
Int. J. Nonlinear Anal. Appl. 13 (2022) 1, 3181-3190
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.6066

General formulas for solution some important partial
differential equations using El-Zaki transform

Athraa N. ALbukhuttara,∗, Yasmin A. AL-Rikabia,∗

aDepartment of mathematics, Faculty of Education for girls, University of Kufa, Najaf 54002, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

Our aim in this work, general formula for solution some partial differential equations are derived,
which have applications in other sciences. Elzaki transformation was used to obtain these formulas.
Moreover, some examples are solved using these formulas.
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1. Introduction

By converting differential and integral equations to algebraic equations, the integral transform has
played a significant role in solving differential and integral problems. Furthermore, various integral
transformations have been applied in many of the solutions to problems that are difficult to address
using traditional methods such as Laplace, Temimi, Novel, Sumudu, and so on [10, 4, 3, 2].

The Laplace transform can be used to solve differential equations which have constants or variable
coefficients [13]. It’s also used to solve systems of ordinary differential equations [7], and defined as
follows:

L [f (t)] = T (v) =

∫ ∞

0

f (t)e−vtdt, t ≥ 0,

In 2016, an integral transform known the Novel transform was introduced to solve a large number
of differential equations [9, 8]. The function is defined as follows:

γ (s) = N1(y(t)) =
1

s

∫ ∞

0

e−sty(t)dt, t > 0

∗Corresponding author
Email addresses: athraan.kadhim@uokufa.edu.iq (Athraa N. ALbukhuttar), yalmershedi@gmail.com

(Yasmin A. AL-Rikabi)

Received: November 2021 Accepted: December 2021

http://dx.doi.org/10.22075/ijnaa.2022.6066


3182 ALbukhuttar, AL-Rikabi

when y(t) is a real function, t > 0, e−st

s
is the kernel function.

In this study, we used Elzaki transform [6, 5, 12], for solving some partial differential equations,
which have more application in other sciences as Laplace, Transport, Poisson, Heat and Telegraph
equations.

Moreover, General formula for solution of these equations are derived using Elzaki transform,
whereas, they homogenous or non-homogenous.

The definitions and attributes of the Elzaki transform for several functions are shown in section
2. We got the general formulas for solving the Laplace, Transport, Poisson, Heat and Telegraph
equations in section 3. In the concluding section 4, we’ll use these formulas to solve some problems
[12, 1, 11].

2. Elzaki Transform: Fundamental Definitions and Properties

2.1. The Elzaki transform is described as follows [1]

E (γ(t);µ) =µ

∫ ∞

0

γ (t) e−t/µ dt = T (µ) , µ∈ (−α1, α2) , α1, α2> 0

The set ϖ is also defined as follows:

ϖ = {γ (t) ;∃N,α1, α2> 0 such that |γ (t)|< Ne|t|/αi if t∈(−1)i× [0.∞)},

α1 and α2 can be finite or infinite, but N is constant must be finite.
The inverse of Elzaki transform is define by: E−1(T (M)) = γ(t), where (E−1) returning the

transform to the original function.

2.2. Properties

The ELzaki transform of the function £(t) is defined as:

E[£(t)] = T (µ) = µ

∫ ∞

0

£ (t) e−t/µdt, t > 0, µ∈(− k1, k2).

We employ integration by parts to derive the ELzaki transform of partial derivatives as follows
[6]:

E

[
∂£

∂t
(x, t)

]
=

∫ ∞

0

µ
∂£

∂t
e−t/µdt = lim

a→∞

∫ a

0

µ e−t/µ∂£

∂t
dt

= lim
a→∞

[[
µe−t/µ£ (x,t)

] ∣∣∣a
0
−
∫ a

0

e−t/µ£ (x,t) dt

]
=

T (x,µ)

µ
−µ£ (x, 0) .

We consider £ to be piecewise continuous and of exponential order:

E

[
∂£

∂x

]
=

∫ ∞

0

µe−t/µ∂£

∂x
(x, t) dt =

∂

∂x

∫ ∞

0

µe−t/µ£ (x, t) dt =
∂

∂x
[T (x,µ)] ,

and

E

[
∂£

∂x

]
=

d

dx
[T (x,µ)] .
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Table 1: Elzaki transformation for some functions
ID Function γ(t) E(γ(t)) = µ

∫∞
0

γ(t)e−t/µdt = T (µ)
1 1 µ2

2 tn n!µn+2

3 eat µ2

1−aµ

4 sin(at) aµ3

1+a2µ2

5 cos(at) µ2

1+a2µ2

6 tn−1eat

(n−1)!
, n = 1, 2, ... µn+1

(1−aµ)n

Also we can find:

E

[
∂2£

∂x2

]
=

d2

dx2 [T (x,µ)] .

To find E
[
∂2£
∂t2

(x, t)
]
, assume that ∂£

∂t
= h. By using the equation

lim
a→∞

[[
µe−t/µ£ (x,t)

] ∣∣∣a
0
−

∫ a

0

e−t/µ£ (x,t) dt

]
=

T (x,µ)

µ
−µ£ (x, 0) ,

we have,

E

[
∂2£

∂t2
(x, t)

]
=E

[
∂h

∂t
(x, t)

]
=E

[
h (x, t)

µ

]
− µh (x, 0)

=
1

µ2
T (x,µ)−£ (x, 0)−µ

∂£

∂t
(x, 0) .

Using the mathematical induction, we can readily extend this result to the n-th partial derivative.

3. General Formulas of Laplace, Poisson, Transport, Heat and Telegraph Equations

Formula(1): Consider the following Laplace equation:

 Ltt (x, t) +  Lxx (x, t) = 0, (3.1)

with the initial conditions  L(x, 0) = ð(x),  Lt(x, 0) = J(x) and  L(0, t) =  L(1, t) = 0. By taking Elzaki
transform to the both sides, we have

T (x, µ)

µ2
−  L(x, 0) −  Ltµ(x, 0) +

d2

dx2
T (x, µ) = 0.

After substituting the initial conditions:

d2

dx2
T (x, µ) +

T (x,µ)

µ2
= ð (x) + µ J (x) (3.2)
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Note that (3.2) is an ordinary differential equation and has the solution:

T (x, µ) =

[
h1 cos

(
1

µ

)
+ h2sin

(
1

µ

)
x

]
+[(

−µ

∫
((ð(x) + µ J(x))) sin

(
1

µ

)
xdx

)
cos

(
1

µ

)
x +

(
µ

∫
((ð(x) + µJ(x))) cos

(
1

µ

)
xdx

)
sin

(
1

µ

)
x

]
Utilizing the boundary conditions, yields: h1 = h2 = 0, so

T (x, µ) =

[(
−µ

∫
((ð(x) + µJ(x)))sin(

1

µ
)xdx

)
cos(

1

µ
)x +

(
µ

∫
((ð(x) + µJ(x))) cos(

1

µ
)xdx

)
sin(

1

µ
)x

]
.

The general solution of equation (3.1) obtained by taking the inverse of both sides is as follows:

T (x, t) = E−1

[
(−µ

∫
((ð(x) + µJ(x))) sin(

1

µ
)xdx) cos(

1

µ
)x + (µ

∫
((ð(x) + µJ(x))) cos(

1

µ
)xdx) sin(

1

µ
)x

]
.

(3.3)
Formula(2): Consider the Poisson equation

 Ltt(x, t) +  Lxx(x, t) = £(x, t). (3.4)

Using Elzaki transform to equation (3.4) and applying formula (3.3), yields:

T (x, µ) = E−1

[
(−µ

∫
((E(£(x, t)) + ð(x) + µJ(x))) sin(

1

µ
)xdx) cos(

1

µ
)x

+ (µ

∫
((E(£(x, t)) + ð(x) + µJ(x))) cos(

1

µ
)xdx) sin(

1

µ
)x

]
. (3.5)

Formula(3): Consider the following homogeneous transport equation:

 Lt + η Lx = 0, (3.6)

under the conditions  L(x, 0) = ð(x),  L(0, t) =  L(1, t) = 0, and η is constant. Using Elzaki transform
to the both sides and substitution the initial conditions:

d

dx
T (x, µ) +

1

µη
T (x, µ) =

µ

η
ð (x) , (3.7)

The above equation (3.7) is an ordinary linear differential equation and has the following solution:

T (x, µ) =
1

η
e

−1
ηµ

x lim
a→−∞

∫ x

a

µð(x)e
1
ηµ

τdτ.

We get the general solution of equation (3.6), by taking the inverse of Elzaki transform as follows:

 L(x, t) =
µ

η
E−1

[
e

−1
ηµ

x

∫
ð(x)e

1
ηµ

tdt

]
(3.8)

Formula(4): Consider the following non-homogeneous transport equation:

 Lt + η Lx = £(x, t), (3.9)
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under the conditions  L(x, 0) = ð(x),  L(0, t) =  L(1, t) = 0, where ð and η are constants. Using Elzaki
transform and utilizing the pervious formula with equation (3.9), we get

T (x, t) =
1

η
E−1

[
e

−1
ηµ

x

∫
E(£(x, t)e

1
ηµ

tdt

]
+

µ

η
E−1

[
e

−1
ηµ

x

∫
ð(x)e

1
ηµ

tdt

]
. (3.10)

Formula(5): Consider the homogeneous heat equation:

 Lt(x, t) − η Lxx(x, t) = 0, (3.11)

with the initial and boundary conditions  L(x, 0) = ð(x),  L(0, t) =  L(1, t) = 0, and η is constant. We
take Elzaki transform and substitute the initial conditions:

d2

dx2
T (x, µ) − 1

ηµ
T (x, µ) = −µ

η
ð(x), (3.12)

Equation (3.12) is an ordinary differential equation which has the following solution:

T (x, µ) =

(
h1e

√
1
ηµ

x
+ h2e

−
√

1
ηµ

x

)
+

−1

2η
√

1
ηµ

(∫
µð(x)e

−
√

1
ηµ

x
dx

)
e

√
1
ηµ

x

+
1

2η
√

1
ηµ

(∫
µð(x)e

√
1
ηµ

x
dx

)
e
−
√

1
ηµ

x

Since T (x, µ) is bounded, we have h1 = h2 = 0 and so

T (x, µ) =
−1

2η
√

1
ηµ

(∫
µð(x)e

−
√

1
ηµ

x
dx

)
e

√
1
ηµ

x
+

1

2η
√

1
ηµ

(∫
µð(x)e

√
1
ηµ

x
dx

)
e
−
√

1
ηµ

x
.

We get the general solution of equation (3.11) by taking the inverse of both sides as follows:

T (x, t) = E−1

 −1

2η
√

1
ηµ

(∫
µð(x)e

−
√

1
ηµ

x
dx

)
e

√
1
ηµ

x
+

1

2η
√

1
ηµ

(∫
µð(x)e

√
1
ηµ

x
dx

)
e
−
√

1
ηµ

x

 .

(3.13)
Formula(6): Consider the following non-homogeneous heat equation:

 Lt(x, t) − η Lxx(x, t) = £(x, t), (3.14)

with the conditions  L(x, 0) = ð(x),  L(0, t) =  L(1, t) = 0, where ð and η are constants. Using Elzaki
transform with equation (3.14), we have

T (x, t) =E−1

 −1

2η
√

1
ηµ

(∫
[E(£(x, t)) + µð(x)]e

−
√

1
ηµ

x
dx

)
e

√
1
ηµ

x

+
1

2η
√

1
ηµ

(∫
[E(£(x, t)) + µð(x)]e

√
1
ηµ

x
dx

)
e
−
√

1
ηµ

x

 (3.15)
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Formula(7): Consider the following homogeneous telegraph equation:

 Ltt(x, t) + 2∂  Lt(x, t) + η2  L(x, t) =  Lxx(x, t), (3.16)

with the conditions  L(x, 0) = ð(x),  Lt(x, 0) = J(x),  L(0, t) =  L(1, t) = 0, such that η and ∂ are
constants. By applying Elzaki transform to the both sides and substitute the initial conditions,
imply that

d2

dx2
T(x, µ) − T(x, µ)

µ2
− 2∂

T(x, µ)

µ
− η2T(x, µ) = −ð(x) − µJ(x) − 2∂µð(x). (3.17)

Equation (3.17) is an ordinary differential equation and has the following general solution:

T(x, µ) =h1(x)e

(√
1
µ2

+ 2∂
µ
+η2

)
x

+ h2(x)e
−
(√

1
µ2

+ 2∂
µ
+η2

)
x

+
1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x)]e

−
(√

1
µ2+

2∂
µ
+η2

)
x
dx

]
e

(√
1
µ2+

2∂
µ
+η2

)
x

− 1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x)]e

(√
1
µ2

+ 2∂
µ
+η2

)
x
dx

]
e
−
(√

1
µ2

+ 2∂
µ
+η2

)
x

Since T (x, µ) is bounded, we have h1 = h2 = 0 and so

T(x, t) =E−1

 1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x)]e

−
(√

1
µ2

+ 2∂
µ
+η2

)
x
dx

]
e

(√
1
µ2

+ 2∂
µ
+η2

)
x

− 1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x)]e

(√
1
µ2

+ 2∂
µ
+η2

)
x
dx

]
e
−
(√

1
µ2

+ 2∂
µ
+η2

)
x

 .

The general solution of equation (3.16) by the inverse Elzaki transform is as follows:

T(x, t) =E−1

 1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x)]e

−
(√

1
µ2

+ 2∂
µ
+η2

)
x
dx

]
e

(√
1
µ2

+ 2∂
µ
+η2

)
x

− 1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x)]e

(√
1
µ2

+ 2∂
µ
+η2

)
x
dx

]
e
−
(√

1
µ2+

2∂
µ
+η2

)
x


(3.18)

Formula(8): Consider the following non- homogeneous Telegraph equation:

 Ltt(x, t) + 2∂  Lt(x, t) + η2  L(x, t) =  Lxx + (£(x, t)), (3.19)

with the conditions  L(x, 0) = ð(x),  Lt(x, 0) = J(x),  L(0, t) =  L(1, t) = 0, η and ∂ are constant. By
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applying Elzaki transform to the pervious formula, we get

T(x, t) =

E−1

 1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x) − E(£(x, t))]e

−
(√

1
µ2

+ 2∂
µ
+η2

)
x
dx

]
e

(√
1
µ2

+ 2∂
µ
+η2

)
x

− 1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x) − E(£(x, t))]e

(√
1
µ2+

2∂
µ
+η2

)
x
dx

]
e
−
(√

1
µ2

+ 2∂
µ
+η2

)
x

 .

(3.20)

4. Applications

In this section the transform efficiency in finding solution of partial differential equations by
applying the previous formulas in solving the following examples is shown:

Example 4.1. Consider the Laplace equation:

 Ltt(x, t) +  Lxx(x, t) = 0 (4.1)

with the conditions  L(x, 0) = 0,  Lt(x, 0) = x and  L(0, t) =  L(1, t) = 0. Using the equation (3.3) in
the formula (4.1), we have

T(x, µ) =E−1

[(
−µ

∫
((ð(x) + µJ(x))) sin(

1

µ
)xdx

)
cos(

1

µ
)x

+

(
µ

∫
((ð(x) + µJ(x))) cos(

1

µ
)xdx

)
sin(

1

µ
)x

]
£(x, t) = T(x, t) = E−1

[
µ3x cos2(

1

µ
)x− µ4 sin(

1

µ
)x cos(

1

µ
)x + µ3x sin2(

1

µ
)x + µ4 sin(

1

µ
)x cos(

1

µ
)x

]
= xE−1(µ3) = xt.

which represents the particular solution of equation (4.1).

Example 4.2. Consider the following Poisson equation

£tt(x, t) + £xx(x, t) = et (4.2)

with the conditions  L(x, 0) = 0,  Lt(x, 0) = 1 and  L(0, t) =  L(1, t) = 0. Then by applying the equation
(3.5) on the formula (4.2), we obtain that

T(x, µ) =E−1

[(
−µ

∫
((E(£(x, t)) + ð(x) + µJ(x))) sin(

1

µ
)xdx

)
cos(

1

µ
)x

+

(
µ

∫
((E(£(x, t)) + ð(x) + µJ(x))) cos(

1

µ
)xdx

)
sin(

1

µ
)x

]
£(x, t) =T(x, t) = E−1

[
µ2

1 − µ
cos2(

1

µ
)x +

µ2

1 − µ
sin2(

1

µ
)x

]
=E−1

[
µ2

1 − µ

]
= et

which represents the solution of equation (4.2).
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Example 4.3. Consider the homogeneous transport equation

ux + 3ut = 0 (4.3)

with the conditions  L(x, 0) = ex and  L(0, t) =  L(1, t) = 0. By employing the equation (3.8) to the
formula (4.3), we have

T(x, t) =
µ

η
E−1

[
e

−1
ηµ

x

∫
ð(x)e

1
ηµ

tdt

]
T(x, t) = E−1

[
3µ2

3 + µ
ex
]

u(x, t) = T(x, t) = exe
−1
3
t

which represents the particular solution of equation (4.3).

Example 4.4. Consider the non- homogeneous transport equation

2ux + ut = 6 (4.4)

with the conditions u(x, 0) = e2x and u(0, t) = u(1, t) = 0. Employing equation (3.10) to (4.4) implies
that

u(x, t) =
1

η
E−1

[
e

−1
ηµ

x

∫
E(£(x, t))e

1
ηµ

tdt

]
+

µ

η
E−1

[
e

−1
ηµ

x

∫
ð(x)e

1
ηµ

tdt

]
= 6t + e2xe−4t

which represents the particular solution of equation (4.4).

Example 4.5. Consider the homogeneous heat equation

 Lt(x, t) −  Lxx(x, t) = 0 (4.5)

with the conditions  L(x, 0) = e5x,  L(0, t) =  L(1, t) = 0. Then by applying the equation (3.13) on
(4.5), we have

T(x, t) = E−1

 −1

2η
√

1
ηµ

(∫
µð(x)e

−
√

1
ηµ

x
dx

)
e

√
1
ηµ

x
+

1

2η
√

1
ηµ

(∫
µð(x)e

−
√

1
ηµ

x
dx

)
e
−
√

1
ηµ

x


 L(x, t) = T(x, t) = E−1

[
µ2

1 − 25µ
e5x

]
= e5xe25t.

which represents the particular solution of equation (4.5).

Example 4.6. Consider the non-homogeneous heat equation

 Lt(x, t) −  Lxx(x, t) = ex+t (4.6)

with the conditions  L(x, 0) = ex,  L(0, t) =  L(1, t) = 0. By applying (3.15) on (4.6), we get

T(x, t) = E−1

e
−
√

1
ηµ

x

2η
√

1
ηµ

(
−
∫

[E(£(x, t)) + µð(x)]dx +

∫
[E(£(x, t)) + µð(x)]e

√
1
ηµ

x
dx

)
 L(x, t) = T(x, t) = E−1

[
−µ3ex

−(1 − µ)(1 − µ)
+

µ2ex

1 − µ

]
= ex(tet) + exet.

which represents the particular solution of equation (4.6).
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Example 4.7. Consider the homogeneous Telegraph equation:

 Ltt(x, t) + 2∂  Lt(x, t) + η2  L(x, t) =  Lxx (4.7)

with the conditions  L(x, 0) = ex,  Lt(x, 0) = ex and  L(0, t) =  L(1, t) = 0. Using the equation (3.20)
on (4.7), where ∂ = −1

2
and η = 1, we have

T(x, t) = E−1

 1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x)]e

−(
√

1
µ2

+ 2∂
µ
+η2)x

dx

]
e
(
√

1
µ2

+ 2∂
µ
+η2)x

− 1

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x)]e

(
√

1
µ2

+ 2∂
µ
+η2)x

dx

]
e
−(

√
1
µ2

+ 2∂
µ
+η2)x


 L(x, t) = T(x, t) = E−1

[
µ2

1 − µ
ex
]

= exet.

which represents the particular solution of equation (4.7).

Example 4.8. Consider the non-homogeneous telegraph equation:

 Ltt(x, t) + 2∂  Lt(x, t) + η2  L(x, t) =  Lxx + et sinh(x) (4.8)

with the conditions  L(x, 0) = 0,  Lt(x, 0) = sinh(x) and  L(0, t) =  L(1, t) = 0. Applying the equation
(3.18) on (4.8), where ∂ = −1

2
and η = 1 imply that

T(x, t) = E−1

 e

(√
1
µ2

+ 2∂
µ
+η2

)
x

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x) − E(£(x, t))]e

−(
√

1
µ2

+ 2∂
µ
+η2)x

dx

]

− e
−(

√
1
µ2+

2∂
µ
+η2)x

2(
√

1
µ2 + 2∂

µ
+ η2)

[∫
[(−2∂µ− 1)ð(x) − µJ(x) − E(£(x, t))]e

(√
1
µ2

+ 2∂
µ
+η2

)
x
dx

]
 L(x, t) = T(x, t) = E−1

[
µ3

(1 − µ)2
sinh(x)

]
= tet(sinh(x)),

which represents the particular solution of equation (4.8).
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