
Int. J. Nonlinear Anal. Appl. 13 (2022) 1, 3153-3168
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.6064

Jackknifed Liu-type estimator in the
Conway-Maxwell Poisson regression model

Husam AbdulRazzak Rasheeda, Nazik J. Sadikb, Zakariya Yahya Algamalc,∗

aMustansiriyah University, Iraq
bBaghdad University, Iraq
cUniversity of Mosul, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

Modelling of count data has been of extreme interest to researchers. However, in practice, count data
is often identified with overdispersion or underdispersion. The Conway Maxwell Poisson regression
model (CMPRE) has been proven powerful in modelling count data with a wide range of dispersion.
In regression modeling, it is known that multicollinearity negatively affects the variance of the max-
imum likelihood estimator. To address this problem, shrinkage estimators, such as Liu and Liu-type
estimators have been consistently verified to be attractive to decrease the effects of multicollinearity.
However, these shrinkage estimators are considered biased estimators. In this study, the jackknife
approach and its modified version are proposed for modeling count data with CMPRE. These two
estimators are proposed to reduce the effects of multicollinearity and the biasedness of using the
Liu-type estimator simultaneously. The results of Monte Carlo simulation and real data recommend
that the proposed estimators were significant improvement relative to other competitor estimators,
in terms of absolute bias and mean squared error with superiority to the modified jackknifed Liu-type
estimator.

Keywords: Multicollinearity, Liu-type estimator, Conway-Maxwell-Poisson regression model,
Jackknife estimator, Monte Carlo simulation.

1. Introduction

The count response variable is widely included in modeling some real data problems, such as
social, automobile insurance claims, healthcare economics, physical sciences, and medical science
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[1, 2]. Specifically, count data regression model is used when the response variable under the study
is discrete distributions representing counts and proportions [3, 4].

Consequently, the Poisson regression model is one of the most models that used in modeling count
data. However, it assumes that the equidispersion property in which the variance which is a measure
of dispersion is equal to the mean for Poisson distribution. This property is often not hold in real
data resulting the incapability of fitting the Poisson regression model [5, 6, 7].

The Conway–Maxwell–Poisson (CMP) distribution which is introduced by Conway and Maxwell
in 1962 [8] is a great tool to overcome the equidispersion issue. This is because CMP can model a
wide range of dispersion. In addition, CMP belongs to an exponential family [9].

As in linear regression model, in contact with the Conway–Maxwell–Poisson regression model, it
is supposed that no correlation were among the explanatory variables. In repetition, conversely, this
assumption repeatedly not embraces, which directs to the problem of multicollinearity. In the atten-
dance of multicollinearity, when estimating the regression coefficients for Conway–Maxwell–Poisson
regression model using the maximum likelihood method, the estimated coefficients are regularly
become not fixed with a high variance, and so low statistical significance. Shrinkage estimators,
such as ridge estimator, have been recommended to overcome the problem of multicollinearity. The
ridge - estimator [10] has been consistently demonstrated to be an attractive and alternative to the
maximum likelihood estimator.

In this paper, the jackknifed ridge estimator and its modified version are proposed for modeling
count data with CMPRE. These two estimators are proposed to reduce the effects of multicollinearity
and the biasedness of using ridge estimator simultaneously.

2. Conway-Maxwell-Poisson regression model

In real application, count data have often been shown to exhibit overdispersion, meaning that
the variance is greater than the mean, and have sometimes shown characteristics of underdispersion,
meaning that the variance is less than the mean. The Conway–Maxwell–Poisson distribution (CMPD)
offers a simple way to accommodate the overdispersion and underdispersion [11, 12]. The CMPD is an
extension of the Poisson distribution with two parameters λ (centering parameter related to the obser-
vations mean) and θ (the shape parameter) [13]. Suppose y ∈ Error! Bookmark not defined.
is a random variable that follows a CMPD, then the probability mass function is defined as

P ( Y = y ; λ , θ) =
λy

(y!)θZ (λ, θ)
, λ > 1, θ ≥ 0, (2.1)

where Z (λ, θ) =
∑∞

s=0

(
λs/(s!)θ

)
is a normalizing constant. The CMPD can model both underdis-

persed (θ > 1) and overdispersed (θ < 1) data.
According to Eq. (2.1), there is no closed form representation existing for the mean. This is

because that the normalizing constant, Z (λ, θ), is an infinite series with no closed form representation
[14]. Shmueli, et al. [15] used the asymptotic expression for Z (λ, θ) in Eq. (2.1) to express the mean
and variance of the CMPD as

E(Y ) ≈ λ
1
θ − θ − 1

2θ
,

V ar(Y ) ≈ 1

θ
λ

1
θ (2.2)
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regression modeling in which the count responses may change depending on a set of explanatory
variables, it is more convenient and interpretable to model the mean of the CMPD directly. By
setting µ = λ

1
θ [16], a re-parameterization of Eq. (2.1) to provide a clear centering parameter as

P ( Y = y ; µ , θ) =

(
µy

y!

)θ
1

S (µ, θ)
, (2.3)

where S (µ, θ) =
∑∞

n=0 (µ
n/n!)θ. Depending on Eq. (2.3) and in terms of generalized linear model

framework, Conway–Maxwell–Poisson regression model (CMPR) can be formulated as

ln( µ) = β0 +

p∑
j=1

βjxj, (2.4)

ln( θ) = γ0 +

q∑
k=1

γkmj. (2.5)

In Eqs. (2.4) and (2.5), xjand mjare expandatory variables, and there are assumed to be p
covariates used in the link function and q covariates used in the shape link function. Assuming θ as
a dispersion parameter and using single link function, Eq. (2.4), with η = ln( µ) = βx as a linear
predictor with log link, where β is the vector of regression coefficients including intercept, the log
likelihood can be written a [5]

ℓ(β) = θ
n∑

i=1

yi(βxi)− θ
n∑

i=1

ln( yi!)−
n∑

i=1

ln [S(βxi, θ)] . (2.6)

Solving Eq. (2.6), the estimation of the regression parameters,β, and the estimation of the dispersion
parameter, θ, can be obtained as, respectively,

∂ℓ(β)

∂β
=

n∑
i=1

(yiθ −
∂

∂ηi
ln[ S(ηi, θ)])xij (2.7)

∂ℓ(β)

∂θ
=

n∑
i=1

(−ln( yi!)−
∂

∂θ
log[ S(ηi, θ)]) (2.8)

Iterative reweighted least square (IRLS) is used to solve both Eq. (2.7) and Eq. (2.8). By fixing θ,
the ( MLE ) of βis by

β̂MLE = (XTŴX)−1XTŴ û, (2.9)

where û = ln( µ̂) + (y−µ̂)
µ̂2 is a vector of the adjusted response variable, and Ŵ is a matrix of weights

[14].

In the attendance of multicollinearity, the matrix XTŴX converts ill-conditioned foremost to
high variance and instability of the MLE of the Conway–Maxwell–Poisson regression model. As a
preparation, a ridge estimator of Hoerl and Kennard [10] for Conway–Maxwell–Poisson regression
model (CMPRE) can be defined as

β̂CMPRE = (X T Ŵ X + kI )−1XTŴXβ̂MLE = ( X T Ŵ X + k I)−1XT Ŵ û, (2.10)

where k > 0.
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The (MSE) of Eq. (2.9) can be found as

MSE(β̂MLE) = E(β̂MLE − β̂)T (β̂MLE − β̂) = θ̂tr[(XTŴX)−1] = θ̂

p∑
j=1

1

λj

, (2.11)

where λj is the eigen value of the XTŴX matrix and θ̂is the estimated dispersion parameter. On
the other hand, the(MSE) of Eq. (2.10) can be gotten as

MSE(β̂CMPRE) = θ̂

p∑
j=1

λj

(λj + k)2
+ k2

p∑
j=1

α2
j

(λj + k)2
, (2.12)

where αj is definite as the jth element of γβ̂MLEand γ is the eigenvector of theXTŴX.

3. The proposed estimator: Jackknifed Liu-type

In the situation of the linear model, Singh, Chaubey and Dwivedi [17] planned the Jackknife
practice to improve the bias in generalized ridge estimator. The application and theoretical of the
jackknife estimator have been considered by several authors [18, 1, 19, 20, 21, 22, 23, 24].

Most popular biased estimator is Liu (1993) which is adopted in CMPR is defined as follows [25]:

β̂CMPRLE = (X ′ŴX + I)−1(X ′ŴX + dI) β̂MLE (3.1)

Where 0 < d < 1, where the MSE of β̂CMPRLE is lower than MSE of β̂MLE [26] which is equal:

β̂CMPRLE =
J∑

j=1

(λj + d)2

λj(λj + I)2
+ (d− I )2

J∑
j=1

α2
j

(λj + I)2
(3.2)

Where α2
j is the j-th element of γβ, where γ is the eigen vector defined X ′Ŵ X = γ′Λγ and Λ is the

diagonal matrix with elements equal to λj .

For the estimator β̂CMPRLE the matrix of cross products in Liu (1993) replaced with the matrix
weights of cross products and the ordinary least square of β with ML estimator [27]. The MSE of

β̂CMPRLE is

MSE(β̂CMPRLE) = E(β̂CMPRLE − β)′(β̂CMPRLE − β)

= tr
[
(β̂MLE − β)′(β̂MLE − β)S ′S

]
+ β′k2 (X ′ŴX + kI)−2 β

By taking the trace for the equation above, we have:

MSE(β̂CMPRLE) =
J∑

j=1

(λj + d)2

λj(λj + I)2
+ (d− I)2

J∑
j=1

α2
j

(λj + I)2
(3.3)

MSE(β̂CMPRLE) = ω(d)1 + ω(d)2

From equation (3.3) the MSE of (β̂CMPRLE) is equal to ω(d)1 which is the variance and the biased
part which is represent by ω(d)2.
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To show that the MSE(β̂CMPRLE) < MSE(βMLE) we attractive the first derivative of equation
(3.1) with respect to d as follows [25]:

∂
(
MSE(β̂CMPRLE)

)
∂ (d)

= 2
J∑

j=1

λj + d

λj(λj + I)2
+ 2(d− I)

J∑
j=1

α2
j

(λj + I)2
(3.4)

Since 0 < d < 1 , by inserting d = 1 on equation (3.4), we have:

∂
(
MSE(β̂CMPRLE)

)
∂ (d)

=2
J∑

j=1

λj + 1

λj(λj + I)2
(3.5)

=2
J∑

j=1

1

λj(λj + I)
whereλj > 0 (3.6)

The optimal value of the value dj can be found by setting equation (3.4) to zero and solve for dj
,then it may be show as:

dj =
α2
j − 1
1

λj+α2
j

(3.7)

Liu upgraded by proposing Liu type to overcome the problem of sever multicollinearity, Liu type
estimator is defined as follows [25]

β̂CMPRLTE = (X ′ŴX + kI)−1(X ′ŴX − dI)β̂MLE (3.8)

where −∞ < d < ∞ and k ≥ 0. Liu type estimator has superior over ridge estimator [28]. Liu note
that when ther exists sever mulicollinearity, the shrinkage ridge parameter may not fully address the
illconditioning problem, Therfore he modified liu estimator and he has suggest Liu type estimator.
The MSE of β̂CMPRLTE is

MSE(β̂CMPRLTE) =
J∑

j=1

(λj − d)2

λj(λj + k)2
+ (d+ k)2

J∑
j=1

α2
j

(λj + k)2
(3.9)

Let M = (m1,m2, ...,mp) and Λ = diago(λ1, λ2, ..., λp), respectively, be the matrices of eigen-
vectors and eigenvalues of the a symmetric matrix C = X ′WX has an eigenvalues and eigenvectors
decomposition C = TΛT ′, where T is an orthogonal matrix and Λ is a diagonal matrix. [28] proposed
a new estimator for γ where this estimator is biased and it’s called Liu-type estimators. It can be
defined for CMPR, as follows:

γ̂CMPRLTE( k, d ) =( Λ+ k I)−1(M ′y − dγ̂CMPR)

=(Λ + kI)−1(M ′y − dΛ−1M ′y)

=
[
I − (Λ+ kI)−1(k + d)

]
γ̂CMPR

=H(k, d)γ̂CMPR (3.10)

where H(k, d) = (Λ + kI)−1(Λ− dI).
By using [29], [30], [21] and [31] we proposed the jackknifed fromγ̂

PLTE
. [32] and [33] introduced

the Jackknife method so as to reduce the value of the bias. [29] stated that with a few exceptions,
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where the jackknife technique can be applied to balanced models. The jackknifed estimator after
some algebraic manipulations is obtained by deleting the i-th observation (m′

i, yi):

γ̂
PLTE

( k, d ) =(M ′
−iŴ−iM−i + kI)−1(M ′

−iŴ−iM−i − dI)(M ′
−iŴ−iM−i)

−1M ′
−iy−i

=(A−M ′
−iŴ−iM−i + kI)−1(M ′y −miyi)

=

[
A−1 +

A−1miwim
′
iA

−1

1−miA−1mi

]
=A−1M ′y − A−1miyi

[
A−1miwim

′
iA

−1

1−m′
iA

−1mi

M ′y − A−1miwim
′
iA

−1

1−m′
iA

−1mi

miyi

]
=γ̂

PLTE
( k, d ) + A−1miyi

[
1 +

m′
iA

−1mi

1−m′
iA

−1mi

]
+

A−1miwim
′
i

1−m′
iA

−1mi

γ̂
PLTE

( k, d )

=γ̂
PLTE

( k, d )− A−1mi
A−1mi(yi −m′

iγ̂PLTE
( k, d ))

1−m′
iA

−1mi

=γ̂
PLTE

− A−1miei
1− fi

(3.11)

where m′
iis the i-th row of the matrix M ,ei = yi − m′

iγ̂PLTE
( k, d ) is the Liu-type residual,

M ′
−iŴ−iM−i = M ′Ŵ−iM − m′

iŴim
′
i,M−iy−i = M ′y − miyi andfi = m′

iA
−1mi is the reserve factor

and A−1 = (Λ + kI)−1(I − dΛ−1) = H(k, d)Λ−1.
The bias part and variance of γ̂

PLTE
( k, d ) are obtained as, respectively,

Bias(γ̂
PLTE

( k, d )) = (1−H(k, d))2γ (3.12)

Cov(γ̂
PLTE

( k, d )) = σ2(2I −H(k, d))H(k, d)Λ−1H(k, d)′(2I −H(k, d))′ (3.13)

The MSEMs of JPLTE and PLTE are given as follows

MSEM(γ̂
PLTE

( k, d )) =Cov(γ̂
PLTE

( k, d )) +Bias(γ̂
PLTE

( k, d ))Bias(γ̂
PLTE

( k, d ))′

=(2I −H(k, d))H(k, d)Λ−1H (3.14)

MSEM(γ̂JPLTE) = H(k, d)Λ−1H(k, d)′ + (H(k, d)− I) γγ′ (H(k, d)− I) (3.15)

4. Simulation study

Monte Carlo simulation study is conducted to evaluate the performance and comparison of our
proposed estimators, JCMPRLTE with CMPRE and CMPRLTE under different conditions. The
response variable of n ∈ {50, 150, 250} observations from CMP regression model was made as yi ∼
CMP (µi, θ), where µi = exp( xT

i β), β = (β1, ..., βp) with
∑p

j=1 β
2
j = 1 and β1 = β2 = ... = βp

[34]. Three different values of the dispersion parameter, θ, are considered to capture overdispersion
(θ = 0.5), equidispersion (θ = 1) and underdispersion (θ = 2.5) cases. The explanatory variables
xT
i = (xi1, xi2, ..., xin) have been produced from the following formulary

xij = (1− ρ2)1l2wij + ρwip, i = 1, 2, ..., n, j = 1, 2, ..., p, (4.1)
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where ρ denotes the correlation between the descriptive variables and wij’s are independent standard
normal pseudo-random numbers. the number of the explanatory variables is considered as p = 4 and
p = 12. moreover , because we are interested in the impact of multicollinearity, Degrees of correlation
can be considered the most important, three values of the pairwise correlation are considered with
ρ = {0.90, 0.95, 0.99}. The optimal value of k can be gotten by using Hoerl, Kannard and Baldwin
[35] formula as

k̂ =
θ̂p

α̂T α̂
. (4.2)

For a combination of the different values of n, θ, p, and ρ the produced data is recurrent 1000 times
and the average absolute bias and average MSE is

Bias (β̂) =
1

1000

1000∑
i=1

∣∣∣β̂ − β
∣∣∣, (4.3)

MSE(β̂) =
1

1000

1000∑
i=1

(β̂ − β)T (β̂ − β). (4.4)

The average bias and MSE all the combination of n, θ, p, and ρ, are respectively in Tables 1 – 6.
The best value of the average bias and MSE is tinted in bold.

As Tables 1,3, and 5 show, the proposed estimators, JCMPRLTE, achieved smaller averaged bias
than CMPRE and CMPRLTE. On other hand, JCMPRLTE performances better than CMPRLTE.
In general, this specifies that the Jackknifed estimator is significantly with decreasing the bias. In
terms of MSE, it is evident from Tables 2, 4, and 6 that both JCMPRLTE and CMPRLTE are is quite
better than the CMPRE with superiority to JCMPRLTE. Meanwhile, MLE estimator of CMPRE
has the worst performance including others, which is significantly impacted by the multicollinearity.

Also, with respect to ρ, there is increasing in the bias and MSE values when the correlation degree
increases irrespective the value of n, θ and p. Concerning the number of explanatory variables, it is
easily seen that there is a negative impact on both bias and MSE, where there are increasing in their
values when the p increasing from 4 variables to 12 variables. In Accumulation When the sample
size n is increased, the bias & MSE values decrease when n increases, regardless the value of ρ, θand
p. Regardless the dispersal parameter, both bias & MSE values are decreasing when θ increasing.
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Table 1: Average bias values in case of overdispersion (θ = 0.5)

n p ρ CMPRLTE JCMPRLTE

50 4 0.90 0.5431 0.4291

0.95 0.5735 0.4595

0.99 0.5851 0.4711

12 0.90 0.6632 0.5492

0.95 0.6936 0.5796

0.99 0.7052 0.5912

150 4 0.90 0.3013 0.1873

0.95 0.3317 0.2177

0.99 0.3433 0.2293

12 0.90 0.4214 0.3074

0.95 0.4518 0.3378

0.99 0.4634 0.3494

250 4 0.90 0.2501 0.1361

0.95 0.2805 0.1665

0.99 0.2921 0.1781

12 0.90 0.3702 0.2562

0.95 0.4008 0.2867

0.99 0.4122 0.2982
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Table 2: Average MSE values in case of overdispersion (θ = 0.5)

n p ρ CMPRE CMPRLTE JCMPRLTE

50 4 0.90 4.2922 3.9532 3.8392

0.95 4.3422 4.0032 3.8892

0.99 4.6082 4.2692 4.1552

12 0.90 4.4122 4.0732 3.9592

0.95 4.4622 4.1232 4.0092

0.99 4.7282 4.3892 4.2752

150 4 0.90 4.0502 3.7112 3.5972

0.95 4.1002 3.7612 3.6472

0.99 4.3662 4.0272 3.9132

12 0.90 4.1702 3.8312 3.7172

0.95 4.2202 3.8812 3.7672

0.99 4.4862 4.1472 4.0332

250 4 0.90 3.9992 3.6602 3.5462

0.95 4.0492 3.7102 3.5972

0.99 4.3152 3.9762 3.8622

12 0.90 4.1192 3.7802 3.6672

0.95 4.1692 3.8302 3.7162

0.99 4.4352 4.0962 3.9822
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Table 3: Averaged bias values in case of equidispersion (θ = 1)

n p ρ CMPRLTE JCMPRLTE

50 4 0.90 0.5424 0.4284

0.95 0.5728 0.4588

0.99 0.5844 0.4704

12 0.90 0.6625 0.5485

0.95 0.6929 0.5789

0.99 0.7045 0.5905

150 4 0.90 0.3006 0.1866

0.95 0.331 0.217

0.99 0.3426 0.2286

12 0.90 0.4207 0.3067

0.95 0.4511 0.3371

0.99 0.4627 0.3487

250 4 0.90 0.2494 0.1354

0.95 0.2798 0.1658

0.99 0.2914 0.1774

12 0.90 0.3695 0.2555

0.95 0.3999 0.2859

0.99 0.4115 0.2975
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Table 4: Averaged MSE values in case of equidispersion (θ = 1)

n p ρ CMPRE CMPRLTE JCMPRLTE

50 4 0.90 4.2915 3.9525 3.8385

0.95 4.3415 4.0025 3.8885

0.99 4.6075 4.2685 4.1545

12 0.90 4.4115 4.0725 3.9585

0.95 4.4615 4.1225 4.0085

0.99 4.7275 4.3885 4.2745

150 4 0.90 4.0495 3.7105 3.5965

0.95 4.0995 3.7605 3.6465

0.99 4.3655 4.0265 3.9125

12 0.90 4.1695 3.8305 3.7165

0.95 4.2195 3.8805 3.7665

0.99 4.4855 4.1465 4.0325

250 4 0.90 3.9985 3.6595 3.5455

0.95 4.0485 3.7095 3.5965

0.99 4.3145 3.9755 3.8615

12 0.90 4.1185 3.7795 3.6665

0.95 4.1685 3.8295 3.7155

0.99 4.4345 4.0955 3.9815
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Table 5: Averaged bias values in case of underdispersion (θ = 2.5)

n p ρ CMPRLTE JCMPRLTE

50 4 0.90 0.5417 0.4277

0.95 0.5721 0.4581

0.99 0.5837 0.4697

12 0.90 0.6618 0.5478

0.95 0.6922 0.5782

0.99 0.7038 0.5898

150 4 0.90 0.2999 0.1859

0.95 0.3303 0.2163

0.99 0.3419 0.2279

12 0.90 0.42 0.306

0.95 0.4504 0.3364

0.99 0.462 0.348

250 4 0.90 0.2487 0.1347

0.95 0.2791 0.1651

0.99 0.2907 0.1767

12 0.90 0.3688 0.2548

0.95 0.3992 0.2852

0.99 0.4108 0.2968
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Table 6: Averaged MSE values in case of underdispersion (θ = 2.5)

n p ρ CMPRE CMPRLTE JCMPRLTE

50 4 0.90 4.2906 3.9516 3.8376

0.95 4.3406 4.0016 3.8876

0.99 4.6066 4.2676 4.1536

12 0.90 4.4106 4.0716 3.9576

0.95 4.4606 4.1216 4.0076

0.99 4.7266 4.3876 4.2736

150 4 0.90 4.0486 3.7096 3.5956

0.95 4.0986 3.7596 3.6456

0.99 4.3646 4.0256 3.9116

12 0.90 4.1686 3.8296 3.7156

0.95 4.2186 3.8796 3.7656

0.99 4.4846 4.1456 4.0316

250 4 0.90 3.9976 3.6586 3.5446

0.95 4.0476 3.7086 3.5956

0.99 4.3136 3.9746 3.8606

12 0.90 4.1176 3.7786 3.6656

0.95 4.1676 3.8286 3.7146

0.99 4.4336 4.0946 3.9806
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5. Real Data Application

To compare the modeling performance of the CMPRLTE and JCMPRLTE, laminated plastic
plywood data which was presented by Marcondes Filho and Sant’Anna [36]. This data was furthered
analyzed by Mammadova, Özkale and Mathematics [37]. The response of interest is the number
of defects per laminated plastic plywood area. The explanatory variables are volumetric shrinkage
(x1), assembly time (x2), wood density (x3), and drying temperature (x4). Marcondes Filho and
Sant’Anna [36] stated that multicollinearity exists between volumetric shrinkage and assembly time
and between wood density and drying temperature.

Fitting Conway–Maxwell–Poisson regression model with log-link function gave the estimated
dispersion parameter as θ̂ = 0.9614. the eigenvalues of the matrix XTŴX are obtained as 2.14 ×
109,3.85 × 106, 2.42 × 105, 1.26 × 104, 1.29 × 103, 2.14 × 109,9.01 × 102, 4.71 × 102, 1.71 × 102,
5.93 × 101, 3.24 × 101, 2.77 × 101, 1.78 × 101, 9.56, and 1.23. The determined condition number
CN =

√
λmax/λmin of the matrix XTŴX is 8634.73 indicating that the severe multicollinearity

issue is exist.
The estimated regression coefficients and MSE values for the CMPRE, CMPRLTE, and JCM-

PRLTE estimators are listed in Table 7. According to Table 7, it is obviously seen that the both
CMPRLTE and JCMPRLTE shrinkage the value of the estimated coefficients efficiently. Also, in the
MSE, there is an prominent reduction in favor of the JCMPRLTE. Specifically, it can be seen that
the MSE of the JCMPRLTE estimator was about 39.66% and 15.11% lower than that of CMPRE
and CMPRLTE estimators, respectively.

Table 7: The valub coefficients and MSE values for the four used estimators.

Estimators

CMPRE CMPRLTE JCMPRLTE

β̂1 4.916 3.271 3.183

β̂2 5.971 4.814 4.257

β̂3 3.805 2.226 2.058

β̂4 7.351 6.781 5.389

MSE 6.775 4.816 4.088

6. Conclusions

The Conway–Maxwell–Poisson regression model is very popular statistical model to analyze data
whose response variable are counts. This paper addresses issue of multicollinearity by integrating the
Liu-type estimator with jackknife approach. Further, a Jackknifed Liu-type estimator was proposed.
The Monte Carlo simulation studies shows the proposed estimators significant improvement relative
to others, by MSE and bias. in real data application, compared to CMPRE and CMPRLTE, the
JCMPRLTE can reduce the MSE.
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