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Abstract

This paper proved the existence and uniqueness of the solution of the Schrödinger equation with
singular potential and initial data in the Colombeau algebra Ge.
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1. Introduction

The optimal solution for overcoming the problems that Schwartz theory of distributions is con-
cerned with was offered by Colombeau (1984, 1985) ([1], [2]). He constructed an associative dif-
ferential algebra of generalized functions G (R), which contains the space D′ (R) of distributions as
subspace and the algebra of C∞ − functions as subalgebra. This theory of generalized functions of
Colombeau actually generalizes the theory of Schwartz distributions: these new Colombeau general-
ized functions can be differentiated in the same way as distributions, but where multiplication and
other nonlinear operations are concerned. It is significant that the result of these operations always
exists in this algebra as Colombeau generalized functions. These new generalized functions are very
much related to the distributions, in the sense that their definition may be considered as a natural
evolution of the Schwartz definition of distributions.

The notion of ‘association’ in G (R) is a faithful generalization of the equality of distributions,
and again enables us to interpret results in terms of distributions.
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Due to all these properties, Colombeau’s theory has found extensive applications in different
natural sciences and engineering, especially in fields where products of distributions with coinciding
singularities are considered.

This paper solves the following nonlinear Schödinger equation with singular potential and initial
data in Colombeau algebra of generalized functions Ge which allows multiplication of distributions
and solution of nonlinear problems with singularities and proved the association of the solution.{

1
i
∂tu(t, x)−∆u(t, x) + v(x)u(t, x) = 0

v(x) = δ(x), u(0, x) = δ(x)

This paper is divided into five parts. After the introduction, we give some basic preliminaries
such as notations and definitions of the objects we will work with. We also introduce different spaces
of Colombeau algebra of generalized functions. In the third section, we proved the existence and
uniqueness of the solution of Schrödinger equation with singular potential and initial data in the
Colombeau algebra G. In the final section, we study the association.

2. Preliminaries

Similar to [2], we use the following notations:

Aq =

{
φ ∈ D (Rn) /

∫
Rn

φ(x)dx = 1,

∫
Rn

xαφ(x)dx = 0 for 1 ≤ |α| ≤ q

}
q = 1, 2, . . .

φε(x) =
1

εn
φ
(x
ε

)
for φ ∈ D (Rn)

and E (Rn) = {u : A1 × Rn → C/ with u(φ, x) is C∞ to the second variable x}

u (x, φε) = uε(x) ∀φ ∈ A1

EM (Rn) =
{
(uε)ε>0 ⊂ E (Rn) /∀K ⊂⊂ Rn,∀α ∈ Nn

0 ,∃N ∈ N such that

sup
x∈K

|Dαuε(x)| = O
(
ε−N

)
as ε → 0}

N (Rn) =
{
(uε)ε>0 ⊂ E (Rn) /∀K ⊂⊂ Rn,∀α ∈ Nn

0 ,∀p ∈ N such that

sup
x∈K

|Dαuε(x)| = O (εp) as ε → 0}

The Colombeau algebra is defined as a factor set G (Rn) = EM (Rn) /N (Rn) , where the elements of
the set EM (Rn) are moderate while the elements of the set N (Rn) are negligible.

We denote: [7]

Ee
M(R) =

{
(uε)ε>0 ⊂ E(R)/∀K ⊂⊂ R, ∀α ∈ R+ ∪ {0},∃N ∈ N such that

sup
x∈K

|Dαuε(x)| = O
(
ε−N

)
as ε → 0}

N e(R) =
{
(uε)ε>0 ⊂ E(R)/∀K ⊂⊂ R,∀α ∈ R+ ∪ {0},∀p ∈ N such that

sup
x∈K

|Dαuε(x)| = O (εp) as ε → 0} .

The extended Colombeau algebra of generalized functions is the factor set:

Ge (R) = Ee
M (R) /N e (R) .
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A fractional integral is defined by: [8]

Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ α > 0.

The fractional derivative of order α > 0 in the Caputo sense is defined by [8],

Dαf(t) =
1

Γ(m− α)

∫ t

0

f (m)(τ)dτ

(t− τ)α+1−m
, m− 1 < α < m.

Let (fε) be a representative of F ∈ G, then

Dαfε(t) =
1

Γ(1− α)

∫ t

0

f ′(τ)

(t− τ)α
dτ 0 < α < 1

sup
t∈[0,T ]

|Dαfε(t)| ≤
1

Γ(1− α)
sup

t∈[0,T ]

∣∣∣∣∫ t

0

f ′(τ)dτ

(t− τ)α

∣∣∣∣
≤ 1

Γ(1− α)
∥f ′∥L∞([0,T ]) sup

t∈[0,T ]

∫ t

0

dτ

(t− τ)α
dτ

≤ 1

Γ(1− α)
ε−N T 1−α

1− α

≤ Cα,T ε
−N .

In general, from [8], for m− 1 < α < m, we have

sup
t∈[0,T ]

|Dαfε(t)| ≤
1

Γ(m− α)
sup

t∈[0,T ]

∫ t

0

∣∣f (m)(τ)
∣∣

(t− τ)α+1−m
dτ

≤ 1

Γ(m− α)

∥∥f (m)
∥∥
L∞([0,T ])

sup
t∈[0,T ]

∫ t

0

1

(t− τ)α+1−m
dτ

≤ 1

Γ(m− α)
ε−N Tm−α

m− α

≤ Cα,T ε
−N .

The constant Cα,T depends on two parameters α and T .

Definition 1. [2] Let G1, G2 ∈ G (Rn) and G1,ε, G2,ε their representatives respectively. We say that
G1, G2 ∈ G (Rn) are associated, and we write G1 ≈ G2, if for every φ ∈ D (Rn),

lim
ε→0

∫
Rn

(G1,ε −G2,ε)φ(x)dx = 0.

3. Existence and uniqueness

Consider the nonlinear Schrödinger equation with singular potential and initial data:{
1
i
∂tu(t, x)−∆u(t, x) + v(x)u(t, x) = 0

v(x) = δ(x), u(0, x) = δ(x)
(3.1)

For the Dirac measure, we will apply regularization:

vε(x) = δε(x) = (ϕε(x)) = | ln ε|cnϕ (x| ln ε|c) ; c > 0

x ∈ Rn, ϕ ∈ A1, ϕ(x) ≥ 0.

For the initial data, we use

u0,ε(x) = | ln ε|anϕ (x| ln ε|a) , a > 0, x ∈ Rn, ϕ ∈ A1, ϕ(x) ≥ 0.
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3.1. Existence and uniqueness in the Colombeau algebra

Theorem 1. The regularization of equation (3.1), defined as{
1
i
∂tuε(t, x)−∆uε(t, x) + vε(x)uε(t, x) = 0

vε(x) = δε(x), u0,ε(x) = δε(x)
(3.2)

where vε and u0,ε are regularized of v and u0, respectively. Then, the problem (3.2) has a unique
solution in G (R+ × Rn).

Proof . From [4], the integral solution of the equation (3.2) is

uε(t, x) =

∫
Rn

Sn(t, x− y)u0,ε(y)dy +

∫ t

0

∫
Rn

Sn(t− τ, x− y)vε(y)uε(τ, y)dydτ,

where Sn(t, x) is the heat kernel. Then

∥uε(t, .)∥L∞(Rn) ≤ ∥Sn(t, x− .)∥L1 ∥u0,ε∥L∞(Rn) +
∫ t

0
∥Sn(t− τ, x− .)∥L1 ∥vε(.)∥L∞ ∥uε(τ, .)∥L∞(Rn) dτ

∥uε(t, .)∥L∞(Rn) ≤ C ∥u0,ε∥L∞(Rn) + C ∥vε(.)∥L∞(Rn)

∫ t

0
∥uε(τ, .)∥L∞(Rn) dτ.

By Gronwall inequality, we have

∥uε(t, .)∥L∞(Rn) ≤ C| ln ε|an exp
(
CT | ln ε|bn

)
Then there exists N > 0, such that

∥uε(t, .)∥L∞(Rn) ≤ Cε−N .

For the first derivative to xi, i ∈ {1, . . . , n}, we obtain

∂xi
uε =

∫
Rn Sn(t, x− y)∂yiu0,ε(y)dy +

∫ t

0

∫
Rn Sn(t− τ, x− y) (∂yivε(y)uε(τ, y) + vε(y)∂yiuε(τ, y)) dydτ

∥∂xi
uε(t, .)∥L∞(Rn) ≤ ∥Sn(t, x− .)∥L1 ∥∂yiu0,ε∥L∞(Rn) +

∫ t

0
∥Sn(t− τ, x− .)∥L1

×
(
∥∂yivε∥L∞(Rn) ∥uε∥L∞ + ∥vε∥L∞(Rn) ∥∂yiuε(τ, .)∥L∞(Rn)

)
dτ

∥∂xi
uε(t, .)∥L∞(Rn) ≤ C| ln ε|a(n+1) + C

∫ t

0

| ln ε|b(n+1)||uε||L∞ + | ln ε|bn||∂yiuε(τ, .)||L∞(Rn)dτ

∥∂xi
uε(t, .)∥L∞(Rn) ≤ C

(
| ln ε|a(n+1) + T | ln ε|b(n+1)||uε||L∞

)
+ C| ln ε|bn

∫ t

0

||∂yiuε(τ, .)||L∞(Rn)dτ.

By Gronwall inequality, we have:

∥∂xi
uε(t, .)∥L∞(Rn) ≤ C

(
| ln ε|a(n+1) + T | ln ε|b(n+1)||uε||L∞

)
exp

(
CT | ln ε|bn

)
.

By the previous step there exists N > 0, such that

∥∂xi
uε(t, .)∥L∞(Rn) ≤ Cε−N .

For the second derivative for yi, j ∈ {1, . . . , n}, we obtain

∂xi
∂xj

uε(t, x) =

∫
Rn

Sn(t, x− y)
(
∂yi∂yju0,ε(y)dy +

∫ t

0

∫
Rn

Sn(t− τ, x− y)
(
∂yi∂yjvε(y)uε(τ, y)
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+∂yjvε(y)∂yiuε(τ, y) + ∂yivε(y)∂yjuε(τ, y) + vε(y)∂yi∂yjuε(τ, y))dydτ.

By Gronwall inequality:∥∥∂xi
∂xj

uε(t, .)
∥∥
L∞(Rn)

≤ C(| ln ε|a(n+2) + | ln ε|b(n+1) ∥uε∥L∞ +| ln ε|b(n+1) ∥∂yiuε∥L∞

+| ln ε|b(n+1)||∂yjuε∥L∞) exp
(
CT | ln ε|bn

)
.

By the previous step there exists N > 0, such that∥∥∂xi
∂xj

uε(t, .)
∥∥
L∞(Rn)

≤ Cε−N .

For uniqueness.
Suppose that there exist two solutions u1,ε(t, .), u2,ε(t, .) to problem (3.2), then:

1

i
∂t (u1,ε(t, x)− u2,ε(t, x))−∆(u1,ε(t, x)− u2,ε(t, x)) + vε(x) (u1,ε(t, x)− u2,ε(t, x))

= Nε(t, x)u1,ε(0, x)− u2,ε(0, x) = N0,ε(x)

Then

u1,ε(t, x)−u2,ε(t, x) =

∫
Rn

Sn(t, x−y)N0,ε(y)dy+

∫ t

0

∫
Rn

Sn(t−τ, x−y)vε(y) (u1ε(τ, y)− u2ε(τ, y)) dydτ

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)Nε(τ, y)dydτ

∥u1,ε(t, .)− u2,ε(t, .)∥L∞ (Rn) ≤ ∥Sn(t, x− .)∥L1 ∥N0,ε(y)∥L∞(Rn)

+ ∥Sn(t, x− .)∥L1

∫ t

0

∥vε(.)∥L∞(Rn) ∥u1ε(τ, .)− u2ε(τ, .)∥L∞(Rn) dτ + ∥Sn(t, x− .)∥L1 ∥Nε∥L∞

∥u1,ε(t, .)− u2,ε(t, .)∥L∞(Rn) ≤ C
(
∥N0,ε(y)∥L∞(Rn) + ∥Nε∥L∞

)
+C ∥vε(·)∥L∞(Rn)

∫ t

0

∥u1ε(τ, .)− u2ε(τ, .)∥L∞(Rn) dτ

By Gronwall inequality:

∥u1,ε(t, .)− u2,ε(t, .)∥L∞(Rn) ≤ C
(
∥N0,ε(y)∥L∞(Rn) + ∥Nε∥L∞

)
× exp

(
CT ∥vε(.)∥L∞(Rn)

)
Then

∥u1,ε(t, .)− u2,ε(t, .)∥L∞(Rn) ≤ Cεq ∀q.

Then, the problem (3.2) has a unique solution in G (R+ × Rn). □
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3.2. Existence and uniqueness in the extension of Colombeau algebra

Theorem 2. The regularization of equation (3.1), defined as :{
1
i
∂tuε(t, x)−∆uε(t, x) + vε(x)uε(t, x) = 0

vε(x) = δε(x), u0,ε(x) = δε(x)
(3.3)

where vε and u0,ε are regularized of v and u0, respectively.
Then, the problem (3.3) has a unique solution in Ge (R+ × Rn).

Proof . We shall prove only the fractional part since the entire part is already proved in theorem
(1).
Consider the fractional derivative Dα; 0 < α < 1, without loss of generality. The same holds for
m− 1 < α < m; m ∈ N.
Take the fractional derivative to the spatial variable to equation (3.3):

Dα (uε(t, x)) =

∫
Rn

Sn(t, x− y)Dαu0,ε(y)dy +

∫ t

0

∫
Rn

Sn(t− τ, x− y)Dαvε(y)uε(τ, y)dydτ

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)vε(y)D
αuε(τ, y)dydτ

∥Dα (uε(t, .))∥L∞(Rn) ≤ ∥Sn(t, x− .)∥L1 ∥Dαu0,ε(.)∥L∞(Rn)

+ ∥Sn(t− τ, x− .)∥L1

∫ t

0

∥Dαvε(·)∥L∞(Rn) ∥uε(τ, .)∥L∞(Rn) dτ

+ ∥Sn(t− τ, x− .)∥L1

∫ t

0

∥vε(y)∥L∞(Rn) ∥D
αuε(τ, .)∥L∞(Rn) dτ

∥Dα (uε(t, ))∥L∞(Rn) ≤ C
(
∥Dαu0,ε(·)∥L∞(Rn) + T ∥Dαvε(·)∥L∞(Rn) ∥uε∥L∞

)
+C ∥vε(.)∥L∞(Rn)

∫ t

0

∥Dαuε(τ, )∥L∞(Rn) dτ.

By Gronwall inequality

∥Dα (uε(t, .))∥L∞(Rn) ≤ C
(
∥Dαu0,ε(·)∥L∞(Rn) + T ∥Dαvε(·)∥L∞(Rn) ∥uε∥L∞

)
× exp

(
CT ∥vε(·)∥L∞(Rn)

)
(3)

by theorem (1) and the estimate (3):

∥Dα (uε(t, ))∥L∞(Rn) ≤ C
(
Cα,T | ln ε|a(n+1) + TCα,T | ln ε|b(n+1)||uε||L∞

)
exp

(
CT ||vε(·)∥L∞(Rn)

)
Then there exists N > 0, such that:

∥Dα (uε(t, .))∥L∞(Rn) ≤ Cε−N

It follows moderation for the fractional derivatives in the space Ge (R+ × Rn).



Generalized solution of Schrödinger equation with singular potential and initial data 3099

For uniqueness,
Take Dα,0 < α < 1.
Dα (u1,ε(t, x)− u2,ε(t, x)) =

∫
Rn Sn(t, x− y)DαN0,ε(y)dy

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)Dαvε(y) (u1ε(τ, y)− u2ε(τ, y)) dydτ

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)vε(y)D
α (u1ε(τ, y)− u2ε(τ, y)) dydτ

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)DαNε(τ, y)dydτ

+ ∥Sn(t− τ, x− .)∥L1

∫ t

0

∥DαNε(τ, .)∥L∞(Rn) dτ

||Dα (u1,ε(t, .)− u2,ε(t, .)) ||L∞(Rn) ≤ C||N0,ε||L∞(Rn)

+T ||Dαvε(.)||L∞(Rn)||u1ε − u2ε||L∞dτ + ||DαNε||L∞

+C ∥vε∥L∞(Rn)

∫ t

0

∥Dα (u1ε(τ, .)− u2ε(τ, .))∥L∞(Rn) dτ

By Gronwall inequality

∥Dα (u1,ε(t, .)− u2,ε(t, .))∥L∞ ≤ C
(
N0,ε

∥∥
L∞(Rn) + T

∥∥Dαvε(.)
∥∥
L∞(Rn)

∥∥u1ε − u2ε ∥L∞dτ+∥DαNε∥L∞
)

× exp
(
CT ∥vε∥L∞(Rn)

)
By theorem (1)

Dα (u1,ε(t, .)− u2,ε(t, .)) ∥L∞(Rn) ≤ Cεq, ∀q

□

4. Association

Let w1 be a solution to the problem:{
1
i
∂tw1(t, x)−△w1(t, x) = 0

w1(0, x) = δ(x)

And w2 be a solution of the problem:{
1
i
∂tw2(t, x)−∆w2(t, x) + v(x)w2,ε(t, x) = 0

v(x) = δ(x), w2(0, x) = 0

Proposition 1. The generalized solution u of the problem (3.2) is associated with w1 + w2.
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Proof . Let w1,ε be the classical solution to:

1
i
∂tw1,ε(t, x)−∆w1,ε(t, x) = 0

w1,ε(0, x) = δε(x)

And w2,ε the classical solution to:

1

i
∂tw2,ε(t, x)−∆w2(t, x) + vε(x) (w2,ε(t, x) +m(t, x)) = 0

vε(x) = δ(x), w2,ε(0, x) = 0.

Then

1

i
∂t (uε − w1,ε − w2,ε)−∆(uε(t, x)− w1,ε(t, x)− w2,ε(t, x)) + vε (uε(t, x)− w2,ε(t, x)−m(t, x)) = 0

uε(0, x)− w1,ε(0, x)− w2,ε(0, x) = 0

(uε(t, x)− w1,ε(t, x)− w2,ε(t, x)) =

∫ t

0

∫
Rn

Sn(t− τ, x− y)vε(y)(uε(τ, y)− w2,ε(τ, y)−m(τ, y))dydτ

(uε(t, x)− w1,ε(t, x)− w2,ε(t, x)) =

∫ t

0

∫
Rn

Sn(t−τ, x−y)vε(y) (uε(τ, y)− w1,ε(τ, y)− w2,ε(τ, y)) dydτ

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)vε(y) (w1,ε(τ, y)−m(τ, y)) dydτ

||uε(t, .)−w1,ε(t, .)−w2,ε(t, .)||L∞(Rn) ≤
∫ t

0
||Sn(t−τ, x− .)||L1 ||vε(·)||L∞(Rn)||(w1,ε(τ, .)−m(τ, .))||L∞dτ

+

∫ t

0

||Sn(t− τ, x− .)||L1||vε(.)||L∞(Rn)||uε(τ, .)− w1,ε(τ, .)− w2,ε(τ, .)||L∞(Rn)dτ

||uε(t, .)− w1,ε(t, .)− w2,ε(t, .)||L∞(Rn) ≤ C||vε(.)||L∞(Rn)

∫ t

0
||w1,ε(τ,.)−m(τ, .)||L∞(Rn)dτ

+C||vε(.)||L∞(Rn)

∫ t

0

||uε(τ, .)− w1,ε(τ,.)− w2,ε(τ, .)||L∞(Rn)dτ

By Gronwall inequality

∥uε(t, .)− w1,ε(t, .)− w2,ε(t, .)∥L∞(Rn) ≤
[
C ∥vε(·)∥L∞(Rn)

∫ t

0
∥(w1,ε(τ, .)−m(τ, .))∥L∞(Rn) dτ

]
× exp

(
CT ∥vε(·)∥L∞(Rn)

)
By applying the limit, we have

u ≈ w1 + w2

This completes the proof of the proposition. □
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5. Conclusion:

In this work, we have transformed the problem of Schrödinger in colombeau algebra and proved the
existence and uniqueness of the solution to this problem. This is significant because its a fundamental
equation in quantum mechanics. It describes the evolution over time of a massive non relativistic
particle, and thus fulfils the same role as the fundamental relation of dynamics in classical mechanics.

As an example of what we demonstrated earlier, we will look at the description of electronic
transport in semiconductor devices of nanometric size (MOSFET, RTD, waveguides, ...). These
devices are the essential components of today’s electronics industry. Because of their small size,
reaching nanometric scales, quantitative effects begin to play an important role, such as effect,
interference, quantification, etc. Classical models (Newton’s equation among others) are no longer
valid and the quantum approach (Schrödinger’s equation) becomes necessary. In this approach,
Especially when applying very high potential from what we know (v=δ), the evolution of particles
(electrons or protons) in an electric field can be written using the ”Schödinger equation with singular
potential and initial data”.
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