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Study connection between the Laurent series and
residues on the A(z) analytic functions
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Abstract

In this paper, we obtain a formula for residues and prove Laurent expansion and expansion to Taylor
series for A(z)-analytic functions.
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1. Introduction

Let A(z) be an antianalytic function, i.e., dA/0z = 0 in the domain D C C; moreover, let
|A(2)| < ¢ < 1forall z € D,cis constant. The function f(z) is said to be A(z)-analytic in the
domain D if for any z € D, the following equality holds:

of _ of
We denote by O4(D) the class of all A(z)-analytic functions defined in the domain D. Since the
antianalytic function is infinitely smooth, O4(D)C*(D) (see [§]).

We will now study the behavior of f (z) at an isolated singularity zo by expanding (sound familiar)
This series will not in general be a Taylor series.

ap + ap (Z—Zo)+a2 (2—20)2+"'
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because Taylor series yield analytic functions , where as f (z) is not analytic at a pole or essential
singularity .The series we will obtain will involve negative (as well as positive ) powers of z — zy . A
series consisting of negative powers looks :

by by by

bo + —- +ob———— 4,  kEN,
Cimn (r-a) (2 = 20)"

Theorem 1.1 (Analogue to the Cauchy Theorem). If f € O4(D)NC(D),

(2)(dz + A(z)dz) = 0. (1.2)
oD
Theorem 1.2 (Laurent’s growth). Let f (z) be A(z) — analytic in the ring of lemnniscate : f(z) €
Oa (L(a,R)\L(a, r)) , » < R . Then f(z) will be expanded to the Laurent series in the ring 1 <
p < R:

F2) =) e, (1.3)
k=—o00

where the coefficients of the series are determined by the formula

1 £ (©)
— —=(d A d k=
o /a - (df+ A(€)de), k=0,+1, +2,

" 2mi £ )"
The series (1.3)) converges uniformly inside of the ring
L(a,R)\ L(a,r) ={z€D:r< |V (z,a)]<R}.

Example 1.3. Find the Laurent expansion of the function’s two nonzero terms. f(z) = tanz about
z=7.
Let us call z = 5 +u .
. _ osin(§+u) __cosu
Solution. f(z) = s (b = sinu

by using sin (A + B) =sin A cos B + cos Asin B and cos (A + B) = cos Acos B — sin Asin B
This can be expanded using the Taylor series for sinu and cosu Where

oo _1j 2j+1
sinu:Z—( )u

= (27 4+ 1)!
= ()u
cosu = ,
;O (27)!
u2 u2
f(z):_(l_i—{—.“) :_1(1_74_...)
us w2
(u—g-l-"') u( _§_|_...)
The numerator can be increased by using Z?io W o= ﬁ , for |z| < 1. To obtain, for the first two
nonzero terms
1 u? u?
f(z):—a(l—§+---)(u+§+---)
1 u? 1 (z—12)
(1 — ) = — 2 L
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Example 1.4. g(z) = (z2_1+1) convergent in a perforated disc around the pole in the Laurent series
20 — 1.
Solution. We note first that g(z) = ——— We wish to expand this in positive and negative powers

Ge—0)(z10).

of z—1 . It makes sense to expand the factor ﬁ in powers of z—1 and then multiply this expansion

by ﬁ to get the expansion for g(z) .

1

Usually , we alter the geometric series for = with a shrewdly chosen 7. Involving —i . We
observe that

1 1 1 1
= = — @0 —
i 2+ (2—1) 20 1+ (5¢m
—1 1 —1 7 1 N 2 3
:2_2‘1_(21' —2—2(14—5(2—@)*?(2—2)—ﬁ(z—z)jt )
)(z—1)
—i— " n
Y Z (5) (z —1)
n=0
It follows that
1 1 NN _—
0= e ey
2. Residues of A(z) — analytic function
Let f(z) be an A(z) — analytic function in D\{ a1, as, ---, a, } and continuous
on 0D, where ay, as, -+, a, are isolated singular points . Then there exists a number r > 0 Such

that
L(ag, ) NL (a1, r)= @& for K # 1.

Assume the following relationships are true:
Gr={zeD: |z— & >r forall £ €0D }; UL(ak, r)C Gy
k=1

Where 0G, is an arbitrary piecewise — smooth closed contour lying in the domain D, and containing
the points a1, as, -+, a, inside . Since the function f(z) is A(z) — analytic at each point of the
closed domain bounded by the contour 0G, U »",_, 0L (ai , r ), then by the Cauchy theorem we

have
wlz)= wl(z 2.1
[ w(z) 1?:1 7{(%( )f(f) (2) (2.1)

oG

ag , T
where (z) =dz+ A(z)dz .

Definition 2.1. The residue of an A(z) — analytic function f(z) at a point a is the value of the
integral of the function f(z) taken over a sufficiently small A(z) — lemniscate L(a , r) , divided by

2m 28 (Z> = ﬁ faL(ak o )f(f)w (Z)

Theorem 2.2 (Analogue to the Cauchy residue theorem). Let A(z) be analytic everywhere
in a domain for a function f(z).G C D except for an isolated set of singular points and let its
boundary OG do not contain singular points. Then ¢, f (§)w(z) =2miy ;_resqa z = apf (2).
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Proof .The proof of this theorem follows from the formula (1.2)) and Definition ([l

Example 2.3. We fir £ € D and consider the kernel K, (§,z) = ;T'Z W Then
0 1
resal, (§,2) =1 n7l, (2.2)
zZ=a 1, n=0.

Assume that at the point z = a, the function f(z) can be expanded in a Laurent series:

Z C’k<z—a+/

k=—o00 (a,2)

k

de) (2.3)

Theorem 2.4. In an isolated singular Point, the residue of an A(z) - analytic function f(z). a€ C is
equal to the coefficient c_y of the minus first degree of ¥(z , a ) in its Laurent expansion in a
neighborhood of the A(z) — lemniscat L(a , ) at the point a :

resaf (2) = c_1. (2.4)

zZ=a

Proof . Equality (2.3) is obtained from Eq. (2.4 by integration over a lemniscat dL(a , r) using
B2 -

resaf (5) = = > ai(s-at [ A ) wie

zZ=a 27TZ BL(a,r) szoo

—_— k
1
= — C’kf <z—a+/ A(T)dT) w(§)
2 kz_oo AL (a,r) 7(a,2)

—27TZ‘C,1 = C_1.
2mi

O

Definition 2.5. A pomt z =a A(z) — analytic function f(z) of order n is referred to as a zero. if
f(z)z(z—a—l—f )d’l’) .9(z), where g(a) # 0 and g (2) € O4 (D).

Theorem 2.6. If the A(z) — analytic function (z) has a point a that is not Identically equal to
zero in any nez’ghborhood of L(a , r ) , then there exists a natural number n such that f(z) =

(z —a+ f(az )dT) ¢ (z), where the function p(z) is A(z) — analytic at the point a and is

nonzero in some neighborhood of this point .

Remark 2.7. An isolated singular point a€ C of the function f(z) is removable if and only if the
Laurent expansion of f(z ) in a neighborhood of a does not contain the principal part , i.e. f(z) =

ZZioCk< —a+ [0 )dT)k~

Definition 2.8. A point z =a z's called a pole of an A(z) — analytic function f(z) of order n if the
point a is a zero of the function f ) of order n .
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Theorem 2.9. A pole is an isolated singular point a € C of the A(z) — analytic function f(z) if and
only if the primary component of the Laurent expansion of the A(z) — analytic function f(z) in the
vicinity of the point a contains only a finite(and positive) number of nonzero terms.i.e.

o0 —_——— k
:ch(Z—CL+/ A(T)dT) , n>1
’Y(Q,Z)

k=—n

Proof .
= Let a be pole ; since lim,_,, f (2) = 0o , there exists a punctured neighborhood of the point a
where f(z) is A(z) — analytic and nonzero. In this neighborhood the function g(z) = ﬁ is A(z) -

function analytic and there exists the lim,_,, g (z) = 0. Therefore , a is a removable point (zero) of
the function g(z) and in the neighborhood L(a , r) the following expansion holds :

z) = gbk (Z_G+L<a,z>md7)k

Then in the same neighborhood we obtain the identity
1 1 1

f&) == ST S
g \= (z—a—i—f( )dT) by, +bn+1<z—a+f(az )dT) e
The second factor is A(z)— analytic function at the point , and hence it admits a Taylor expansion ,

we obtain i
Z Ck <z—a+/ A(T)dT) :
(a,2)

k=—n

This is the Laurent expansion of f (z) in the neighborhood L (a , r )\{a} of the point , and we see
that its principal part contains a finite number of terms.

<= Let in a the neighborhood (a , 7 )\a, f(z) be represented by the Laurent expansion whose
principal part contains a finite number of terms and let ¢, # 0.
Then the function f (z) and g(z) = ¥(z, a)" e f (z) are A(z) — analytic in this neighborhood. The
function ¢(z) in the neighborhood considered can represented as follows:

—_—\ 2
9(2) = con+ Conpa (z —a +/ A (T)dr) + Conta (z —a+ A (r)dT) -
v(a,z) v(a,2)
This equality shows that a is a removable point and there exists

limg(z) = c_, # 0.
z—a

Then the function f(z) = ¢(Z (Z()l)ntends to infinity as z — a, i.e. , a is a pole . The theorem is proved.
[

Definition 2.10. If there is a punctured neighborhood of the lemniscate of a point a € C, it is called
an isolated singular point of the function f(z). , i.e. (the set 0 < | (z, a) | <r ) if the point a is

finite , or a set R < ‘ z+ fo dt‘ < o0, A=const , |A| <1 ifa = oo in which the function
f(z) is A(z) — analytic .
Definition 2.11. An isolated singular point a of a function f (z) is called :

(a) a pole if lim,_,, f (2) = o0 ;
(b) An essential singularity if the limit of f (2) as z — a does not exist .
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3. What is the formula for calculating residues?

We illustrate some methods by examples.

First method Use the Laurent Expansion.

Example 3.1. FEvaluate I = fCO exdz Where Cy is the unit circle |z = 1

Solution. The function f(z) = ez is analytic for at z # 0 inside Cy and has the Following
Laurent expansion about z = 0
1 1 1

1
(14— 4~ 4.
‘ ( +z+2!22+3!z3+ )

Sf) that res (f ;0 ) = the coefficient of i . Of course zy = 0 is the only isolated singularity of
ez inC .
By residue theorem I = 27i.

Second method Simple poles
A pole zy of f(z) is said to be simple if its order is , that is , if f(z) may be expressed as f(z)
=Lttt (z— 20)+--

2—20

mmf@%:mmﬂ@(z—a+l@@AﬁM0] (3.1)

z=a z—a

Example 3.2. FEvaluate: 02# cos20 - jp.

5+4 cos 6
Solution. Let
o o 20 20
20 1
JZ/EJﬁ——w:—/ e
o D+4cosd 2 Jo 5+ 2(e? + e
write
- d
z=¢e? dh = —Z
2

1 / (22 +%)  dz
c5+2(z+1) iz

1 (2*+1)

- z

2i Jo 22(222+5242)

1/ 241
= — dz
2i Jo 22(224+1)(2+2)

Where C denotes the unit circle |z| = 1, the pole of f (z) is 2 22+ 1)(2+2) =0 = z =

0,22—%,2:—2

The poles within the contour C are a simple pole at z = —% , and a pole of order two at z =0
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Now , Residue at z = —% is by (3.1))

| . 1 2t 41

1 | 2 -

2d 2)2022(22+1)(z+2)
11 (=)'

= —.—.
2 % () (4 +2)

Clgg +1 17

4l e 3 24i

. . . . 4 .
And residue at z = 0 s coefficient of% mn %WM , where z 1s small

Now ,
1 241 LY (L2 - 2 -
202222+ 1) (2 +2)  4i 24 2z 2
1 1 1 2
= — (1+=2) (1= = ) (122
4i ( +z4)( 2z * )( z * )

The coefficient of% 15 easily seen to be % (_75) , e, _—.5 Hence by Cauchy’s residue theorem

17 -5
[—QWZ.ZTGSA— 21t ® {24 +(§>}:g

Theorem 3.3. A nth-order pole of an A(z)-analytic function f(z) is a point z=a. The following
formula applies in this case:

resaf (2) = —— Tim 2 (£ (2) (z—a+ /7 (avz)A(T)dT)n]. (3.2)

z=a (n 1)| zoa 82” !

Proof . Due to Theorem 2.9, an A(z)-analytic function f(z) has the form

Z Ch <z—a+/(az)A(T)dT)k.

k=—n

Multiplying both sides of this equation by (z —a+ f )d7'> we obtain

f(z) (z—a+ / ( )Wdr> = CptCnnt(z, a) 4+ (2, )" 40 (2, a)"h(2). (3.3)

Here h(z) = 12, Crey(, ayt- We take the partial derivative of the function ¢ (2, a)

a* ok
0z 0z
Using this equation, from ([3.3)) we obtain

= kyFt = ky* L (3.4)

ToU @ (smat [ AW) = -l v 0 (0

aznfl

mie) =3 P ot
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Passing to the limit as z— a in Eq. (3.5)), we obtain

resaf (z) = L im o [f (2) (z—a—l— L (a’Z)A(T)dTY].

2=a (n— 1)l 2=a 0zn—1

O

Example 3.4. Evaluate: fo% e % cos (nf + sin ) df. When n is a positive integer.
Solution. Consider the integral

2
I = / e”“*Ycos (nh + sin @) —i sin (nf + sin ) |do
" 20
_ / e~ cos 067i(n9+sin 9)d9
0

2T ] )
_ / 6_(COS 0+sin 9)6—zn6d9
0

2m o )
:/ e e dp
0
/ ( 1 ) dz
= (& o — —_—
c 2" ) oz

Writing ¢ = z , df = %. Where C denotes the unit circle |z| = 1.
1 e ?
= ;/C ZanZ = /c f(z)dz

n +
= 2mi Z resay (By Cauchy's residue theorem ).
k=1
Obviously the only pole of f (z) within the contour Cis z =0 of order n+1. At z =0, the residue
= [ ()], = = S

(i_(:l;! =2Z(-1)" e

—z

where f (2) = 5t

S =21 e

I
—~
|
—_
~—

3

2w
/ e” % cos (nh + sin @) —i sin (nf + sin6) |do

Equating real parts, we have

o —cosf : 2m n
e cos (nf +sinf)df = — (—1)".
0 n!

4. Conclusions

1. An isolated singular point a€ C of an A(z)-analytic function f(z) is a pole If and only if the
principal part of Laurent expansion of the A(z)-analytic function f(z) in the neighborhood of
the point a contains only a finite (and Positive ) number of nonzero terms, i.e.

f(2)=) a (z—a+/7(a7z)mdr)k.

k=0
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2. An isolated singular point a€ C of an A(z)-analytic function f(z) is removable if and only if
the Laurent expansion of f(z) in a neighborhood of a dose not contain the principal part, i.e.

f(z) = ick <z —a+ /Wm mdf)k.

k=0

3. Prove an analogue to the Cauchy residue theorem.
4. Study A(z)-analytical functions in one particular case more often, when the function A(z) is
an antianalytic function in the considered domain
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