw © 0.0869
IMSE Bayes o9 42.7654
IMSE B k 4.6379e-04
e Mvaz © 2.6777e-04
IMSE Bayes G20 39.9520
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Through the table[2l note that the results of the Bays estimator under the weighted quadratic loss
function (IMSE 1) resulting from the difference between the real values and the estimated values
of each of the parameters of the skewness k and the scale ¢ is the best method after it has been
estimated and compared with the methods other, followed by a Bays estimator under the quadratic
loss function

5. Conclusions

The results of the values of the positions of the two parameters of the skewness and scale param-
eters of the Bays estimator under the weighted quadratic loss function (IMSE y1) resulting from
the difference between the real values and the estimated values showed the best method after it was
estimated and compared with other methods, followed by the Bays estimator under quadratic loss
function.
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