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Abstract

This paper aims to study the parameters estimation methods of the stationary mixed model
(autoregressive-moving average) of low order ARMA (1, 1) regarding to time domain analysis in uni-
variate time series. Using the approximating methods: Back Forecasting (BF), Classical Conditional
Maximum Likelihood (CC) and Proposed Conditional Maximum Likelihood(PC). A comparison is
done among the three methods by Mean Squared Error (MSE) using several simulation experiments;
the obtained results from the empirical analysis indicate that the accuracy of the proposed conditional
method is better than the classical conditional method.
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1. Introduction

The problem of parameter estimation is one of the required stages for modeling time series according
to Box and Jenkins methodology[4], therefore after data representation, model selection and identi-
fication, the stage of parameters estimation is needed, so that this is the second stage of the model
building stages. The accuracy of the next stages of the diagnostics and forecasting depends on the
accuracy of the estimates Obtained in the appropriate method. For estimating (ARMA) (Autore-
gressive Moving Average) model of N observation of Z process, there are three important steps are
required for this stage [5]:
Type Selection, order selection and parameter estimation. Choosing the appropriate method for
estimating is not a simple matter and the ordinary methods may not be efficient and appropriate
if the observations properties do not match , the assumptions that should be existing when using
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these methods, and because there is a random error in ARMA model which is associated with the
explanatory variable so the (Ordinary Least Square)(OLS)estimators are inconsistent , therefore the
researchers have adopted other methods of estimation that are more efficient ,and are often used
in the analysis of time series . Estimation methods may require conditions such as stationarity or
invertibility, and the model error are Normally distributed. Most ARMA estimation methods are
approximate methods; one of these methods is Conditional Maximum Likelihood Method, in this
method the initial values for the function representing the model are assumed as fixed values [4]
there are also Unconditional Method , in this method the initial values are predicted by Back Fore-
casting (BF) method, while the estimate in Exact Likelihood Method by attempt to calculate the
exact likelihood function , or by using the fixed distribution in formation the likelihood function[7]
, in order to obtain high level estimators of efficiency . ARMA (1,1) model was studied theoreti-
cally and empirically using Simulation Technique with respect to time domain analysis of univariate
time series and using different methods of estimation : Classical Conditional maximum likelihood
(CC), Unconditional (Back forecasting) Method (BF) and proposed Conditional Method(PC).The
methods were compared by simulation using Mean Squared Error (MSE) criterion to achieve the
best estimation method. One of the basic assumptions adopted in the simulation is that the random
errors (ats) of the model are distributed normally identically and independently with zero mean and
constant variance σ2

a , assuming the coefficient of autoregressive φ1 and moving average θ1 both of
them do not depend on the time , and lays inside the stationarity rejoin for φ1 for and invertibility
region for θ1 , hence this research is concerned with an important stage of building model which is
estimation stage , in order to studying conditional and unconditional methods for ARMA(1,1) and
propose a conditional method for model estimation and then a comparison of estimation methods
is made using simulation. The first to use the method of estimating time series parameters was
Durban[7] in 1960 using ordinary least squares (OLS) applied sequentially by repeating steps and
compensating for preliminary estimates in the original equation. In 1970, Box and Jenkins [4] gave
an appropriate method of calculating the quadratic form of ARMA process(p,q), and they obtained
appropriate expressions of future values as a conditional to previous values. In 1974, Newbold[19]
derived the function of the exact maximum likelihood of ARMA processes (p,q) by generalizing the
Box-Jenkins method[4] in the derivation of the exact maximum likelihood function for MA processes.
In 1977, Ali[1] developed appropriate methods for calculating the exact likelihood function of the
univariate variable and stationarity ARMA models. In 1979, Ansley[3] used cholesky decomposition
to find the exact likelihood function of for ARMA processes, and in 1980 Hannan[9] used successive
estimates based on ARMA models for stationary time series and in 1984 Melard[17] wrote a quick
algorithm designed to calculate the likelihood function for stationary ARMA (p,q) models, in 2000,
Karanasos[11] introduced a new method of calculating the theoretical of autocovariance function
of ARMA model . In 2003, Davis and et al. [5] presented a research included an estimate of the
MLE for observations derived from a time series model of calculations whose conditional distribution
was based on past observations which follow Poisson Distribution. In (2008)[16] Mclead and Zhang
gave a new likelihood based AR approximation for ARMA model and develop a new fast Algorithm
easily implemented in high level quantitative programming environments, in 2009 ,Muler[18] ,et al.
introduced a new class of robust estimation for ARMA models , they are M – estimates , these are
closely related to those based on robust filter. In 2015 Lei[13], developed a robust Kalman filtering for
ARMA modeling method. In 2016 Lei ,et al. [14], used Whittle likelihood estimation with time series
contain a serial correlation in the residuals. In (2017) Krone, et al. [12], compared five estimation
methods: the r 1, C-statistic, ordinary least squares, maximum likelihood estimation and Bayesian
MCMC estimation, they compared these estimators with regard to bias, variability and rejection
rate. Finally, in (2019) Horner [10], et al. used expectation maximization to estimate parameter of
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autoregressive exogenous and autoregressive modes subject to missing data. This paper is organized
as follows: the ARMA model is introduced in section 2. The estimation methods, GLS, BF and the
proposed method are in section 3. The efficient of these estimators using simulation are compared
In Section 4. The conclusions are given in section 5.

2. Mixed ARMA models

The ARMA (p, q) model is given by[22]:

Zt = φ1Zt−1 + φ2Zt−2 + · · ·φpZt−p + at − θ1at−1 − θ2at−2 − · · · − θqat−q (2.1)

Where, Zt = Z
◦

t − µ , at ∼ IND(0, σ2
a)

The First Order Mixed ARMA (1, 1) Model
In equation (2.1) when p=1, and q=1, then the form of the model becomes

Zt = φ1Zt−1 + at − θ1at−1 (2.2)

The model can be written in form of Back Shift Operator as follows:

(1− φ1B)Zt = (1− θ1B)at (2.3)

Rewriting the model in form of autoregressive as follows

Zt =
∞∑
j=1

θj−11 (φ1 − θ1)Zt−j + at , j ≥ 1 (2.4)

Where,

at = Zt −
∞∑
j=1

πjZt−j (2.5)

So that

πj = θj−1(φ1 − θ1) , j ≥ 1 (2.6)

Rewriting the model in form of moving average as follows:

Zt = at + (φ1 − θ1)
∞∑
j=1

φj−1
1 at−j (2.7)

Where

Zt =
∞∑
j=0

ψjat−j (2.8)

ψ0 = 1

ψj = (φ1 − θ1)φj−1
1 , j ≥ 1 (2.9)
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3. EstimationMethods

Most estimation methods depend on the maximum likelihood formulas, most of these formulas are
approximated to the conditional or unconditional least square estimation with moderate sample size,
and there are two types of maximum likelihood methods estimation : the exact and the approximate
methods , in exact method the likelihood function have derived ,whereas in approximate methods
there are the conditional and unconditional methods, in conditional methods , the initial values
of errors series at and the observation series Zt as fixed values , and replaced it by unconditional
expectations for at and Zt . These expectations are equal to zero[4, 22], In the unconditional method
, the initial values of errors series at and the observations series Zt are obtained by Back Forecasting
.
Conditional Maximum Likelihood for ARMA (p,q) Process[22]

For the any stationary ARMA (p,q) model in (2.1)

Zt = φ1Zt−1 + ...+ φpZt−p + at − θ1at−1 − ...− θqat−q

Where Zt = Z
◦

t − µ and {at} are i.i.d.N (0, σ2
a),

The joint probability density of a = (a1 ,a2 ,a3 , . . . , an ,)
′ is :

p(a|φ, µ, θ, σ2
a) = (2πσ2

a)−
n
2 exp

[
− 1

2σ2
a

n∑
t=1

a2t

]
(3.1)

Rewriting (2.1) as
at = θ1at−1 + ...+ θqat−q + Zt − φ1Zt−1 − ...− φpZt−p (3.2)

We can write down the likelihood function of the parameters (φ ,µ , θ ,σ2
a) as follows :

Let Z = (Z1, Z2, ..., Zn)′

And assume the initial conditions

Z∗ = (Z1−p, ..., Z−1, Z0)
′

and
a∗ = (a1−q, ..., a−1, a0)

′

The conditional log likelihood function is :

LnL∗(φ, µ, θ, σ
2
a) = −n

2
ln 2πσ2

a −
S∗(φ, µ, θ, )

2σ2
a

(3.3)

S∗(φ, µ, θ) =
n∑

t=1

a2t (φ, µ, θ|Z∗, a∗, Z) (3.4)

The quantities: φ̂, µ̂, θ̂ which minimize (3.3) are called the conditional maximum likelihood estima-
tors. There are some alternatives for specifying the initial conditions Z∗ and a∗ based on the
assumptions that {Zt} is stationary and {at} is a series of i.i.d. N(0, at) random variables , by
replacing the unknown Zt with the sample mean Z and the unknown at with its expected value of
0. For the model in (2.1) assume: E(at) = µ = 0

ap = ap−1 = ... = ap+1−q = 0
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And Calculate at for t ≥ (p+1) using (2.1). The conditional sum of squares function in (3.1) thus
becomes

S∗(φ, µ, θ) =
n∑

t=p+1

a2t (φ, µ, θ|Z) (3.5)

For ARMA (1, 1) model the conditional sum of square function becomes

S∗(φ1, µ, θ1) =
n∑

t=2

a2t (φ1, µ, θ1|Z)

The proposed Conditional Method (PC)
For the general stationary ARMA (p,q) model in (2.1) which is

Zt = φ1Zt−1 + ...+ φpZt−p + at − θ1at−1 − ...− θqat−q

for specifying the initial conditions Z∗ and a∗ based on the same previous assumptions that {Zt}
is stationary and {at} is a white noise process of i.i.d. N(0, at) random variables , by replace the
unknown Zt with the Harmonic mean Hz and the unknown at with its Harmonic mean, and assume
that:

ap = ap−1 = ... = ap+1−q 6= 0

And calculate at for all t ≥ (p+1) when p>q , and calculate at for all t ≥ (q+1) when q>p , and
assume H is the harmonic mean is that:

Hz =
n∑n

t=1
1
Zt

(3.6)

Ha =
n∑n
t=1

1
at

(3.7)

Where, HZ is the Harmonic mean for the observations of the series Zt,
And Ha is the Harmonic mean for the observations of the series at.
And after adding the unknown value to the series {at} subtract the mean and Divided on the standard
deviation to insure keep the same distribution. And when is that p>q so the function of conditional
sum square using (2.1) being

S∗(φ, µ, θ) =
n∑

t=p+1

a2t (φ, µ, θ|ZH) (3.8)

Where :
ZH : represented the new series of observations after substitute the previous values of Z∗ with
harmonic mean of the series observation Zt .
when q>p the function of sum square error will be :

S∗(φ, µ, θ) =
n∑

t=q+1

a2t (φ, µ, θ|ZH) (3.9)

It is one of the measures of central tendency, which differs from the arithmetic mean, median and mode whose
values are equal in the Normal distribution. Zero values are treated as missing values.
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And when p=q we can use any one of the two equations, the degree of freedom of using equation
(3.8) is;

d.f. = (n− p)− (p+ q + 1) = n− (2p+ q + 1)

the degree of freedom of using equation (3.9) is ;

d.f. = (n− q)− (p+ q + 1) = n− (2q + p+ 1)

For ARMA (1, 1) model the sum square error function is:

S∗(φ1, µ, θ1) =
n∑

t=2

at(φ1, µ, θ1|ZH) (3.10)

σ̂2
a =

S∗(φ̂, µ̂, θ̂)

n− 4

Unconditional Backcasting Method[22]
For the back cast the unknown values

Z∗ = (Z1−p, ..., Z−1, Z0)
′, a∗ = (a1−q, ..., a−1, a0)

′

Required the sum of squares, for any ARMA model we can written also in the backward form:

(1− φ1B − ...− φpB
p)Zt = (1− θ1B − ...− θqBq)at (3.11)

Or in the forward form:

(1− φ1F − ...− φpF
p)Zt = (1− θ1F − ...− θqF q)et (3.12)

Where F jZt = Zt+j

Box and Jenkins[4] introduced the following unconditional function:

LnL(φ, µ, θ, σ2
a) = −n

2
ln 2πσ2

a −
S(φ, µ, θ)

2σ2
a

(3.13)

So that S (φ,µ,θ) is the function which means unconditional sum of square, therefore :

S(φ, µ, θ) =
n∑

t=−∞

[E(at|φ, µ, θ, Z)]2 (3.14)

the equation (3.14) is approximated to:

S(φ, µ, θ) =
n∑

t=−H

[E(at|φ, µ, θ, Z)]2 (3.15)

Where H is large integer so that E(Zt|φ, µ, θ, Z) ≈ H
There fore E (at|φ, µ, θ, Z) Is ignoring when t ≤- (H+1).
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4. The simulation

Simulation experiments include writing a number of programs in Visual Basic language; using the
following steps:

1. Generating random numbers that follow the continuous uniform distribution within the period
(0,1) using cumulative distribution function(c.d.f.) that describes the model under study , when
u1 and u2 are independent random numbers from a regular distribution [20],the two variables :

Z1 = (−2 log u1)
1
2 cos(2πu2)

Z2 = (−2 log u1)
1
2 sin(2πu2)

They will be independent with a standard Normal distribution with mean zero and constant
variance equal 1.so one of these variables is used as a random errors to generate the model
observation .

2. Compensate the values atwhich was generated by the form of ARMA (1, 1), to obtain the
values of {Zt} series,

3. SupposeZ0 = a0 = 0.

4. Choice three sample size, n= (25, 50,150).

5. Using the three methods to obtain the parameters of ARMA (1, 1) model.

Using Mean Squared Error (MSE)[2] for comparison among the methods

MSE(φ̂) =
1

R

R∑
i=1

(φ̂i − φ)2

Results Discussion of Simulation
The default values for ARMA (1, 1) coefficients are: (φ1, θ1) = {(0.5, 0.6), (–0.5, 0.5), (0.6, 0.5),
(0.2, 0.8), (- 0.2, –0.8), (0.9, 0.1)}
Sum Squared Error (SSE)
The lowest value of the sum squared error within the boundaries of the stationarity rejoin for
φ1 and the invertibility region for θ1 , we find it when the value of the parameters (φ1 and θ1)
is equal to (∓0.9,∓0.9).The highest value of the sum squared error we find it nearby the value in
which φ1 is equal to θ1 , so when φ1 is equal to θ1 ,The model becomes a White Noise, therefore
the sum of squared error equal to the sample size (n). Thus, the values above and below sample size
appear the highest values . The following table shows some values of φ1 and θ1 at a sample size of
300.
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Table 1: sum squares error of ARMA (1, 1) model for some values of (φ1, θ1) n=300

(CC) (PC) (CC) (PC)

(0.1, –0.9) 142.47110 142.41252 (–0.9, –0.1) 69.04746 69.12391

(0.1, 0.5) 265.89560 265.89524 (–0.9, 0.5) 26.66932 25.88614

(0.1, 0.9) 189.57190 189.55236 (–0.9, 0.9) 16.73522 16.73692

(0.2, –0.9) 125.68150 125.59239 (–0.8, –0.9) 293.29320 293.29271

(0.2, 0.5) 281.05480 281.05453 (–0.8, 0.5) 49.88706 49.88752

(0.2, 0.9) 206.27340 205.22462 (–0.8, 0.9) 31.44528 31.44526

(0.3, –0.9) 109.09150 108.80731 (–0.7, –0.9) 279.77270 279.77296

(0.3, 0.5) 292.60930 292.60915 (–0.7, 0.5) 75.82188 75.82193

(0.3, 0.9) 222.64960 222.56546 (–0.7, 0.9) 48.13568 48.13580

(0.4, –0.9) 92.73707 92.73224 (–0.6, –0.9) 263.55870 262.66862

(0.4, 0.5) 299.45770 299.45769 (–0.6, 0.5) 102.95650 102.83429

(0.4, 0.9) 238.61930 237.35246 (–0.6, 0.9) 65.90971 64.99726

(0.5, –0.9) 76.67810 76.08848 (–0.5, –0.9) 246.35180 245.38848

(0.5, 0.1) 236.34590 236.23237 (–0.5, 0.5) 130.02550 129.84316

(0.5, 0.9) 254.04050 253.89418 (–0.5, 0.9) 84.03494 83.90942

(0.6, –0.9) 60.99521 59.88416 (–0.4, –0.9) 228.85120 228.85936

(0.6, 0.5) 291.87580 290.61642 (–0.4, 0.5) 156.33770 155.84217

(0.6, 0.9) 268.68410 268.68545 (–0.4, 0.9) 102.14470 102.32938

(0.7, –0.9) 45.75372 45.75423 (–0.3, –0.9) 211.32730 211.22469

(0.7, 0.5) 271.42190 271.42198 (–0.3, 0.5) 181.53530 181.46219

(0.7, 0.9) 282.19310 282.09297 (–0.3, 0.9) 120.09570 120.13925

(0.8, –0.9) 30.89482 30.89446 (–0.2, –0.9) 193.88860 193.72137

(0.8, 0.5) 232.05710 232.05744 (–0.2, 0.5) 205.36950 205.32469

(0.8, 0.9) 293.84040 293.74171 (–0.2, 0.9) 137.83490 136.64113

(0.9, –0.9) 16.20783 16.10663 (–0.1, –0.9) 176.58530 176.56989

(0.9, 0.5) 159.51560 159.51659 (–0.1, 0.5) 227.58970 227.58989

(φ1,θ1)

Method

(φ1,θ1)

Method

Comparison among the methods using MSE
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Table 2: Mean Square Error (MSE) of the estimated φ1 and θ1 for ARMA(1,1)model of different
values of φ1 and θ1 in all samples for the experiment repeated 1000 times.

N True value φ1 θ1 φ1 θ1 φ1 θ1

Method 0.5 0.6 -0.5 0.5 0.6 0.5

25

CC 0.010570 0.005540 0.003295 0.032616 0.880970 0.700402

PC 0.005055 0.008501 0.002190 0.044352 0.208940 0.170817

BF 0.000160 0.154610 0.018961 0.027523 0.040361 0.019937

True value φ1 θ1 φ1 θ1 φ1 θ1

Method 0.2 0.8 -0.2 -0.8 0.9 0.1

CC 0.016589 0.001391 0.018279 0.002294 0.194128 0.003540

PC 0.008354 0.016693 0.012634 0.014787 0.127235 0.000906

BF 0.023994 0.038967 0.062800 0.025825 0.000005 0.003528

550

True value φ1 θ1 φ1 θ1 φ1 θ1

Method 0.5 0.6 -0.5 0.5 0.6 0.5

CC 0.035570 0.035680 0.001011 0.019099 0.317420 0.290521

PC 0.019770 0.038180 0.000548 0.026994 0.081682 0.090420

BF 0.000090 0.022980 0.004942 0.070225 0.000117 0.000253

True value φ1 θ1 φ1 θ1 φ1 θ1

Method 0.2 0.8 -0.2 -0.8 0.9 0.1

CC 0.000142 0.010221 0.000016 0.017083 0.014908 0.007140

PC 0.000031 0.021550 0.000024 0.027225 0.012634 0.006131

BF 0.001884 0.039085 0.018961 0.005868 0.006147 0.001706

1150

True value φ1 θ1 φ1 θ1 φ1 θ1

Method 0.5 0.6 -0.5 0.5 0.6 0.5

CC 0.018710 0.018440 0.000123 0.026929 0.168921 0.103362

PC 0.010920 0.017190 8.28E-05 0.031364 0.056692 0.033452

BF 0.001150 0.012280 0.002683 0.007604 0.000001 0.000650

True value φ1 θ1 φ1 θ1 φ1 θ1

Method 0.2 0.8 -0.2 0.8 0.9 0.1

CC 0.002043 0.009139 0.001747 0.010141 0.001498 0.004058

PC 0.001673 0.015006 0.001421 0.016384 0.001444 0.004264

BF 0.000876 0.008668 0.001731 0.000256 0.003058 0.004409
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5. Conclusions

1. Through simulation experiments we find that the BF method is the better at samples 150 and 50
, whereas , the proposed conditional method (PC) is in the second order at the two sample sizes 150
and 50 , so , ( PC ) method is the best of all the methods at sample size (3.15) , while , the classical
conditional method (CC) was in the last order at all sample sizes .
2. The MSE values of the two methods CC and PC were concentrated at moving average parameter
θ1 for the two sample sizes 150 and 50 , while, the value of MSE was concentrated at the autore-
gressive parameter φ1 at sample size 25 . As for the back forecasting method, the value of MSE
was concentrated in moving average parameter θ1 for all sample sizes.
3. The lowest value of the sum squared error shows when the value of the parameters (φ1, θ1) =
(∓0.9,∓0.9) . The highest value of the sum squared error we find it nearby the value in which φ1

is equal to θ1 .
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