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Abstract

This project aims to solve the second kind of Volterra, Fredholm integrodifferential equations, and
mixed integral equations (VIDE, FIDEs and MIEs respectively) will be solved using the Laguerre-
Chebyshev Petrov-Galerkin method (PGM). By solving three cases to show how the recommended
technique works in this study, we established the PGM to find the approximate solution for linear
VIDEs, FIDEs, and MIEs.
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1. Introduction

Many problems of mathematical physics can be started in the form of integral equations (IEs),
especially VIDEs and FIDEs of the second kinds and MIEs, respectively. Several researchers have
discussed and implemented these IEs in order to get the numerical solutions. Recently, there have
been a study in interest in VIDEs, FIDEs and MIEs, because to their many of applications in math-
ematical physics (astrophysics, problem of contact, problem of heat transfer, and reactor theory).
Most typical numerical IEs solvers have been invented and built since the debut of the digital com-
puter a few years ago. In mathematical applied there are many ways for solving many problems
to find the approximate solution of the second kind VIE and VIDE by Homotopy analysis method
[4] solution of VIDEs used variational iteration method [2]. There are many numerical methods,
Laplace-Adomain decomposition method [15], Chebyshev collocation method [9]. Solution of FIDEs
by using a hybrid of block-pulse functions and Taylor polynomials [8], the modified decomposition

∗Corresponding author
Email addresses: ali.k.math.msc@gmail.com (Ali Kadhim Munaty), hameeda.mezban@uobasrah.edu.iq

(Hameeda Oda Al-Humedi)

Received: October 2021 Accepted: December 2021

http://dx.doi.org/10.22075/ijnaa.2022.6074


3228 Kadhim Munaty, Oda Al-Humedi

method for solving MIDEs [13]. Approximate method for solving VFIDEs using normalization Bern-
stein polynomials [3]. In [1] using Touchard polynomials method of for solving linear VIDEs, where
[17] used Legendre spectral Galerkin method for solving the second-kind VIEs. Provide general spec-
tral and pseudo-spectral Jacobi-Petrov-Gauss-Legendre quadrature formula is used to approximate
the integral operator and the inner product based on the Jacobi weight is implemented in the weak
formulation in the numerical implementation. The spectral Jacobi PGM, rigorous error analysis in
both L2

w(α, β) and L∞
w (α, β) norms are given provided that both the kernel function and the function

source are sufficiently smooth [16]. Solving the Singular Integro-Differential Equations using B-Spline
Methods [6].

The current study attempts to implement the Laguerre-Chebyshev Petrov-Galerkin technique for
VIDEs, FIDEs, and MIEs using the techniques described in [5]. The primary goals of this study are
to design PGM for VIDEs, FIDEs, and MIEs, as well as to explore the convergence of the suggested
method.

1.1. Integral equations

Definition 1.1. [17] An integral equation is one in which the unknown function u(x) appears both
inside and outside the integral signs. The most common type of integral equation is one of the
following:

h(x)u(x) = f(x) + λ

∫ β(x)

α(x)

k(x, t)u(t)dt, x ∈ [a, b] (1.1)

An integro-differential equation (IDE) an equation involving derivative and integral together with
unknown function u(x), which is of the form:

u(j)(x) +
k−1∑
j=0

pj(x)u
(j)(x) = f(x) + λ

∫ b(x)

α(x)

k(x, t)u(t)dt, (1.2)

where, u(j)(x) =
dju

dxj
.

where, α(x) and β(x) are integration limits, λ is a constant parameter, and k(x, t) the kernel of
the integral, which is a known function of the two variables x and t. The functions f(x) and k(x, t)
are given in advance. It should be emphasized that the integral limits are dictated by the variables
α(x), β(x) and perhaps both variables, constants, or mixed.

1.2. Forms of the integral equations

An integral equation (1.1) is called

1. Non-linear IE, if the kernel k(x, t) is given in the form k(x, t, u(t)).

2. Homogenous IE, if f(x) = 0, otherwise it is called non- homogenous.

3. Linear integral equation of the first kind, if h(x) = 0, while if h(x) = 1 it called linear IE of
the second kind, otherwise it is called of the third kind.

4. VIEs, when α(x) = a and β(x) = x, where a is constant and x variable, which has a form:

h(x)u(x) = f(x) + λ

∫ β(x)

α(x)

k(x, t)u(t)dt, x ∈ [a, b] (1.3)
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5. FIEs, when α(x) = a and β(x) = b, where a and b are constants, which has a form:

h(x)u(x) = f(x) + λ

∫ b

a

k(x, t)u(t)dt, x ∈ [a, b] (1.4)

1.3. Mixed integral equations

Mixed integral equations (MIEs), have a form:

h(x)u(x) = f(x) + λ1

∫ β(x)

α(x)

k1(x, t)u(t)dt+ λ2

∫ γ(x)

δ(x)

k2(x, t)u(t)dt x ∈ [a, b] (1.5)

Or

h(x)u(x) = f(x) + λ1

∫ β(x)

α(x)

∫ γ(x)

δ(x)

k1(x, t)u(t)dt x ∈ [a, b] (1.6)

when α(x) = a and β(x) = x, where a and x are constant and variable respectively and δ(x) = c and
γ(x) = d , where c and b are constants.

1.4. Forms of the kernel of integral equations

If the kernel in integral equation (1.1) is called
(a) Difference kernel if it is depending on the difference (x-t), then the equation is called IE of

convolution type. i.e

k(x, t) = k(x− t)

(b) Degenerate or (sparable) kernel, when the kernel may be decomposed as follows:

k(x, t) =
n∑

k=1

ak(x)bk(t)

2. Orthogonal polynomials

In the areas, orthogonal polynomials have piqued the interest of mathematicians. In recent years,
with the finding of their relevance to inetegrable systems, this attention has often come from beyond
the polynomials community [12]. Let ∫ b

a

w(x)φi(x)φj(x) = δij (2.1)

with the Kronecker delta δij defined by

δij =

{
0, i ̸= j
1, i = j

where w(x) is a continuous, positive weight function on [a, b], and the moments areexist.
Then the inner product of polynomials φi and φj given by:

<φi, φj> =

∫ b

a

w(x)φi(x)φj(x)dx (2.2)
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for orthogonality

<φi, φj> = 0, i ̸= j (2.3)

The weight function w(x) =
1√

1− x2
in the interval [a, b] is used in this investigation.

The weight function in the interval [a, b] is used in this work, as well as the creation of φi,
i = 0, 1, 2, . . . of the following approximant functions.

un(x) =
n−1∑
j=0

uj(φj(x) + sjφj+1(x)) ∼= u(x) (2.4)

where sj is the constant and j = 0, 1, 2, . . . , n− 1 is the φj basis function.
The trail and test functions of a basis Laguerre and a basis Chebyshev polynomial with the

following weight function will be discussed in this post [5, 7, 9, 10].

3. The convergence of spectral petrov-galerkin method (SPGM)

The SPGM and the conditions that lead to convergence are discussed in this section. If X is a
Banach space with the norm ∥.∥ and X∗ is its dual space, then Un ∈ X and Vn ∈ X∗ are two separate
sequences of finite-dimensional sub spaces that satisfy the following condition [11],

(H) ∀u ∈ X and v ∈ X∗, ∃un ∈ Un and vn ∈ Vn such that

� ∥un − u∥ → 0and∥vn − v∥ → 0 as n → ∞.

� dimUn = dimVn, n = 1, 2, . . . .

In the SPGM, that is a numerical method, we seek un ∈ Un so as each vn ∈ Vn be orthogonal on
both sides of equation

u− ku = f (3.1)

As define

ku(j)(x) =

∫ b

a

k(x, t)u(t)dt, FIDEs

ku(j)(x) =

∫ x

a

k(x, t)u(t)dt, V IDEs

<(
n∑

i=0

ciD
i − k)un, vn> = <f, vn> ∀vn ∈ Vn (3.2)

Furthermore, if an element Pnu ∈ U satisfies the equation

<u− Pnu, vn> = 0 ∀vn ∈ Vn (3.3)

for u ∈ U , is referred to as a generalized best approximation (GBA) from un to u with respect to Vn

.
As a result, the SPGM is a GBA projection method. In terms of the existence and uniqueness of

the GBA, the following claim is valid:
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or each u ∈ U , the GBA from un to u with respect to Vn exists uniquely if and only if

Vn ∩ U⊥
n = {0} (3.4)

where U⊥
n denotes the annihilator of un in X∗ that is the set all functions satisfying a given set of

conditions which is zero on every member of a given set and say that Un ∩ Vn if Vn ∩ U⊥
n ̸= {0}. By

this condition Pn is a projection, for the proof Pn is projection.
Since dim Un = dimVn, then assume that Un and Vn have bases {φj}n−1

j=1 and {ξi}n−1
i=1 respectively.

Let u ∈ Ube given. To show that there is a unique Pnu ∈ Un satisfying (3.3), we show that the linear
system

n−1∑
j=0

cj(φj + sjφj+1, ξi) = (x, ξi) i, j = 0, 1, . . . , n− 1 (3.5)

has only one solution {cj}n−1
j=1 . This is equivalent to showing that the coefficient matrix A = (φj +

sjφj+1, ξi) is nonsingular.
To prove necessity, must be assume that there exist that yn ∈ Yn ∩ X⊥

n , since yn ∈ Yn, can be
write yn =

∑n−1
i=0 ciξi. By the fact that yn ∈ X⊥

n , we have right hand side of (3.5) equals zero.

N−1∑
j=0

cj(φj + sjφj+1, ξi) = 0 i, j = 0, 1, . . . , n− 1 (3.6)

Since the matrix A is nonsingular, cj = 0 for j = 0, 1, . . . , n− 1. Thus Vn = 0 and Vn ∩ U⊥
n = {0}.

Conversely, A are nonsingular. Then there exist {ci}n−1
i=1 , not all zero, such that (3.6).

Let vn =
∑n−1

i=0 ciξi. thus yn ̸= 0 and vn ∈ Vn ∩ U⊥
n . this implies that Vn ∩ U⊥

n ̸= {0}. A
contradiction, it remains to show that Pn is a projection.

We have just proved that under condition (3.4), for each u ∈ U there exists a unique Pnu ∈ Un

that satisfies (3.3). For any u ∈ U , we have Pnu ∈ Un ⊆ X , thus, by definition,

<Pnu− P 2
nu, vn> = 0 ∀vn ∈ Vn

From this equation and (3.3), we find that P 2
nu ∈ Un satisfies

<u− P 2
nu, vn> = 0 ∀vn ∈ Vn

By the uniqueness, we conclude that ∀u ∈ U

P 2
nu = Pnx

That is, Pn is a projection.
However, this is not a sufficient condition for insurance. Every x ∈ X has a Petrov-Galerkin

approximation that is unique. As a result, we must introduce a new idea known as the regular pair.
If there exists a linear operator

∏
n : Xn −→ Yn with

∏
nXn = Yn such that satisfying the condition.

(H − 1) ∥xn∥ ≤ C1<xn,
∏
n

xn>
1/2 ∀xn ∈ Xn,

(H − 2) ∥
∏
n

xn∥ ≤ C2∥xn∥ ∀xn ∈ Xn,

Where C1 and C2 are positive constants independent of n., if Xn and Yn satisfy the condition (H)
and {Xn, Yn} be a regular pair, we have the following statements:
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1. ∥Pnx− x∥ → 0 as n → ∞, ∀x ∈ X.

2. ∥Pnx− x∥ ≤ C∥Qnx− x∥ for some constant C > 0 independent of n.

We must analyze the requirement (H), as well as the conditions (H-1) and (H-2) for each construction
independently in order to ensure that the approximation solution x ∈ X exists and is unique.

Definition 3.1. Let H be a real Hilbert space, we suppose that for each n ∈ N, Xn and Yn are
subspace of H of the same dimension. we begin with following definitions.

Definition 3.2. The spectral Petrov-Galerkin approximation to u ∈ H satisfying (1.1) is an element
un ∈ Xn such that for any V ∈ Yn.

<un − kun, v> = <f, v>

A condition that ensures the existence of a unique Petrov-Galerkin approximation un ∈ Xn is that
Y ⊥
n ∩Xn = {0}.

4. The implement of the SPGM

The SPGM for (1.2) is numerical method for finding un ∈ Xn such that [5].

<u
′
+ kun, vn> = <f, vn> ∀vn ∈ Vn (4.1)

If {Xn, Yn} is a regular pair with a linear operator
∏

n : Xn −→ Yn, then the equation (3.3) may be
rewritten as

<u
′
+ kun,

∏
n

xn> = <f,
∏
n

xn> ∀vn ∈ Vn (4.2)

Now, assume un ∈ Xn and {φj + sjφj+1}N−1
j=0 is a basis for Xn (trail space) and ξi

n−1
i=0 (test space) is

a basis for Yn.
Now apply SPGM, using a basis Laguerre polynomial is trail function and a basis Chebyshev

polynomial with weight function w(x) =
1√

1− x2
, is test function define on interval [a, b]. Then

(1.2) leads to determining ui
n−1
i=0 as the solution of the linear system

(u
′

N(x), vN(x))w + (kuN , vN)w = (g, vN)w, ∀vn ∈ PN−1 (4.3)

(ku, v)w =

∫ b

a

∫ x

a

k(x, t)u(t)v(x)w(x)dtdx, V IEs.

(ku, v)w =

∫ b

a

∫ b

a

k(x, t)u(t)v(x)w(x)dtdx, FIEs.

where

(u, v)w =

∫ b

a

w(x)u(t)v(x)dx
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is the continuous inner product. Set

UN(x) =
n−1∑
j=0

uj(φj(x) + sjφj+1(x)),

where sj is a constant chosen as the boundary condition.
when ξi(x), i = 0, 1, . . . , n − 1 is a Chebyshev polynomial test function with a weight function

from space, Laguerre polynomial φj(x), j = 0, 1, . . . , n− 1 is used. We get the following result from
(1.2)

n−1∑
j=0

(ξi(x), (φj(x) + φj+1(x)))wuj +
N−1∑
j=0

(ξi(x), k(φj(x) + φj+1(x)))wuj = (ξi(x), f(x))w (4.4)

which leads to an equation of matrix form

(A+B)Un−1 = fN−1, (4.5)

Un−1 = [u0, u1, . . . , un−1]
T A(i, j) = (ξi, φ

′

j + sjφj+1)w

B(i, j) = (ξi, k(φj + sjφj+1))w fn−1(i) = (ξi, f)w

5. Numerical examples

Because the exact solution to these problems is available in the literature, we employ several
VIDEs, FIDEs, and MIEs to test the accurate recommendations. For all of the cases, the proposed
method’s answers are superior to exact solutions based on two polynomials: Laguerre polynomials
for the trail function and Chebyshev polynomials for the test function. Convergence is determined
for each VIE using the following formula

E = |UEx − Uap| < δ

where, UEx exact solution and Uap approximation solution.
Example 1: Consider the following VIDEs of the second kind [8];

u
′
(x) = 1− 2xsinx+

∫ x

0

u(t)dt, u(0) = 0

with the exact solution u(x) = xcos(x), for 0 ≤ x ≤ 1.
By using the present method, we solve this problem, thus the absolute errors obtained are com-

pared with those obtained in [7] and they are presented in Table 1 and Figure 1 which shows that
the plots of the exact and approximate solutions for case N = 4 and obtained L∞ = 3.4183e − 05
with L2 = 6.4873e− 05.
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Table 1: Comparison of absolute errors for Example 1

X Exact solution Approximate solu-
tion

Absolute Error of
the present method

Absolute Error [8]

0 0 0 0 0
0.1 9.9500e-02 9.9466e-02 3.4183e-05 4.233e-04
0.2 1.9601e-01 1.9601e-01 1.2185e-06 6.317e-04
0.3 2.8660e-01 2.8663e-01 2.8805e-05 8.544e-04
0.4 3.6842e-01 3.6846e-01 3.1948e-05 1.161e-03
0.5 4.3879e-01 4.3880e-01 1.2699e-05 1.543e-03
0.6 4.9520e-01 4.9519e-01 1.1674e-05 1.971e-03
0.7 5.3539e-01 5.3537e-01 2.4094e-05 2.430e-03
0.8 5.5737e-01 5.5735e-01 1.7329e-05 2.951e-03
0.9 5.5945e-01 5.5945e-01 2.2173e-07 3.626e-03
1 5.4030e-01 5.4031e-01 3.1250e-06 4.629e-03

Figure 1: Plots of the exact solution and approximate solutions of Example 1 by SPGM for value of N = 4

Example 2: Consider the following linear Fredholm integro-differential equation [3].

u
′
(x) = xex + ex − x+

∫ 1

0

xu(t)dt, u(0) = 0

with the exact solution u(x) = xex, 0 ≤ x ≤ 1.
We solve this problem by using the present method and the absolute errors obtained are compared

with those obtained in [3] and they are presented in Table 2 and Figure 2 which shows that the
plots of the exact and approximate solutions for case N=4 and obtained L2 = 2.0182e − 04 with
L∞ = 1.0368e− 04.
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Table 2: Comparison of absolute errors for Example 2

x Exact solution Approximate solu-
tion

Absolute Error of
the present method

Absolute Error [3]

0 0 0 0 0
0.1 1.1052e-01 1.1042e-01 9.3420e-05 8.0000e-05
0.2 2.4428e-01 2.4426e-01 2.3682e-05 3.1000e-04
0.3 4.0496e-01 4.0503e-01 6.7818e-05 7.2000e-04
0.4 5.9673e-01 5.9683e-01 1.0368e-04 1.3600e-03
0.5 8.2436e-01 8.2443e-01 6.6769e-05 2.8500e-03
0.6 1.0933e+00 1.0933e+00 1.2063e-05 6.5000e-03
0.7 1.4096e+00 1.4096e+00 7.5809e-05 1.4300e-02
0.8 1.7804e+00 1.7804e+00 7.3915e-05 2.9200e-02
0.9 2.2136e+00 2.2136e+00 6.9374e-06 5.5000e-02
1 2.7183e+00 2.7183e+00 1.5257e-05 9.6600e-02

Figure 2: Plots of the exact solution and approximate solutions of Example 2 by SPGM for value of N = 4

Example 3 : Consider the following MIE of the second kind given in the form [14]

u(x) = (cosx− 1)x2 + (2cos1− cosx− sin1− 1)x+ 2sinx+

∫ x

0

(x2 − t)u(t)dt+

∫ 1

0

(xt+ x)u(t)dt

0 ≤ x ≤ 1

with exact solution u(x) = sin(x).
We solve this problem by using the present method and the absolute errors obtained are compared

with those obtained in [13] and they are presented in Table 3 and Figure 3 which shows that the
plots of the exact and approximate solutions for case N=5 and obtained L2 = 4.0813e − 06 with
L∞ = 3.3274e− 06.
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Table 3: Comparison of absolute errors for Example 3

x Exact solution Approximate solu-
tion

Absolute Error of
the present method

Absolute Error [14]

0 0 3.3274e-06 3.3274e-06 1.335e-05
0.2 1.9867e-01 1.9867e-01 1.1182e-06 1.155e-05
0.4 3.8942e-01 3.8942e-01 1.0806e-06 1.075e-05
0.6 5.6464e-01 5.6464e-01 5.8167e-08 1.283e-05
0.8 7.1736e-01 7.1736e-01 1.9189e-07 1.108e-05
1 8.4147e-01 8.4147e-01 4.4156e-07 1.309e-05

Figure 3: Plots of the exact solution and approximate solutions of Example 3 by SPGM for value of N = 5

6. Conclusions

In this research, we used the Laguerre-Chebyshev SPGM, which is based on the orthogonal
polynomials basic tool and was designed to solve first and second-kind VIEs. The numerical results
obtained using the suggested method indicate an excellent rate of convergence, as shown in Tables 1-
3. Furthermore, the numerical and analytical solutions are identical even when using a small number
of degrees of polynomials to determine an approximation solution. As a result of L2 and L∞-norms
errors, the current method is effective, efficient, and dependable for solving various forms of integral
equations.
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