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Abstract

This research aims to estimate the partial linear single index model by using minimum average
variance estimation (MAVE) and two stage estimation Procedures. We analyzed the creatinine ratio
in blood data in order to determine the effects of different variables on renal failure. Mean squared
error criterion (MSE) was used to compare between these methods, with reference to the use of the
rule of thumb (ROT) method to estimate the smoothing parameter.
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1. Introduction

The use of semiparametric methods has appeared in many fields of research, especially in medical
studies because of its flexibility in combining linear models and nonparametric regression models.
Although there are many advantages to both models, whether linear or non-parametric, but we note
that the non-parametric model suffering from the problem of the curse of dimensionality. So in order
to get rid of this problem, the single index model can be used to reduce the dimensions by assuming
the effect of the explanatory variables X’s can be combined into a single index through using an
unknown link function g. The term of semi-parametric appeared for the first time by Santner,
Cail & Brown, 1980 in the field of Biometric and also by Whitehead, 1981 and called it as partially
parametric [14]. While Millimet, List & Stengos, 2003 studied the problem of air pollution in the USA
assuming there are no restrictions on function formation and showing the impact of air pollution on
the economy of the USA, they made a comparison between a parametric and semiparametric models,
so that the results proved the semiparametric model is the best and most flexible in representing the
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data [2]. Wang et al., in [13] studied partial linear single index model estimation and they proposed
two-stage estimation to estimate the link function of the single index and the parameters in the single
index. Su and Zhang in [11] highlighted the recent developments on estimate the variable selection for
nonparametric and semiparametric regression models, they explained SCAD and LASSO methods.
Hmood, in [9] studied characteristics of single index semiparametric model (SSIM). He was used both
of local linear regression and Nadaraya-Watson estimators for estimating nonparametric part.

Hmood and Tariq in [10] proposed SCAD-MAVE and ALASSO-MAVE methods beside to use
some semiparametric methods that based on different function penalties for estimating and selecting
variables in a single index model including SCAD-NPLS method. Although the single index model
plays an important role in data analysis and dimension reduction, it may not be sufficient to explain
the variation of responses through the covariates (X), therefore, the partial linear single-index model
can be used instead for the purpose of covering those differences and taking them into account and
then representing the phenomenon better. The PLSIM first studied by Carroll et al., in [17] as in
the following form:

Y=αT
0 Z+g

(
βT
0 X

)
+ε, (1.1)

where:
X ∈RPand Z ∈Rq are covariates with dimensions p and q respectively.
g(.): an unknown link function for the single index.
ε: is the error term with E (ε) = 0 and 0 <V ar (ε)σ2 < ∞.
α0: Unknown parameters vector of degree (q × 1) for the parametric part.
β0: Unknown parameters vector of degree (p× 1) for the nonparametric part.
We further assume that ∥β∥ = 1 and β1 > 0 for model identification [9].

2. The aim of the article

Nonparametric methods have a curse of dimensional problem that occurs when the number of
explanatory variables increases, which leads to low accuracy of estimates, which forces to resort to use
semiparametric methods to preserve the characteristics of some variables with parametric behavior
and take into account the nonlinear behavior of other variables and then reduce the dimensions.

3. Estimation methods

3.1. Minimum Average Variance Estimation (MAVE)

Xiaa and Härdle in [17] proposed a general method for estimating partial linear single-index
models called (MAVE) including the single index model for estimating the parameter vector and
the link function at the same time. This method has an important advantage, which is easy to
implement. Estimation of semiparametric models and especially those with a single index requires
a complex solution to the problem of nonlinear reduction and method (MAVE) provides a simple
method for computation through local linear approximation [4, 15, 16].

The basic algorithm for estimating parameters in [17] is based on:

Y=αT
0 Z+g

(
βT
0 X

)
+ε.

By satisfying βTβ = 1 and conditioning on U = βTX, we have

(α0, β0) = arg min︸︷︷︸
α,β

E[ Y −
(
αTZ + g

(
βTX

))
]2 = arg min︸︷︷︸

α,β

EUσ
2
α,β(U), (3.1)
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where
σ2
α,β(U) =E[ Y −

(
αTZ + g (U)

)
| βTX = U ]2.

It follows that
E [Y −−(αTZ+ g (βTX)) ]

2
= EU σ2

α,β (βTX).

Let {(Xi, Zi, Yi), i = 1, 2,. . . , n} be a sample from (X,Z, Y ), equation (3.1) can be approximated
by the Taylor’s expansion, so for Xi close to x, we have the following local linear approximation from
[12]:

Yi − αT
0 Z − g

(
βT
0 Xi

)
≈ Yi − αT

0 Zi − g
(
βT
0 X

)
− ǵ

(
βT
0 X

)
XT

i0β0

Xi0 = Xi − x0.

Following the idea of local linear smoothing [3], we may estimate σ2
α,β (βTX) by:

σ̂2
α,β

(
βTX

)
= min︸︷︷︸

(a,b)

n∑
i=1

({Yi − αTZi − a− bXT
i0β}

2Wi0) (3.2)

a = g
(
βT
0 X

)
, b = g′

(
βT
0 X

)
and Wi0 = 0, i = 1, 2, . . . n are some weights such that

∑n
i=1 Wi0 = 1

often centering at x0. The MAVE procedure is to minimize:

1

n

n∑
j=1

(G(βTXj)In(Xj)
n∑

i=1

({Yi − αTZi − aj − bjX
T
ijβ}

2Wij)) (3.3)

Xij = Xi −Xj

Wij: represents the weight dependent on the distance between Xi, Xj .

Wij = K1(Xj)/
n∑

l=1

K1(Xj)

K1 (Xj) = h−1K1

(
Xij

h

)
,

h: denote to the bandwidth and can be selected by rule of the thumb method [5] according to
the following formula:

ĥopt = C (K)

[
σ2

∫
W (x) d(x)∑n

j=1 (m̂
′′(XJ))

2W (x)

]1/5

.

C (K): a constant value that depends on the type of Kernel used.
m′′(x) : The second derivative of the regression function.
W ≥ 0 : Weight function, such that W ij → 0 if Xi −Xj → 0.
With respect to (aj, dj) and (β, α), G() is another weight function that controls the contribution

of (Xi,Zi, Yi ) to the estimation of (β, α) .
In (.): refers to the index function that smooth and trims data from outliers [8], such that:

In(x) =

{
1 if 1

n

∑n
l=1 k1(x) > c0

0 otherwise
, c0 > 0 is constant (3.4)
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Then (
aj
bj

)
=

{
n∑

i=1

Wij

(
1

XT
ijβ

)(
1

XT
ijβ

)T
}−1 n∑

i=1

Wij

(
1

XT
ijβ

)(
Yi − αTZi

)
. (3.5)

(
α
β

)
=

{
n∑

j=1

G
(
βTXj

)
In (Xj)

n∑
i=1

Wij

(
Zi

bjXij

)(
Zi

bjXij

)T
}−1

×
n∑

j=1

G
(
βTXj

)
In (Xj)

n∑
i=1

Wij

(
Zi

bjXij

)
(Yi − aj). (3.6)

We need to use two kernel functions K1 (.) , K2(.) that may be equal or different, K1 (.) = K2(.)

or K1 (.) ̸= K2 (.) [7]. W
β
ij =

K2(βTXj)∑n
l=1 K2(βTXj)

is the kernel weights for single index

In (x) =

{
1, f̂β(β

TX) > c0
0, otherwise

(3.7)

Given (aj, bj) we have from minimizing (3.3), where it is a solution to the problem of weighted least
squares by fixing (aj, bj), j = 1, 2, . . . , n. Add to (β, α) and by iterating between equationsv(3.5),(3.6)

given (β, α) [12]. It can also be estimated g
(
βTXj

)
by the solution of aj in (3.5) to get an estimate

ĝ
(
βTXj

)
. This method estimates all parameters and the nonparametric function by minimizing the

loss function. [17]

3.2. A two- stage estimation for a partial linear single-index model

This method was suggested by Wang et al. in [13] to estimate the link function and parame-
ter vector of the single index model. Constrained estimating equation leads to an asymptotically
more active estimator than found estimators in the sense that it is of a smaller limiting variance,
the estimator of the nonparametric link function realizes best convergence rates and the structural
error variance is obtained. In addition, the results ease the construction of confidence regions and
hypothesis testing for the unknown parameters. This method does not require any repetition and
some indicators are based on X to explain Z.

{(Xi, Yi, Zi); i = 1, 2, . . . , n } denote to the independent and symmetrically distributed variables.
In equation (1.1), the estimation process takes place in two stages, that is, Z can be obtained from
one indicator of X.

Z = φ
(
XTβz

)
+ η (3.8)

φ : is an unknown function from q× 1.
βz : is an orthogonal matrix, ∥βz∥ = 1 ,βz positive first component for model identification.
η : has mean zero and is independent of X with the resulting errors (residuals):

ηi = Zi − φ(XT
i βz).

To estimate the link function we need firstly to estimate βz and then estimate φ to get the
residuals, βz is estimated using general least squares by βZ = (XTV −1X)

−1
XTV −1Z , V refers to

variance matrix.
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Also, the unknown link function φ in (3.8) can be estimated by using local linear smoother in [9],
so that the resulting estimator is defined as:

φ̂
(
XT β̂z

)
=

n∑
i=1

Wni

(
XT β̂z

)
Zi

the residual η hence becomes, η̂i = Zi − ∅̂(XT
i β̂z). It is possible to use a least squares approach to

estimate α0. Then
α̂ = (Z̃T Z̃)−1Z̃T Ỹ ,

where Ỹ = Z − φ̂(XT β̂z) using the definition of residuals. The conditional expectation functions
are as follows:

g1 (t) = E
(
Y

∣∣ XTβ0 = t
)
, g2 (t) = E

(
Z

∣∣ XTβ0 = t
)
,

so that

ĝ1

(
t; β̂0

)
=

n∑
i=1

Wni

(
t; β̂0

)
Yi

ĝ2

(
t; β̂0

)
=

n∑
i=1

Wni

(
t; β̂0

)
Zi.

We suppose that (â) is a solution to the weighted least square problem [1, 6].

ĝ (x)=â =

∑n
i=1 WiYi∑n
i=1 Wi

. (3.9)

Assuming that the parameter vector B is known, the nonparametric estimator for the function
W (t; β) is

Wni (t; β) =
Kh

(
XT

i β − t
)
[Sn,2 (t; β, h)−

(
XT

i β − t
)
Sn,1 (t; β, h)]

Sn,0 (t; β, h)Sn,2 (t; β, h)− S2
n,1 (t; β, h)

. (3.10)

W̃ni (t; β) =
Kh1

(
XT

i β − t
)
[
(
XT

i β − t
)
Sn,0 (t; β, h1)− Sn,1 (t; β, h1)]

Sn,0 (t; β, h1)Sn,2 (t; β, h1)− S2
n,1 (t; β, h1)

(3.11)

Sn,l (t; β, h) =
1

n

n∑
i=1

(
XT

i β − t
)l
Kh

(
XT

i β − t
)
, l = 0, 1, 2

The idea of local linear smoothing through smoothing Yi−ZT
i
̂́a0 versus XT

i
̂̂a0, g (.) , g′(.), respec-

tively, are estimated according to the following formulas

ĝ (t; β, α) =
n∑

i=1

Wni (t, β)
(
Yi − ZT

i α
)
, (3.12)

and

ĝ ′ (t; β, α) =
n∑

i=1

W̃ni (t, β)
(
Yi − ZT

i α
)
. (3.13)
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The idea of local linear smoothing to reduce the sum of the squares of error

n∑
i=1

[Yi − ZT
i α− ĝ(XT

i β̂0;β̂0, α)]
2. (3.14)

The estimate for ̂̂a0 is used to update the estimate of ̂́a0* and has been repeated more than one
time to reach out to the desired extent. The resulting partial regression estimator is

̂́a∗0= (Z̃TZ̃)−1Z̃TY∗∗ (3.15)

Y∗∗
i =Yi−ĝ1(X

T
i
̂̂a0; ̂̂a0)

Z̃i=Zi−ĝ2(X
T
i
̂̂a0; ̂̂a0).

After updating the estimated value of ̂́a0* and calculating the new residuals (Y−ZT̂́a∗) the esti-

mated value of â∗0 is updated. The obtained estimations ̂̂a∗0, ̂́a∗0 are used to update the estimate of the
link function g. According to the following equation:

ĝ∗ (t) =
n∑

i=1

Wni

(
t; β̂

)(
Yi − ZT

i
̂́a). (3.16)

4. Application

In this part, we conduct an applied study of the factors affecting renal failure for a sample of 100
patients of different ages, the data collected from the Department of Planning in Iraqi Ministry of
Health. Our aim is to identify the most important variables affecting on renal disease through the
semiparametric estimation methods. We will deal with the calculation of the parametric component
and the nonparametric component of the single index model, as the parametric component includes
only the non-zero significant parameters of the parameter vector â, á with dimensions (p× 1) and
(q×1) respectively. The proposed model for the renal failure based on the most important factors or
variables that be used, as follows:

Yi = α1Zi1 + α2Zi2 + α3Zi3 + g (β1Xi1 + β2Xi2 + β3 X i3) + εi (4.1)

The variables that used in equation (4.1) refers to the following:
Yi: Creatinine.
Z1: Cumulative sugar.
Z2: Uric Acid.
Z3: blood Urea Level.
X1: Age of a person who suffers from kidney disease.
X2: Blood percentage of a sick person.
X3: triglycerides.
Through the real data and the adoption of the above model, the parameter vectors estimates for

the estimation methods were obtained, as shown in the below:
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Table 1: The estimated values of the parameter vector (β, α) and Mean Square error (MSE) using
MAVE and Two-Stage procedures

Method MAVE Two-Stage

β̂1 0.3805 0.0299

β̂2 0.3813 0.0567

β̂3 0.3803 -0.0010

α̂1 0.2563 0.0215

α̂2 0.2531 0.0040

α̂3 0.2531 0.0001

MSE 0.0429 0.7966

The results from table 1 show that MAVE method have the lowest MSE, hence is the best method, in
representing the function of renal failure, the following figures refers to a curve with real values com-
pared with the estimated values of the response variable by using MAVE and Two-stage procedures
respectively.

Figure 1: The real and estimated curves of the response variable by using MAVE method

Figure 2: The real and estimated curves of the response variable by using Two-stage method
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5. Conclusions

The results of the real data showed that the MAVE method is the best compared to the two-stage
estimation method because it gives the lowest MSE in the model estimation, and this means that
this method is able to represent the renal failure function.

It is also noted from the results that the values â1, â2, â3 for the first method have an equal effect
as á1, á2, á3 accordingly we conclude that there are similar effects of the explanatory variables on the
dependent variable (renal failure), which means an increase in the rate of the proportion of variables
which leads to an increase in the proportion of Creatinine in blood.
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