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Abstract

In this paper, using continuous, injective, and sequentially convergent mappings on a group, new gen-
eralizations of Kannan and Chatterjea’s fixed points in Banach groups are presented. We generalize
contractions with constants to prove some fixed point theorems in a Banach group. Moreover, non-
decreasing continuous functions from the set of positive real numbers to itself are used to introduce
a new extension of contractions on normed groups.
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1. Introduction

Fixed point theory is one of the most useful and essential tools of nonlinear analysis with certain
applications. Following the new attention evoked by Bingham and Ostaszewski [2], the authors
were motivated to apply analytic concepts in algebraic structures including groups. As a first step,
we investigated fixed points in structures of normed groups, hoping to show the importance of
focusing on normed groups as a type of normed spaces. Since the analytical properties of the groups
have not been studied fully nor coherently, normed groups were chosen as algebraic structures to
reconstruct the analytical properties of normed vector spaces. Hence, convexity in normed spaces
will be interpreted as midconvexity in normed groups. As a consequence of such interpretations, the
concepts originated should undergo the same conversion, with results not necessarily the same. The
new approach presented in this study can provide a perspective to treat groups as normed spaces.
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Let us now deal with fixed points in metric spaces and then we will take a look at the history of
normed groups. In sections two and three, we will prove a number of fixed point theorems in normed
groups.

The origin of fixed point theory is known as the Banach contraction principle.
Let (T , d) be a metric space. A mapping ν : T → T , is said to be a contraction if there exists

ζ ∈ [0, 1) such that for all t, s ∈ T ,

d(ν(t), ν(s)) ≤ ζd(t, s). (1.1)

Banach contraction principle states that any contraction on a complete metric space has a unique
fixed point [1]. In 1968, Kannan introduced an extension of the Banach contraction and proved that
a self-mapping ν on a complete metric space (T , d) satisfying

d(ν(t), ν(s)) ≤ ζ[d(t, ν(t)) + d(s, ν(s))], (1.2)

where ζ ∈ [0, 1
2
) and t, s ∈ T , has a unique fixed point [14]. A similar conclusion was also obtained

by Chatterjea in 1972 [5]. The mappings satisfying (1.2) are called Kannan type mappings. The
significance of Kannan’s theorem showed itself in Subrahmanyam paper [27]. He showed that a metric
space is complete if and only if every Kannan type mapping has a fixed point. Banach contractions
do not have this property. Connell in [7] presented an example of metric space T that is not complete
but every Banach contraction on T has a fixed point.
The Banach and Kannan fixed point theorems have been improved by various successful attempts.
One such attempt was made by Koparde and Waghmode [20] who proved a fixed point theorem for
a self-mapping ν on a complete metric space (T , d) satisfying the Kannan type condition

d2(ν(t), ν(s)) ≤ η(d2(t, ν(t)) + d2(s, ν(s)),

for all t, s ∈ T where 0 < η < 1
2
.

A large number of results on the existence and uniqueness of fixed points for Kannan mappings have
been proved in Banach spaces [10, 15, 16, 17]. In 2018, using the interpolation notion, Karapinar
introduced a new Kannan type contraction to maximize the rate of convergence [18]. For further
details on new fixed point theorems in metric spaces, see [11, 12, 23].

Now, we can discuss normed groups, with the aim to examine the fixed points, which are in fact
groups with a right-invariant metric. Although they have been introduced since the 1930s by the
Birkhoff-Kakutani’s theorem, the number of the results proved has not been outstanding due to the
little attention paid to them. However, the field is still evolving, and has recently begun to absorb
the attention of researchers, for instance probabilistic normed groups [22, 25, 26]. In 1936, Birkhoff
and Kakutani separately proved a significant theorem: A Hausdorff group K is homeomorphic with
a metric space if and only if, K satisfies the first countability axiom [3, 13]. They also showed that
this group has a right invariant metric. The term group-norm probably first appeared in Pettis’s
paper in 1950 [24], however, some authors may use the term ”length function” instead of ”norm”
for groups [21, 6]. A metric d on a semigroup K is called left-invariant if d(vx, vy) = d(x, y) and
right-invariant if d(xv, yv) = d(x, y) whenever v, x, y ∈ K. The metric d is said to be invariant if it
is both right and left-invariant. In 1950, V. L. Klee studied invariant metrics on groups to solve a
problem of Banach [19]. See [2, 9] for a wider discussion about the history of normed groups.

Now, we should get familiar with some basic concepts in normed groups theory. Let J be a group
and ϑ : J → J be a mapping. An element s ∈ J is called a fixed point of ϑ if ϑ(s) = s. To prove
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fixed points for groups, Picard iterative sequence can be used. Let s0 ∈ J be an arbitrary element.
Define the Picard iterative sequence {sn} in J as follows

sn+1 = ϑ(sn), (n = 0, 1, 2... ).

We note that the convergence of this sequence plays a significant role in the existence of a fixed point
for mapping ϑ. Define the nth iterate of ϑ as ϑ0 = I ( the identity map) and ϑn = ϑn−1oϑ, for n ≥ 1.

In our further considerations, by applying sequentially convergent mappings, we will investigate
fixed points in Banach groups.

2. Preliminaries

Definition 2.1. [2] Let J be a group. A norm on a group J is a function ∥.∥ : J → R with the
following properties:

1. ∥s∥ ≥ 0, for all s ∈ J ;

2. ∥s∥ = ∥s−1∥, for all s ∈ J ;

3. ∥sq∥ ≤ ∥s∥+ ∥q∥, for all s, q ∈ J ;

4. ∥s∥ = 0 implies that s = e.

A normed group (J , ∥.∥) is a group J equipped with a norm ∥.∥. By setting d(s, q) := ∥s−1q∥, it is
easy to see that norms are in bijection with left-invariant metrics on J .

Definition 2.2. [2] Let (J , ∥.∥) be a normed group, s ∈ J and {sn} be a sequence in J . Then:

1. The sequence {sn} converges to s if for every ϵ ∈ R, ϵ > 0, there exists positive integer n0

depending on ϵ such that ∥sns−1∥ < ϵ for every n > n0. We denote this by s = lim
n→∞

sn.

2. The sequence {sn} is called Cauchy sequence, if for every ϵ ∈ R, ϵ > 0, there exists positive
integer n0 depending on ϵ such that ∥sns−1

m ∥ < ϵ for every n,m > n0.

3. Normed group (J , ∥.∥) is called complete if any Cauchy sequence in J converges to an element
of J , i.e. it has a limit in group J .

Definition 2.3. [2] A Banach group is a normed group (J , ∥.∥), which is complete with respect to
the metric

d(s, q) = ∥sq−1∥, (s, q ∈ J ).

Definition 2.4. [2] A map
τ : J → K,

of normed group (J , ∥.∥J ) into normed group (K, ∥.∥K) is called continuous, if for every as small as
we please ϵ > 0 there exists such δ > 0, that

∥sq−1∥J < δ

implies
∥τ(s)τ(q)−1∥K < ϵ.

Definition 2.5. [4] Let (T , d) be a metric space. We call a mapping υ : T → T is sequentially
convergent if for each sequence {tn} that {υ(tn)} is convergent then {tn} is also convergent.
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3. Some fixed points in a Banach Group

In this section, applying sequentially convergent mappings, we generalize contractions with con-
stants to prove a number of fixed point theorems in a Banach group. Moreover, some conditions
will be taken as constant all through the theorems of this section. For ease of reading, they will be
mentioned first.

For all results in this section, let (J , ∥.∥) be a Banach group and suppose that ϑ : J → J be
a map and τ : J → J be a continuous, injective and sequentially convergent mapping. Now, with
these assumptions, we have the following results:

Theorem 3.1. Let Ψ be the class of all nondecreasing continuous functions σ : [0,+∞) → [0,+∞)
such that σ−1(0) = {0}. If 0 ≤ η < 1

2
, σ ∈ Ψ and

σ(∥τϑ(s)(τϑ(q))−1∥) ≤ η[σ(∥τ(s)(τϑ(s))−1∥) + σ(∥τ(q)(τϑ(q))−1∥)], (3.1)

for all s, q ∈ J , then, ϑ has a unique fixed point.

Proof . Since σ−1(0) = {0}, for every ε > 0 we have σ(ε) > 0. Suppose that s0 ∈ J is given and
the sequence {sn} be defined as sn+1 = ϑ(sn) for n = 0, 1, 2, ....
By taking s = sn−1 and q = sn in (3.1), we get

σ(∥τ(sn)τ(sn+1)
−1∥) = σ(∥τϑ(sn−1)(τϑ(sn))

−1∥)
≤ η[σ(∥τ(sn−1)(τϑ(sn−1))

−1∥) + σ(∥τ(sn)(τϑ(sn))−1∥)].

So,

σ(∥τ(sn)τ(sn+1)
−1∥) ≤ η

1− η
σ(∥τ(sn−1)τ(sn)

−1∥).

Therefore,

σ(∥τ(sn)τ(sn+1)
−1∥) ≤ η

1− η
σ(∥τ(sn−1)τ(sn)

−1∥)

≤ (
η

1− η
)2σ(∥τ(sn−2)τ(sn−1)

−1∥)

≤ ... ≤ (
η

1− η
)nσ(∥τ(s0)τ(s1)−1∥).

Then for every m,n ∈ N that m > n we have,

σ(∥τ(sm)τ(sn)−1∥) = σ(∥τϑ(sm−1)(τϑ(sn−1))
−1∥)

≤ η[σ(∥τ(sm−1)τ(sm)
−1∥) + σ(∥τ(sn−1)τ(sn)

−1∥)]

≤ η[(
η

1− η
)m−1 + (

η

1− η
)n−1]σ(∥τ(s0)τ(s1)−1∥).

Letting m,n → ∞, we get
lim

m,n→∞
σ(∥τ(sm)τ(sn)−1∥) = 0.

Since σ ∈ Ψ, lim
m,n→∞

∥τ(sm)τ(sn)−1∥ = 0. From this, we conclude that τ(sn) is a Cauchy sequence

and since J is a Banach group, τ(sn) is a convergent sequence. Further, the sequence sn is also
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convergent, i.e. there exists l ∈ J such that lim
n→∞

sn = l. Since τ is continuous, lim
n→∞

τ(sn) = τ(l).

Thus,

σ(∥τϑ(l)τ(sn+1)
−1∥) = σ(∥τϑ(l)(τϑ(sn))−1∥)

≤ η[σ(∥τ(l)(τϑ(l))−1∥) + σ(∥τ(sn)(τϑ(sn))−1∥)]
= η[σ(∥τ(l)(τϑ(l))−1∥) + σ(∥τ(sn)τ(sn+1)

−1∥)].

Since σ is continuous, letting n → ∞ in the last inequality we get

σ(∥τϑ(l)τ(l)−1∥) ≤ η[σ(∥τ(l)(τϑ(l))−1∥) + σ(0)].

Note that by axiom (2) of Definition 2.1, we have ∥τϑ(l)τ(l)−1∥ = ∥τ(l)(τϑ(l))−1∥. Moreover,
σ−1(0) = {0} and 0 ≤ η < 1

2
, in the inequality above, imply that ∥τϑ(l)τ(l)−1∥ = 0, so τϑ(l) = τ(l).

Finally, τ is an injective, and thus ϑ(l) = l. This means that the mapping ϑ has a fixed point.
To prove uniqueness of the fixed point, let v be another fixed point of ϑ. Then by (3.1), we have

σ(∥τ(l)τ(v)−1∥) = σ(∥τϑ(l)(τϑ(v))−1∥)
≤ η[σ(∥τ(l)(τϑ(l))−1∥) + σ(∥τ(v)(τϑ(v))−1∥)]
= η[σ(∥τ(l)τ(l)−1∥) + σ(∥τ(v)τ(v)−1∥)] = 0.

The last inequality implies that σ(∥τ(l)τ(v)−1∥) = 0, i.e. τ(l) = τ(v) and this implies that l = v. □
Taking σ(t) = t in Theorem 3.1, we get the following result:

Corollary 3.2. Let 0 ≤ η < 1
2
and

∥τϑ(s)(τϑ(q))−1∥ ≤ η[∥τ(s)(τϑ(s))−1∥+ ∥τ(q)(τϑ(q))−1∥],

for all s, q ∈ J . Then, ϑ has a unique fixed point.

Now, let’s look at the following example to �show that one can find examples so as to be true in
Theorem 3.1. Such examples can support other theorems as well.

Example 3.3. Let J = {e, a, b, c} be a Klein four-group. Define ∥.∥ on group J as follows:

∥e∥ = 0, ∥a∥ = 3, ∥b∥ = 4, ∥c∥ = 1.

Now, define a mapping ϑ : J → J with

ϑ(s) =

{
a ; s ̸= e

c ; s = e.

Obviously, the inequality (1.2) is not held for ϑ, for every 0 < η < 1
2
. So, Kannan’s theorem is not

held. Defining τ : J → J by

τ(s) =


a ; s = c

b ; s = a

c ; s = e

e ; s = b,
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we have

τϑ(s) =

{
b ; s ̸= e

a ; s = e.

Also,

∥τϑ(s)(τϑ(q))−1∥ ≤ 1

3
[∥τ(s)(τϑ(s))−1∥+ ∥τ(q)(τϑ(q))−1∥],

for all s, q ∈ J . Then, ϑ has a unique fixed point. By placing as the identity function, so all the
conditions of Theorem 3.1 is hold.

Similar to Theorem 3.1, a new extension of Chatterjea’s theorem in Banach groups could be
proved. �Because of the similarities of the two, we can ignore the proof and just write it as follows:

Theorem 3.4. Let Ψ be the class of all nondecreasing continuous functions σ : [0,+∞) → [0,+∞)
such that σ−1(0) = {0}. If 0 ≤ η < 1

2
, σ ∈ Ψ and

σ(∥τϑ(s)(τϑ(q))−1∥) ≤ η[σ(∥τ(s)(τϑ(q))−1∥) + σ(∥τ(q)(τϑ(s))−1∥)], (3.2)

for all s, q ∈ J . Then, ϑ has a unique fixed point.

Taking σ(t) = t in Theorem 3.4, we get the following corollary:

Corollary 3.5. Let 0 ≤ η < 1
2
and

∥τϑ(s)(τϑ(q))−1∥ ≤ η[∥τ(s)(τϑ(q))−1∥+ ∥τ(q)(τϑ(s))−1∥], (3.3)

for all s, q ∈ J . Then, ϑ has a unique fixed point.

By the previous assumptions, and considering two constant η > 0 and µ ≥ 0, with 2η + µ < 1,
we have the following theorem

Theorem 3.6. Let η > 0, µ ≥ 0, 2η + µ < 1 and

∥τϑ(s)(τϑ(q))−1∥ ≤ η[∥τ(s)(τϑ(s))−1∥+ ∥τ(q)(τϑ(q))−1∥] + µ∥τ(s)τ(q)−1∥ (3.4)

for all s, q ∈ J . Then, ϑ has a unique fixed point.

Proof . Suppose that s0 ∈ J is given and the sequence {sn} be defined as the following sn+1 = ϑ(sn)
for n = 0, 1, 2, .... By taking s = sn and q = sn−1 in (3.4), we get

∥τ(sn+1)τ(sn)
−1∥ ≤ η[∥τ(sn+1)τ(sn)

−1∥+ ∥τ(sn)τ(sn−1)
−1∥] + µ∥τ(sn)τ(sn−1)

−1∥,

then
∥τ(sn+1)τ(sn)

−1∥ ≤ α∥τ(sn)τ(sn−1)
−1∥, (3.5)

for each n = 0, 1, 2, ... , and 0 < α = η+µ
1−η

< 1. By the inequality (3.5), we have

∥τ(sn)τ(sm)−1∥ ≤ ∥τ(sn)τ(sn−1)
−1∥+ ∥τ(sn−1)τ(sn−2)

−1∥
+ ...+ ∥τ(sm+1)τ(sm)

−1∥
≤ [αn−1 + αn−2 + ...+ αm]∥τ(s1)τ(s0)−1∥
≤ [αm + αm+1 + ...]∥τ(s1)τ(s0)−1∥

= (α)m
1

1− (α)
∥τ(s1)τ(s0)−1∥,
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for all n,m ∈ N and n > m. Since 0 < α < 1, we conclude that the sequence {τ(sn)} is a Cauchy
sequence. Completeness of J ensures that there exists z ∈ J such that lim

n→∞
τ(sn) = z. It implies

that the sequence {sn} is also a convergent sequence, i.e. there exists l ∈ J such that lim
n→∞

sn = l.

Since the mapping τ is continuous, lim
n→∞

τ(sn) = τ(l). Therefore, we have

∥τϑ(l)τ(l)−1∥ ≤ ∥τϑ(l)τ(sn)−1∥+ ∥τ(sn)τ(sn+1)
−1∥+ ∥τ(sn+1)τ(l)

−1∥
= ∥τϑ(l)(τϑn(s0))

−1∥+ ∥τ(sn)τ(sn+1)
−1∥+ ∥τ(sn+1)τ(l)

−1∥
≤ η[∥τ(l)τϑ(l)−1∥+ ∥τϑn−1(s0)(τϑ

n(s0))
−1∥]

+ µ∥τ(l)(τϑn−1(s0))
−1∥+ αn∥τ(s1)τ(s0)−1∥+ ∥τ(sn+1)τ(l)

−1∥
= η∥τ(l)(τϑ(l))−1∥+ ηαn−1∥τ(s1)τ(s0)−1∥+ µ∥τ(l)τ(sn−1)

−1∥
+ αn∥τ(s1)τ(s0)−1∥+ ∥τ(sn+1)τ(l)

−1∥.

Letting n → ∞ in the inequality above, we have ∥τϑ(l)τ(l)−1∥ ≤ η∥τϑ(l)τ(l)−1∥. As 0 < η < 1,
then τϑ(l) = τ(l) and ϑ(l) = l. For the uniqueness, we suppose that ϑ has two distinct fixed points
l, l0 ∈ J . Then from (3.4) we have

∥τ(l)τ(l0)−1∥ = ∥τϑ(l)τϑ(l0)−1∥
≤ η[∥τ(l)τϑ(l)∥+ ∥τ(l0)τϑ(l0)−1∥] + µ∥τ(l)τ(l0)−1∥
= µ∥τ(l)τ(l0)−1∥.

The last inequality implies that ∥τ(l)τ(l0)−1∥ = 0. As τ is an injective we have l = l0. □

Corollary 3.7. Let 0 < α < 1 and

∥τϑ(s)(τϑ(q))−1∥ ≤ α[∥τ(s)(τϑ(s))−1∥.∥τ(q)(τϑ(q))−1∥.∥τ(s)(τ(q))−1∥]
1
3 ,

for all s, q ∈ J . Then ϑ has a unique fixed point.

Proof . The inequality of arithmetic and geometric means implies that

[∥τ(s)(τϑ(s))−1∥.∥τ(q)(τϑ(q))−1∥.∥τ(s)(τ(q))−1∥]
1
3 ≤ 1

3
[∥τ(s)(τϑ(s))−1∥

+ ∥τ(q)(τϑ(q))−1∥
+ ∥τ(s)(τ(q))−1∥].

Therefore,

∥τϑ(s)(τϑ(q))−1∥ ≤ α

3
[∥τ(s)(τϑ(s))−1∥+ ∥τ(q)(τϑ(q))−1∥+ µ∥τ(s)(τ(q))−1∥].

We now apply Theorem 3.6 with η = µ replaced by α
3
. It completes the proof. □

Similar to Theorem 3.6 we can prove the following theorem which is another extension of Chat-
terjea’s theorem in Banach groups.

Theorem 3.8. Let η > 0, µ ≥ 0, 2η + µ < 1 and

∥τϑ(s)(τϑ(q))−1∥ ≤ η[∥τ(s)(τϑ(q))−1∥+ ∥τ(q)(τϑ(s))−1∥] + µ∥ϑ(s)(τ(q))−1∥

for all s, q ∈ J . Then ϑ has a unique fixed point.
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Corollary 3.9. Let 0 < α < 1 and

∥τϑ(s)(τϑ(q))−1∥ ≤ α[∥τ(s)(τϑ(q))−1∥.∥τ(q)(τϑ(s))−1∥.µ∥τ(s)(τ(q))−1∥]
1
3 .

for all s, q ∈ J . Then there is a unique fixed point on ϑ.

Proof . The inequality of arithmetic and geometric means implies that

[∥τ(s)(τϑ(q))−1∥.∥τ(q)(τϑ(s))−1∥.∥τ(s)(τ(q))−1∥]
1
3 ≤ 1

3
[∥τ(s)(τϑ(q))−1∥

+ ∥τ(q)(τϑ(s))−1∥
+ ∥τ(s)(τ(q))−1∥].

Therefore,

∥τϑ(s)(τϑ(q))−1∥ ≤ α

3
[∥τ(s)(τϑ(q))−1∥+ ∥τ(q)(τϑ(s))−1∥+ µ∥τ(s)(τ(q))−1∥].

For η = µ = α
3
, in Theorem 3.8 the proof is completed. □ Like the previous theorem, the next

theorem can be proved.

Theorem 3.10. Let η > 0, µ ≥ 0, 2η + µ < 1 and

∥τϑ(s)(τϑ(q))−1∥2 ≤ η[∥τ(s)(τϑ(s))−1∥2 + ∥τ(q)(τϑ(q))−1∥2] + µ∥τ(s)(τ(q))−1∥2 (3.6)

for all s, q ∈ J . Then ϑ has a unique fixed point.

Proof . Suppose that s0 ∈ J is given and the sequence {sn} be defined as the following sn+1 = ϑ(sn),
for n = 0, 1, 2, ... . By (3.6), we have

∥τ(sn+1)τ(sn)
−1∥2 ≤ η[∥τ(sn+1)τ(sn)

−1∥2 + ∥τ(sn)τ(sn−1)
−1∥2] + µ∥τ(sn)τ(sn−1)

−1∥2.

Therefore,
∥τ(sn+1)τ(sn)

−1∥2 ≤ α∥τ(sn)τ(sn−1)
−1∥2, (3.7)

for each n = 0, 1, 2, ... , and 0 < α = (η+µ
1−η

)
1
2 < 1. By the inequality (3.7) we have

∥τ(sn)τ(sm)−1∥2 ≤ αm

1− α
∥τ(s1)τ(s0)−1∥2,

for all n,m ∈ N where n > m. Since 0 < α < 1, we conclude that the sequence {τ(sn)} is a Cauchy
sequence and there exists z ∈ J such that lim

n→∞
τ(sn) = z.

As τ : J → J is a sequentially convergent mapping, the sequence {sn} is also convergent, i.e. there
exists l ∈ J that lim

n→∞
sn = l.

Since the mapping τ is continuous, lim
n→∞

τ(sn) = τ(l). Now, we are going to show that l is the unique

fixed point of ϑ. By (3.6), we have

∥τϑ(l)τ(l)−1∥ ≤ ∥τ(l)τ(sn+1)
−1∥+ ∥τ(sn+1)(τϑ(l))

−1∥
= ∥τ(l)τ(sn+1)

−1∥+ ∥τϑ(sn)(τϑ(l))−1∥
≤ ∥τ(l)τ(sn+1)

−1∥+ [η[∥τ(sn)(τϑ(sn))−1∥2

+ ∥τ(l)(τϑ(l))−1∥2] + µ∥τ(sn)τ(l)−1∥2]
1
2

= ∥τ(l)τ(sn+1)
−1∥+ [η[∥τ(sn)(τ(sn+1))

−1∥2

+ ∥τ(l)(τϑ(l))−1∥2] + µ∥τ(sn)τ(l)−1∥2]
1
2 ,
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for each n ∈ N. For n → ∞, the latter is transformed as the following ∥τϑ(l)τ(l)−1∥ ≤ η
1
2∥τϑ(l)τ(l)−1∥.

This implies that ∥τϑ(l)τ(l)−1∥ = 0 and ϑ(l) = l. To see the uniqueness of the fixed point of ϑ, let
l, l0 ∈ J be two fixed points on ϑ. Using (3.6), we have

∥τ(l)τ(l0)−1∥2 = ∥τϑ(l)(τϑ(l0))−1∥2

≤ η[∥τ(l)(τϑ(l))−1∥2 + ∥τ(l0)(τϑ(l0))−1∥2] + µ∥τ(l)τ(l0)−1∥2

= η[∥τ(l)τ(l)−1∥2 + ∥τ(l0)τ(l0)−1∥2] + µ∥τ(l)τ(l0)−1∥2

= µ∥τ(l)τ(l0)−1∥2,

and since 0 < µ < 1 the latter inequality implies that ∥τ(l)τ(l0)−1∥ = 0 and l = l0. □

Corollary 3.11. Let 0 < η < 1
2
and

∥τϑ(s)(τϑ(q))−1∥2 ≤ η[∥τ(s)(τϑ(s))−1∥2 + ∥τ(q)(τϑ(q))−1∥2]

for all s, q ∈ J . Then ϑ has a unique fixed point.

Proof . For µ = 0, Theorem 3.10 implies the validity of the corollary. □

4. Fixed points in midconvex subgroups of a Banach group

In this section, using closed midconvex subgroups of a Banach group, we will prove some fixed
points through the concept of N-homogeneous norms on groups. First, we need to define the concept
of midconvexity and N-homogeneity.

Definition 4.1. [8] Let J be a group. An element s ∈ J is said to be divisible by n ∈ Z if s = qn

has a solution q in J . A group J is called infinitely divisible if each element in J is divisible by
every positive integer.
A group-norm ∥.∥ is N-homogeneous if for each n ∈ N,

∥sn∥ = n∥s∥ (∀s ∈ J ).

Definition 4.2. [2] Let J be a group. A subset S of J is called 1
2
-convex (or midconvex), if for

every s, q ∈ S there exists an element z ∈ S, denoted by (sq)
1
2 , such that z2 = sq.

In what follows, let (J , ∥.∥) be a Banach abelian group with N-homogeneous norm, S be a nonempty,
closed and 1

2
-convex subgroup of J and let υ : S → S be a mapping. With these assumptions, we

will have the following results.

Theorem 4.3. If 2 ≤ κ < 4 and

∥sυ(s)−1∥+ ∥qυ(q)−1∥ ≤ κ∥sq−1∥,

for all s, q ∈ S, then υ has at least one fixed point.

Proof . Let for arbitrary element s0 ∈ S, a sequence (sn)
∞
n=1 be defined by

sn+1 = (snυ(sn))
1
2 (n = 0, 1, 2...).

Then we have

snυ(sn)
−1 = s2ns

−1
n υ(sn)

−1 = s2n((snυ(sn))
−1
2 )2 = (sns

−1
n+1)

2,
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and since the norm is N-homogeneous, we have

∥snυ(sn)−1∥ = ∥(sns−1
n+1)

2∥ = 2∥sns−1
n+1∥.

So, for s = sn−1 and q = sn, we obtain

2∥sn−1s
−1
n ∥+ 2∥sns−1

n+1∥ ≤ κ∥sn−1s
−1
n ∥.

Therefore, ∥sns−1
n+1∥ ≤ β∥sn−1s

−1
n ∥, where 0 ≤ β = κ−2

2
< 1, as 2 ≤ κ < 4. Hence, for every

m,n ∈ N with m > n, we have

∥sms−1
n ∥ ≤ ∥sms−1

m−1∥+ ∥sm−1s
−1
m−2∥+ ...+ ∥sn+1s

−1
n ∥

≤ [βm−1 + βm−2 + ...+ βn]∥s0s−1
1 ∥

≤ βn

1− β
∥s0s−1

1 ∥.

Since β < 1, the latter implies that the sequence (sn)
∞
n=1 is Cauchy sequence and hence, it

converges to some z ∈ S. Since

∥zυ(sn)−1∥ ≤ ∥zs−1
n ∥+ ∥snυ(sn)−1∥ = ∥zs−1

n ∥+ 2∥sns−1
n+1∥,

we have
lim
n→∞

υ(sn) = z.

Therefore, for s = z and q = sn, we have

∥zυ(z)−1∥+ 2∥sns−1
n+1∥ ≤ κ∥zs−1

n ∥.

With n, tending to infinity, we have υ(z) = z. □

Corollary 4.4. If 0 ≤ ι < 2 and

∥sυ(q)−1∥+ ∥qυ(s)−1∥ ≤ ι∥sq−1∥,

for all s, q ∈ S. Then υ has a fixed point.

Proof . For all s, q ∈ S, we have

∥sυ(s)−1∥+ ∥qυ(q)−1∥ ≤ ∥sq−1∥+ ∥qυ(s)−1∥+ ∥sq−1∥+ ∥sυ(q)−1∥.

Thus,
∥sυ(s)−1∥+ ∥qυ(q)−1∥ ≤ ι∥sq−1∥+ 2∥sq−1∥.

Therefore, we conclude that υ satisfies Theorem 4.3 with κ = ι+ 2. □

Theorem 4.5. If 2 ≤ κ < 5 and

∥υ(s)υ(q)−1∥+ ∥sυ(s)−1∥+ ∥qυ(q)−1∥ ≤ κ∥sq−1∥, (4.1)

for all s, q ∈ S, then υ has at least one fixed point.
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Proof . Let for arbitrary element s0 ∈ S, a sequence (sn)
∞
n=1 be defined by

sn+1 = (snυ(sn))
1
2 (n = 0, 1, 2...).

So,
snυ(sn−1)

−1 = (sn−1υ(sn−1))
1
2υ(sn−1)

−1 = (sn−1υ(s
−1
n−1)

1
2 .

Then
2∥sns−1

n+1∥ − ∥sn−1s
−1
n ∥ ≤ ∥υ(sn−1)υ(sn)

−1∥.

In (4.1), put s = sn−1 and q = sn, then we get

2∥sns−1
n+1∥ − ∥sn−1s

−1
n ∥+ 2∥sn−1s

−1
n ∥+ ∥sns−1

n+1∥ ≤ κ∥sn−1s
−1
n ∥,

and so ∥sns−1
n+1∥ ≤ κ−1

4
∥sn−1s

−1
n ∥. The sequence (sn)

∞
n=1 is a Cauchy sequence in S and hence, it

converges to some z ∈ S. Since υ(sn) also converges to z, we get ∥υ(z)z−1∥ + ∥zυ(z)−1∥ ≤ 0 which
implies υ(z) = z. □

Theorem 4.6. If there exist real numbers a,b and κ such that

0 ≤ κ+ |a| − 2b < 2(a+ b);

and for all s, q ∈ S,

a∥υ(s)υ(q)−1∥+ b[∥sυ(s)−1∥+ ∥qυ(q)−1∥] ≤ κ∥sq−1∥, (4.2)

then υ has at least one fixed point.

Proof . Let for arbitrary element s0 ∈ S, a sequence (sn)
∞
n=1 be defined by

sn+1 = (snυ(sn))
1
2 (n = 0, 1, 2...).

If a ≥ 0, by puting s = sn−1 and q = sn in (4.2), we obtain

2a∥sns−1
n+1∥ − |a|∥sn−1s

−1
n ∥+ 2b[∥sn−1s

−1
n ∥+ ∥sns−1

n+1∥] ≤ κ∥sns−1
n+1∥.

If a < 0, by using the inequality

∥snυ(sn)−1∥+ ∥snυ(sn−1)
−1∥ ≥ ∥υ(sn−1)υ(sn)

−1∥,

we obtain
∥sns−1

n+1∥ ≤ λ∥sn−1s
−1
n ∥,

where λ = |a|−2b+κ
2(a+b)

. As 0 ≤ λ < 1, the sequence (sn)
∞
n=1 is a Cauchy sequence in S and hence, it

converges to some z ∈ S. With n, tending to infinity, we get

a∥υ(z)z−1∥+ b∥zυ(z)−1∥ ≤ 0.

Then, as a+ b > 0, it follows that υ(z) = z. □
As a conclusion, in this article, we attempted to prove some fixed points in normed groups to

show how capable they are when analytical devices are applied on them. We proved theorems which
have counterparts in complete metric spaces, and also theorems which are true specifically for normed
groups.
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