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Controllability of impulsive fractional nonlinear
control system with Mittag-Leffler kernel in Banach
space

Fadhil Abbas Naji®*, Iftichar Al-Sharaa®

aDepartment of mathematics, College of Education for Pure Sciences, University of Babylon, Babel, Iraq
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Abstract

In this paper, we study the controllability of a nonlinear impulsive fractional control system with
Mittag-Leffler kernel in Banach space. Firstly, we present the mild solution of the control system using
fractional calculus and semigroup theory. We set sufficient conditions to prove the controllability of
the control system using the Nussbaum fixed point theorem. Finally, to illustrate our results, an
example is given.
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1. Introduction

Fractional calculus has received significant interest from researchers because it describes many
scientific phenomena with great accuracy. This concept was originally described in 1695 by Leibniz
and L’Hospital as a generalization of the integer-order derivative. However, fractional calculus was
used in the 1960s. There are many critical applications of fractional calculus in many fields such as
physics, engineering, biology, medicine, etc. Several authors discussed fractional calculus in [1], [2]
and [3].

Impulsive equation theory explains processes whose states change rapidly at specific points. As
a result, it has a wide range of applications in medicine, biology, physics, electrical engineering, and
other fields. This has drawn the attention of many researchers. For more details for this topic see [4]
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[5] [6] . Solutions of impulsive fractional systems have been investigated in numerous publications
[7],18] and [9].

Controllability is an essential qualitative characteristic of a dynamical system that affects object
behavior to achieve the desired objective. Many authors have studied the controllability problem of
impulsive fractional control systems in finite and infinite dimensional spaces, [10], [I1] and [12].

In 2020, Hattaf [I3] introduced a new definition of the fractional derivative with a non-singular
kernel which we will refer to by Hattaf-fractional derivative. we will go over this definition and some
of its features in the next section.

This paper investigates the controllability of the fractional impulsive nonlinear system

)] =Ay )+ Bu(t)+ f(t.y(t) teJ=[0T],t#t,
2,....p, (1.1)

where p,w € (0,1), D is Hattaf-fractional derivative in the sense of Caputo of order p,w,
y(.) takes values in Banach space X, A : D(A) C X — X is linear operator, the control u €
L?(J,U) with U as a Banach space, B : L?(J,U) — X is bounded linear operator, the functions
f:IxX = Xand h:J xX — D(A) are continuous, 0 =ty < t; <ty < --- <t, <ty =T,
Y (tj) and y (t; ) indicate to the right and left limits of y(¢) at t = t, respectively and Ay (t,) =
y () =y (5)-

The following is the organization of the article. In the next section we review the basic concepts
and properties of Hattaf-fractional derivative, Hattaf-fractional integral, Nussbaum fixed point theo-
rem, and provide the mild solution of system . In the third section, we prove the system is
controllable under appropriate conditions. We provide an application that explains our main results
in section four.

2. Preliminaries

In this part, we present the fundamental ideas that we use in our work.
Assume the linear operator A : D(A) C X — X is the generator of Cy-semigroup {G (t),t > 0}
on a Banach space X, where sup,~, ||G ()] = S, § > 1. We consider the bounded linear opera-
tor £ := pA,A. Clearly E is the generator of uniformly continuous semigroup {7 (¢),¢ > 0} and
supyso || T (t)|] = S [14]. All through this paper, we assume {7 (¢) ,¢ > 0} is a compact semigroup.

We introduce the family of functions

PC(J,X)={y: T — X :y is continuous at t € J\ {t1,ta,... 15},
and there exist y () and y (t,) with y (t;) = y(t) fort=1,2,...,7}.

It is clear that (PC (J, X), ||| pc) is @ Banach space with the norm ||y|| o = supyc; ||y (t)]]-
Let us introduce the definition of Hattaf-fractional derivative.

Definition 2.1 ([13]). Let p € [0,1), w,A >0 and f € H'(c,d). Then

CDpeAf (1) = %p;% / E, {—rppa - <>A] d% (nf) (¢) dc. (2.1)
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1s Hattaf-fractional derivative of order p in sense of Caputo of the function f with respect to the weight
function n € C'(c,d), 1,7 >0 on [c,d]. N(p) is normalization function with N (0) = N (1) =1 and

E, (t) = Z;’;l 1“(#11) is Mittag-Leffler function of one parameter w.

When A = w and N (p) =n(t) =1, then the fractional derivative (2.1)) will be in the form
1 t p d
C w w
Df(t)y=——|[ E,|——(t— — dc. 2.2
=10 [ Bt o] o (2:2)
Throughout this paper, we consider the fractional derivative ([2.2]) with 0 < w < 1.

Definition 2.2 ([1]). Riemann-Liouville fractional integral of order w on [c,d] is

Tf (t) = ﬁ / (t— Q) f (&) de

where I'(w) is Gamma function.

Lemma 2.3 ([1]). o The Laplace transform of Riemann-Liouville fractional integral is
” 1
LT ()} = £AF O

e Riemann-Liouville fractional integral satisfies the following:

Ty (1) + 2 (1) = T (1) + T2 (1)

and
ToTPy (t) = I°Py (1) ,0 < a, f < 0.

Definition 2.4 ([13]). The fractional integral corresponding to the fractional derivative (2.2)) on
[e,d] is

IO f (1) = (1= p) £ (£) + pT°f (1) (2.3)

where I% f(t) is Riemann-Liouville integral of order w.

Lemma 2.5 ([13]). The Laplace transform of the fractional derivative (2.2)) is
L xL{f®)}y () = x71f(0)
Cpref ()} () =
Ty =1 e

From Lemma [2.3] we can give the following remark.

Remark 2.6. (i) The Laplace transform of the fractional integral 18
LLTfF)F (N =0=p)L{fFB} )+ A%ﬁ {r @) A),

(11) P (y1 (1) +y2 (1)) = ZP¥yy () + ZP¥ys (t) , where 0 < p,w < 1 and t € [c,d]
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Lemma 2.7. The fractional derivative (2.2) can be written as

W - p " n .
Dy = 1 Y () .

where IP" is Riemann-Leoville fractional integral of order pn +1, 0 < n < oo.

Proof .
Dy () = 1%[) :y (1) E, (%(t - s)w) ds
- %p 0% (%) Ty
Z( 2) Ty | 0@
nf::o ( P p)nfp”“y(t)-
O

Lemma 2.8. Let 0 < p,w <1, c<dandye C(|cd,X), then
D™y () =y (1) —y(e).

Proof .
IO Dy (1) = (1 — p) O D™y (1) + pT“ Dy (1).

From Lemma [2.7] we have,

IP,WC’DPv Z Iukz'wk—i-l + Tw - P Z ulgl-wk’—i-ly(t)
~ =
where 1, = 1_Tpp- By using Lemma it follows
pwC p,w k wk+1 P kr(1+k)w+1 -
7% D Z,uI —l——l_ Z,upI y(t)

_ Zukl-wk+1 Z ,uk“I(Hk Jwtl, i (t)

=zy<t>=/ §(s)ds =y (t) — y (o).
]

Lemma 2.9. Let 0 < p,w <1, ¢ < d and y € PC ([c,d], X), then
p
20Dy (1) =y (1) —y (c) = > Ay(t,)
-1

fory=1,2,...,p and t € [c,d].

Naji, Al-sharaa
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Proof . Using the same technique as in Lemma we get
1Dy () =Ty (1) = [ ) ds.
Using integral by part for picewise continuous functions, ch get
D™y () =y () —y () - i Ay(t,)
fory=1,2,...,pand t € [¢,d]. O
Assume the one-sided stable probability density [15]

1 (2 1
— Z —ly-wi-l Msm (imw)
(e il

then the Laplace transform of 1, (9) is

L{ve (0} (V) = (2:4)

where 0 < d < oo, 0 <w < 1land A > 0.
Additionally, assume the probability density function

1o
0 (6) = = zpw( >,O<5<oo,0<w<1, (2.5)
then, for 0 < ¢ <1
['(1+¢)
3 — TS 1
/6g0w )dd = / 6w5 F(1_1_005),O<(5<oo,0<cu<.

To define the mild solution of system (|1 ,
We begin by proving the following lemma before defining a mild solution of ([1.1)).

Lemma 2.10. Ify € PC(J,X) and y is a solution of system (1.1), then y satisfy the following

( t

Aty (1) + A, /0 (t— QO EL, (t — O h(¢,y (O)) dC
+A, T, (f) (Yo —h(0,40)) + (1 —p) Ay [Bu(t)+ f(t,y(t)]  tecl0,t]
A2 /0 (t— € Lo (t — ) [Bu(Q) + £ (C.y (O))] de

t

s = A CrO)+ A, [ =0T BLL (= O Ry (@) dC (26)
FATL (1) (o — R (0,90)) + (1= p) A, [Bu (£) + £ (t.y (1))
+pA2 / (t— ) Lo (t = ¢) [Bu(Q) + f (¢, y ()] dC t € (ty, ty1]

+Ap Z Ay (tv) 1, (t - tv) )

where L, (t) = wfo 0., 0)T(0t‘“)d9 T, (t) = [3° @u(0)T (0t) dO, o, (0) given in identically
(2.5) and Ap: [(1—p) (—I A)] O<p< 1.
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Proof . We see that y(-) is decomposable into m (-) + n (-), where m is a continuous mild solution
of the system

cNp,w
Drem(t) — { Deeh 1y (1) + Am (1) + Bu(t) +  (Ly (1) teT .
m (0) = yo
and n is picewise continuous solution of the system
An (t) ted t#t,
‘Dn(t) =< Ay(ty) =g, (n(t;)) v=12,....p (2.8)
n (0) = 0.

To find the mild solution m(t), we applying fractional integral (2.3]) for both sides of the system

2.7,
IPYeDPCm (t) = IPY°DP*h (t,y(t)) +I7% [Am (t) + Bu (t) + f (t,y (¢))].

using lemma [2.8, we have

m (t) = h(t,y () —h(0,50) +yo + I [Am (t) + Bu (i) + f (t,y ()], (2.9)

By taking Laplace transform for both sides of (2.9)), we have

2 () = () = POy 1)+ Bu(0) + 7 (1 (1)) )
L {Am (8 + Bu(t) + 1 (ty (1)} )
where M (A\) = L{m(t)} (A\) and H (X\) = L{h(t,y(t))} (N).
It follows
M) = (1—p) AM (\) — )\—prM(A) —H(\) - M+%+ [(1—p)+)\%] F())
where F' () = L{Bu (t) + f(t,y(t)} (\), then
(- gy~ Lalar =+ 22O Ty 2y
Yo — h (0,0)

(4, - )\—pr> M (N) = H(\) + 2= (1-p)+ Aﬁw} F(\)

(XA, = pA) M (A) = AH (A) + X7 (g0 — R (0,30) + [X* (1= p) + o] F(V)
[T = pAA) A, M (N) = X (X) + X [go — h (0,50)] + [N (1= p) + p FY

M (N) =A,(\T — pAA) "N H (\) + A,(NT — pAA) X" [yo — h (0, 10)]
+ A (NI = pAA) TN (1= p) F(N) + A, (0T — pAA,) " pF (\).
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AT — pAA) " = (W1 — pAA, + pAA,) (N1 — pAA,)~"
= (N — pAA,) (N1 — pAA) " + pAA,(NT — pAA,) ™
=1+ pAA,(NT — pAA,)~"
then
M (A) =A, (N1 = pAA) N H (A) + A (AT = pAA) A (yo — h (0, 90))
+ (1= p) Ay [T+ pAA,NT = pAA) T F (N) + pA, (X1 — pAA,) T F (A)
Ap(N2T = pAA)TINH (N) + A, (AT = pAA,) " X" (yo — h (0, 90))

+ (1= p) AF (\) + (1= p) pAAZ(NT — pAA,) "' F (X) + pA,(\T — pAA,) T F (N)
=A, (N1 - pAA )TIAYH (N) + Ap(AT = pAA) TN (o — h(0,90)) + (1= p) A, F (A)

+[(1—p) A+ A pAZ(NT — pAA,) ™ F(N).

Since
A, =(I—=(1=p A~
then
I=(1-p)A+ A"
Therefore
M (X) =A,(\T = E)"'AH (A) + A,(\T = E)"' X" (yo — h (0, 90))
+ (1= p) A, F (N) + pA2(X\T — E) " F(N). (2.10)

Now,

A,O0T = E) ')A H (\) = A\ / e N (s) H (\) ds
0
= Ap)\w/ e T (u¥) H () wu " tdu
0

_ 4, / o) e D () H (A) du
0

A Oode(mwT“H)\d
4, [ T T H

using integration by part, we obtain
A NI — E) "W H () = A, H—T(u“’)H \) e*@“)“} T / e O BT ) wu L H () du
0 0
=AH\)+A, / e~ BT (u®)wu " H (N) du,
0

using , we have
AN — E)Y ' H(\) = AH (N + Ap/ / e MY (O)ET (u*)H (N) wu*dédu
o Jo

A+ A, / N / wwe’A”ww(é)ET(g)wvw;l H (\) dédv

+A/ / / we Y, () B () SR Gy (©)) dedodo
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+A/ / / we M, (6 ET(t C)%_(Q
:ApHWA/ o [ [ ewer(5E)
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h (¢ y (Q)) dtd¢dd

g <<,y<<>>d6d<]dt

(5
e +A,c{ // 0o (6 ET(’“ )w“_dﬂ) (c,y<<>>d6d<}<A>

using ([2.5)), we have

A,(N\I—-FE)” "WH () =

+Ac{ / JANOET t—oww(t—ow1h<<,y<<>>dedc}u>.

Therefore

A= BN E W = 4,00+ 4, [ (- OB L (- OB (G () achoy.

ANV (NI — B)”

from (2.4)), we have
then

Therefore

ANTTONT = By —

using ([2.5)), we have

AN WT - E)

1[90 —h(0,y0)] = A\ 1/ e T (s) (yo — h (0,90)) ds
0

= AN 1/ e " ) [yo — h (0, o) wu ™ du
0

= 4, / W) e O T (1) [yo — B (0, )] du

<] de=(M)” w
4, [ 55T ) o= h O]

6—(>\u)w — / e—)\uéww ((5) s
0

de” )" Y W)
), —Ade” Y, (6) db
h (0, yo)] / / Se 0, (8) T (u®) [yo — h (0, yo)] dodu
_ —At e o
—a, [ [T ((5) ) b = 00,0 s
- / / —%eile%w <9,5> T (0t%) [yo — h (0, 10)] ddt
"y — R (0,0)] / / T (6t) [yo — h (0, y0)] dOdt

—Aﬁ{/o %(Q)T(Qt)(yo—h(ojyo))de}(/\)-
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Therefore,

AN T ET = B) ™ [go = 1 (0,90)] = ApL{Ts (8) [yo — 1 (0, 0)]} (V). (2:12)

pA2(\“I — E)™' F (\) = pA?

p/ e T (s) F (\)ds = pAi/ o~ (u”) F (\) wu“du
0 0
using ([2.4)), we have

pAOCT-E) F () = p [ [T e M0 BT () F )b
ot [ [ e ((%) )U:;:FW‘”“
oo ()
oz [T 7 /:Owe—% (( ) ) )+ 56, Q) drdgds
oz [T [// s (¢ go)w) = _[ (C)+f(<y(<)]d5d<]dt

:pAic{w [ [ o (S52)) 5 +f<<y<<>]d6d<}<x>

using ([2.5)), we have

(Oind

Q)+ (G y ()] didodv

w

pA2NT — B)VF (\)=pA2L { / / o, (6 ><t—<>w1[Bu<c>+f<<,y<<>]dedc}<A>,

pe 1= B P ) =i [ - Q- 0 Bu© + G @lach ). 21y
By substitute (2.11)), and in (2.10), we get
M) =4, + AL { [ (6= 0% BL (6= O R Gy (©)de | ()AL T () (0~ 0,30 )
+ =0 AE 0+ B [ L= 0 - 07 Bu©) + SCu @D} . (219
Taking the inverse of Laplace transform for both sides of (2.14)), we get

m () =Ayg (t,y (1) + / (= O BLy (= O h oy (0) de
£ AT () o — B (0,30)] + (1= ) Ay [Bu (8) + F(t,y(0)] (2.15)

T pA2 / Lot =) (t— O [Bu(C) + £ (Cy ()] dC.
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Now, to find the mild solution n(t), we applying fractional integral (2.3 for both sides of the system

(2.8),
TP DPn(t) = TP [An(t)] .

By using Lemma we have,

p

n(t) =) Ay(ty) o, (t) + I [An(t)]

y=1
where
o0 t €[0,]
7 <t) B { 1 te (t’Y?t”H-l] =12,
and Ny
6_ ol
Lioy (M) =

Taking Laplace transform for both sides of (2.16)),

where N () denotes the Laplace transform of n(t).

It follows,
p

(2.16)

(2.17)

N(\) = zpj Ay (1) A e 4 (1= p) AN (X) + )\—/iAN (\)

N = (L= p) AN (V) = ZAN () =" Ay (t,) Al ™

)\w

v=1

[1 —(1-p)A- ﬁA} N =3 Ay () A e

)\w

p

4,1 = LAl N () = Y Ay (t) A te

Aw

=1
p

[)\UJA;I — pA} N ()\) = ZAy (t’y) )\w—le—)\t

=1
P

[O\w[ — ,OAAP)A;q N\ = Z Ay (L) 2@ Loty

=1

P
N (A) = A,(X\T — pAAp)il/\w_l Z Ay (t,) e
y=1

p
= A,(\T = BN Ay (ty) e

=1

p oo
= A\ Z/ Ay (t,) e T (s)e M ds.
v=1"0
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= A\ 12/ Ay (t e~ Ow” T (u?)e Mwu du

=A Z/ Ay (t,) whuw) e MO T (u)e M du

o 1 de~ () _
=A, Z/o —Ay(t,) ST T (u?)e M du
=1

using , we have
p 0o 00
A=A, / / Ay (t,) e, () T (u)e  dddu.
=1 /0 Jo

= A Z/ / Ay (ty) ey, (6)T (5w ) M dsdy

U w
:AﬂZ/O /0 Ay (t,) e Ty, (6)T (57 >d5dv.
y=1
p 0o oo

4, /0 Ay e—A%((S)T((t gf”’)w)d(sdt.

=1

using , we have
= A Z / / Ay (t,) e M (0)T (0(t — t,)*)dodt
0

= AL {Z /OOO Ay (ty) 0w (0) T (0(t — 15)”) d9} (A)

= A L’{ZAy =t }(A) (2.18)

taking the inverse of Laplace transform for both sides of (2.18)), we get
= A ZAy Lt —1)”. (2.19)

From ([2.15) and ({2.19)), we have
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( t

A (ty (8) + A, / (t— ) EL, (t - ) h(Cy (0)) dC
FAT () o — R (0.0)] + (1= p) 4, [Bu() +  (Ly ()] €0,
A2 / (t— O Ly (t— Q) [Bu(O) + £ (C.y (C))] dc

s =1 Aty + 4, [ =0T BL( - ORC0) A
+A, T, (7;) (Yo —h(0,50)) + (1 —p) A, [Bu(t) + f (t,y (1))]
A2 / (t— O 'Lt — O [Bu(Q) + F (Cy(©)Nde  FE (bt

+A4, ZAy L(t—1,)

0
Lemma 2.11 ([16]). The operators L,, and T,, have the following properties.

i. For any fizedt >0, L,(t) and T,(t) are linear and bounded operators, i.e.
foranyy € X,

wS

S
< i W = pg

/ 0o, (0) T (0t°) yd@“

I1Lu@)y || =

I yn—H/ ¢ (O)T (06 8] < S

where S = supq |1 (t)]].
ii. The operators {Ly(t)},5o and {T,(t)},5, are strongly continuous.
iii. The operators {L,(t)},5, and {T,,(t)},5, are compact.

Note that, for y € D (A) we have [14]

d
dt

Definition 2.12. The mild solution y(t) of system (1.1)) is

—T(t)y=ET(t)y=T(t) Ey.

/ t

Ah(ty(0) + A, /0 (t =) Lo (t = Q) ER (¢, y () dC
FALTL (0 (0= h(0.30)) + (1= p) 4, [Bu(t) + f (Ly ()] te .t
o [ (1= O Lt = O [Bu () + S G @] e

t

v =9 Ah(y )+ A, / (t =) L (t = Q) ER(C.y (¢)) dC

+ALT (8) (o = 1 (0,90)) + (1= p) A, [Bu (t) + £ (¢, (1)
+pA2f0<t—< 'L < ) [Bu () + f (¢ y ()] dC t € (ty byl

+A, ZAy Lt —t,),
y=1
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Theorem 2.13 (Nussbaum fixed point theorem[17]). Assume G is closed, bounded and con-
vex subset of a Banach space X . If the continuous mappings ¢1, o2 from G to X satisfies the following:

1. (¢1+¢2) G C G,
2. |1 — dryl| < Cllz —y|| for all z,y € G where 0 < C' < 1,
3. o is completely continuous,

then the operator ¢y + ¢ has a fixed point in G.

3. Controllability results
In this section, we prove the system is controllable. The following conditions are assumed.
H1 The linear operator W, : Ly(J,U) — X defined as
Wou = (1—p) A,Bu+ pAZWu

has an inverse operator W, " on and HWp_lH <K, K>0,|A)l <nn>0.
where W is linear operator from Ls(J,U) into X such that

Wu = /0 (T —5)“" 'L, (Y — 5) Bu(s) ds.

H2 There exist constants My, /T/l\h > 0 such that

IER(E,y1 (1) — Eh (g2 ()] < M [lys (1) — g2 ()]

and

—

M, = sup,c 7 ||ER(t,0)]

H3 The continuous function f : J x X — X satisfies Lipchitz condition i.e. there exist a constant
M > 0 such that

1t p1(8) = F (8 g2 ()] < My llyn () — g2 ()]

and -
My = supeg [|f(20)] -

where ./\//l\f > 0.

H4 The function ¢, : X — X, v = 1,2,...,p is continuous and satisfies Lipchitz condition, i.e.
there exists a constant M., > 0 such that

lay (91) = ¢y (w2) | < M Iy () = w2 (1))

and
p
S M, =0
v=1

where M > 0.
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Definition 3.1. System (1.1)) is controllable on J = [0, Y] if for each initial state yo € X and each
y1 € X, there is suitable control uw € L? (J,U) such that the PC-mild solution y(t) of system (1.1])

satisfies y () = y1.

Theorem 3.2. The system (1.1)) is controllable on J = [0, Y] if it satisfies the conditions H1-HJ,
and

ST

0<D+77KHBHD{(1—p)+F(M+1) (3.1)
where
S STw
_ 1
D= [ Mo+ S M (1= ) My oy 5]

Proof . Using condition H1, define the control w,(t) for an arbitrary function y(-) € PC(J,X) as

( T
W, [y AT,y (1) — 4, / (T — O L (T — Q) BR (Cy () dC
— AT @ o — R (0,90)] — (1 = p) A f(T,y(Y)
ot [0 LT = O £ (G ) dc} , Le 0.t
Uy (t) = T

W, [y _ AT,y (7)) = A, / (T = O 'Ly (T = Q) Bh (¢, (O)) dC
AT (o — h (0,50)) — (L= p)AF(T,y ()
T p
A2 / (T = O L (T = Q) £y (0) dC — A, S Ay(t,)Tu(T m] L te (b top)

\

By using (2.17), we can write u, (¢) in the form
u, () = W,™! {yl — A h (T, y (X)) = A, /OT (T =) 'L (T =) ER (¢,y (€)) d¢
— AT (T) (yo = 2 (0,30)) — (L = p) A, f (T, (1))
—pA; /0]r (T = Lo (T =) f(Gy Q) d¢ — 4, zp; Ay(ty)o (t) To(T - t”/)] , te[0,7]

We have to show that the operator ® : PC(J, X) — PC(J, X)) has a fixed point when applying
this control, where

(A y(t))+A / (L= O Lt — O) BR (G (O) €
+A,T, (t) [yo — h (0, yo)] + (1= p) Ay [Buy (t) + f (t.y ()]
pA, / (b= O Lo (t— Q) [Buy () + Gy () d L€ 0,t]

@) () =4 Ah(ty)+A, / (t— O Lo (t — €) B (C,y (C)) de
(

AT (8) [y — b (0.90)] + (1 — p) A, [Buy (£) + £ (£, ()]
4083 (0= O Lt = O [Buy (O + F (€ ()]

+A, ZAy Lt —t) t € (ty,tys].
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By using (2.17), we can write (®y) (¢) in the form
(Py) (1) =A,h (t,y (1) + A, /Ot (t= Q) "L (t = Q) Bh (¢, (€) dC
+ AT (1) [yo — 1 (0,50)] + (1 = p) Ap [Buy (8) + f (,y (1))]

fpy [ (= 0 L= O By (O + £ (Cu (O
+ApiAy(tﬁ,)aw (0T (t—1.), ted.
By using the control u, (f) , we h_ave (®y) (T) = 1y, indeed,
(@) 00 <ALy (T) 44, [ (1= 1 (T = O BR G (O

+ AT, () [yo — 7 (0, 40)] + (1 = p) A, BW, A (T) + (1= p) A, f (T, 9 (X))

T
T pA? /0 (T — O L, (T — ¢) BW, A (Y) dC

F ol [0 0P LU (T = O£ GOV + 4,3 Ay(t) 0, (VT (X 1),

=1

where
A(t) =y — A0 (T,y(T)) — Ap/o (T =) "L (Y = Q) ER(¢,y(Q) dC
— AT, () [yo — R (0, 90)] — (1 = p) Apf (T, y (7))

T p
— pA; /0 (Y= Q) "L (Y =) f(Cy(Q))dC — A Ay (ty) oy () T (T = t,).
It follows,

(@y) (T) =A,h (T,y (1)) + Ap/o (T =) "L (Y = Q) Eh (¢, y(Q) dC + AT (T) [yo — h (0, o))
+ [(L=p) A,B+ pA2W]| WA (Y) + (1 — p) A, f (T, y (7))

o [0 =0T L (T = O F Q)+ 4,3 Aylt)o, (0 T(T = 1)
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A (T (0) + Ay [ (6= Q) L (0= ) ER (G, () + AT (1) o = h (0]
W [y AR (T (T) = Ay [0 =0 L (0= O BR Gy (O) e
AT () [go — 1 (0,0)] — (1= p) A, f (T,(T))

A / (T = O Ly (T =) F Gy () dC —A, " Aglt ) (1) Tu(X — 1)

, =1
(1= p) Apf (T.y (X)) + pA2 / (T = O Ly (Y — ) £ Gy (0)) dC
+ A, ZAy T,(Y —t,).
=1
Now, for t € 7,

lu(®)] <K [Ilylll AR (O, y ()] + (Al %/ﬁ (T = O 1B (Cy () d¢

1460 S llyo = 20, 90) [ + (1 = p) [ AL 1F (T, y (1))l

oll42) %) [ -0 w@nlac+ 14 L) (O Tu(T — 1)

ST ]

1 1 1
[nmum{HE | M 87 M6+ )(Mhuy||+Mh)+s(||yo||+HE | M)

w

ST —

Ty (MU ol Mg) + Ml +8; ||q7<0>||”
STUJ S’rw

— —1 B

=i [l [ M s Mt (0 )My

+1)
Ly o ST — . .
+1 {HE 1HM’1+th+S<HZJOH+HE M) + (1= p) My

STV  — P
+77/?me +S ; ||%(0)||”

=K Dyl + il + D]

+ (1= p) (Myllgll + M) +np

./\/lf —i—S./\/l}

where D is given in assumption and

ST

D= |IlE Mot s

M+ (llyoll + | B Mi) + (1 = p) My

STY  —
+anMf +S ; ||%(O)||] :
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Also, for y,y € PC(J,X), we have
T
luy = ugll < [[W, 14, M (T = Q) Ll 1 BR (¢ y (€)= ER (G5 (C)] ¢

+p HApH/O (T = O ILll I Gy ()= f (€ aENNAC+D Tl llavy () = 4,9 (&)l

=1
w w

ST ST
<
<Kn [wF( )Mh ly — 9l + pn T (o )Mny gl + SMly — yll}

T
NEES MR vy

—hns [ @+ 1)

Mf+M] Iy — 3.

Define the set
Co={y:ye PC(TJ,X),|lyll <€ foreachteJ},

then C. is closed, convex and bounded subset of PC (7, X) for each e.
Define the operators

(@)y () =A,h (t,y (1) + A, /Ot (t= Q) "L (t = Q) BR (¢ (€) dC
+ AT (1) (Yo — 1 (0,0)) + (1= p) Ay [Buy () + f (£, (1))]

A2 / (t— O L (t =€) Buy () dC+A4, Y Ay (t) T, (t—t,),  ted.
y=1

(@,)y (1) = pA2 / (t— O Lo (t— ) f(Cy(©)d,  ted.

It is clear that
(<I)1+(I>2)y = Py.

To show operator ® has a fixed point on C., we need to choose ¢y > 0, such that (®,+®,)y has a
fixed point on C,,.

Taking
nk || BI (1= ) + #2555 | (Il + D) + D
€0 = .
1= [D+nK||BI D [(1-p) + 55 |

We will show the operator (®,+®2)y has a fixed point on C,. There are three steps to our proof:

Step I . In this part of our proof, we will show ®C,, C C.,.
Let y € Cq,, then

(@)@ <l A | 1Ay ()] + %W)/o (t = IBR(C, y (O dC + S [I(yo — 1 (0, 90))
+ (1= p) [|Buy ()] + Hf(t,y(t))IHerHApH%/o (t =) |1 Buy (¢)ll d¢

+o 4] %/0 (t= QO I Gy A +8) 1Ay (%)H]
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STv

1 1
<o 1B Maco + 17| ¥+ s

(Mhﬁo +/Vlh> +S <||yo|| +|E7Y Mh)

(= ) 1By (] + 1 = ) (Myeo + 35) + o= 1B (0]
o (Mieo+ 7M7) +5Meo + s; la, <o>||]
ST N
=7 {60 {HE HMh—i_ﬁMh—i_( p)Mf—I—p?]me—O—SM}
1 M+ s M+ S (el + B 762) + (1= ) 3,
+pn%Mf+Slelqw M+ =)+ s 1B <t>u]

. ST
~Da+ D+ (1= )+ gt | 1By ()

. ST
<Dey+ D + {(1 —p)+ pﬁm

_ {D+77KHB”D [<1 =) +pn%u 0

ol (il + D) +

i 151 (D + 1l + )

LK |B| {( o)+ pn

—=€90-
Therefore (@1 + ®2) C, = PC,, C Cy,.

Step II . We prove the operator @, is contraction on C,,.
Let y,9 € C,, then

11y = 1yl <[[All | 12,y (1)) = h(t, 5 ()]

+/0 (t =) L (t = OINER(C,y (¢) = BR(C, 5 (O] d¢
+ (L= ) [|Bl luy(t) = ug@I + (1 = p) [ F (£, (£)) = £ (2,5 ()]
+p||Ap||/0 (t = O M ILu (¢ = ONIBI ey (€) = ug(C) I dg

+> 1Tl lgyy () = 449 (%)II]
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S T w
0| 1B Mo+ 3 Ma (= LB RS (S Mt My + M)
ST« T Tw
(1= p) My + 1 18] ns( e Mat )Mf+/\/l)
+SM| lly — 4l
. ST
=n HE HMh‘i'th—l-(l—p)Mf—i—SM
STv Tw Tw
+ || Bl KnS <(1—P)+P77F(w+1)> (F(w+1>Mh+P77me
#a) =l
Let
=1 HE_IHMmLﬂMth(l—p)M +SM
Fw+1) f
STv Tw Tw
#1800 (-0 + ) (s M+ My + )|

From ({3.1), we can observe that 0 < N < 1 which mean ®; is a contraction.

Step III . We prove the operator ®, is completely continuous.
Firstly, we prove ®, is continuous.
Let y, be a sequence in PC (7, X) which converge to y. Since f is continuous function, then

|®ayn — Bayll < p[|42] / L (= OIS (€ (O)) = £ (G ()] dC
< pv% / (= O 1 (Com (©) — £ (G (O de

which converge to zero as n — oco. Therefore ®oy,, — P9y in PC (T, X).
Next, we prove the family {®qy:y € C} is relatively compact. According to Arzela — Ascoli
Theorem it is suffices to prove:

o {Oyy:ye C,} is uniformly bounded.
o {Oyy:y e C,} is equicontinuous.
e For each t € I then {(Pqy) (¢) : y € C¢, } is relatively compact in X.

By definition of C,, we have |®oy|| < € for any y € C,,, therefore {®oy : y € C¢,} is uniformly
bounded.
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To prove {®oy : y € C,} is equicontinuous, let t1,ty € J, t1 < to then

| P2y (t2) — Poy(ty

= O L (s — ) £ (Coy (O)) dC — / = O L (b= O) £ (G Q) ch
Nty — O L (s — ) £ (G (O)) dC + /0 = O M (s = O) £ (Cy (O)) dC
/ L= OF Gy~ | (= O Lo (e — ) f (G (O) de

- / -0 L0 - 05 (€ (0) e

/0 = O L (b2 — O) £ (Coy (O)) de

/ (2= O Lo (12 —of(c,y(o)ch "

- / (- O Lt~ O (L w (0) 4l

+

[ -0 -0 s @@y - [0 -0 (- 0 G e) d<H

/ (12— O)* L (12— ) F Gy (©)) ch

+

/Otl [(t2 = )" = (= O] L (2 = ) £ (S, w () ch

+

/ (= O (Lol = Q) = Lu (= 1/ (¢ (<)) d<H .

Let

Oy = / (s — O L (ta— O) £ (Cy (O))

0, = /gh [(bs =) = (1 = Q) ] L (= Q) f (G y(O) d

0y = /0 (= O L (2 — ) — Lt — O (€9(Q)) ch :

We have to prove O, Oy and O3 tend to zero when ty — 4.
By using Lemma and condition H4, we have

S & w—1
0 < | =0 I Cr O
S o /\

<ttt (Myeo+ M)
which tend to zero as ty — ;.
Also,

S (ta —ty)
Oz < Nw) w (Mf€0+Mf)
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which is tend to zero as t9 — t;.

NOW, for 03, if t, = 0 then 03 =0.
If £, > 0 and s is a small enough, then

0y < / (= O L (b2 — ) — L (1 — O I (€ (O] de

[ =07 = O = L= OIS Gy (O ¢

ty — s¥ —
< supcfogn - Lo (12 = €) = Lu (b = Ol 2 (Myeo + My )

i —
5P 1L (t2 = €) = L (= O = (Myeo + M)

Since T (t),t > 0 is compact operator and by Lemma we have L, is continuous in the uniform
operator topology, then O3 tend to zero as t, — t1, s — 0.

Therefore || Py (t2) — Doy (¢1)|| tend to zero independently of y € C¢, as to — t; which mean the
family {®qy : y € C,,} is equicontinuous.

Finally, we prove the set R (t) = {(®2y) (t),y € C¢,} for any ¢t € J is relatively compact in X.

If t =0, then R(0) = {(P2y) (0)} = {0} which is compact set.

If t > 0, we choose v € (0,t) and a real number r > 0 to define the operator

(@) (1) =wpA? / b / Bt — O (O) T (Bt — O)) F(C.y (C))d0C
A2 / / Bt — O (0) T (Bt — O — v¥r +v°r) F(Cy (¢))dBdC

AT (1) / b / 0t — O pu ()T (0t — O —v°r) £(C.y (C))dbdLC.

Since T' (v“r) is compact operator then the set {(PYy) (t),y € C,,} for any t € J is relatively compact
in X. Moreover, for any y € C,, we have

= ||wpa? / / (t— O 0u () T (Bt — O)°) £ (¢ (C)) dBdC

[(@2y) () — (¥;y)

~ wpd? / i e<t—<>w—1%<6>T<e<t—<>“>f<c,y<c>>ded<H
~orsz [ t [ o= 07 0 - 0% 1 G (©) g

rapds [ [ 0= 0" e, OT (000 - O0) £y Q) doig
~wpl? / -0 e 0T 00— 0%) £ (G () dedcﬂ
< [lwpaz / / 0t — O ()T (0t — O) £ (. (0) dedcu

tlonaz [ [T o0- 0 @ T 00— 0 s (v o) v




3278 Naji, Al-sharaa

)\QSt—“’_l d Tewede

<wp / (t— O 1Ayl dC / o (0)

cwpS [ (=0 IICHONdC [ 0p 0)ap

< pA2ST (Mfeow\/@) / 0o, (6) A+ pA>Sv* (Mfeow\//ﬁ)/oo O, (6) db.
0 r

Therefore, [[(®ay) (1) — (PYy) (t)|| tends to zero as v,r — 0. Consequently, there are relatively
compact sets arbitrary close to the set R (t). Thus, R (t) is relatively compact in X. Based on
the above, the operator ®, is completely continuous. According to Nussbaum fixed point theorem,
operator @ has a fixed point in C¢,. Therefore, the system ((1.1]) is controllable on J. O
4. Application
Consider

((“D" [y (t,7) = h(t,y (t.7))] = Ay (t,) + Bu(t) + f (t.y (t, 7)),

pyw € (071)77 S [Oaﬂ-]u te [Ovtl) U (thl] )

y(t,0) =y (t,m) =0, t €]0,1],
( Ay () =a (v (7)), =73,

and X = L?([0.7], R) . Define

02y
A — Y ).
y(t,7) 92 (t,7)
where )
D(A)=<5yeX: 9y @EXand’y(O)zv(ﬂ):O :
Oy’ 02

For y € D (A) then A can be written as the following

Ay = Z _82 <y7 ys> Ys,
s=1

where y,(7) = (2) %sm(sv
t)

in L2 [0, w] such that T (
as follows:

), s=1,2,3.... Therefore A is the generator of Cy— semigroup {7 (t),t > 0}
y=3"" e (y,y.) ys, y € D (A) [I8]. The functions h, f and ¢, defined

e h:[0,1] x X — D(A) such that
bty lta) = [ sing (6.0 dC te0.1).9 €A, ye X

e f:]0,1] x X — X such that

e y(t,v)|

ftyty) = ;

, te]0,1],y€[0,7n], ye X, b>0.
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e ¢ : X — X such that

v (59)]
@ (y(t,v)) = - , tel0,1],y€0,7], ye X.
2Q+M§ﬁw
FOI' Y1,Y2 €X7

rebn el E O < L -

1t (67) = F (3 (1) | = ‘

b b
and
82 Y ) 82 i )
B (o (62)) = Bl (togn () = | 515 [ simyn (.0 e = 75 [ sine (8:0) e
o Jo v Jo
N Lsings (t,0) = Zsings (,0) || < Ln llys — wel
_87 Y1 (L, By Ya (T, > Lp||Y1 — Y2
where
52
L, = Sup{'lwsinu(t,y) H rue X, tel0,1],y € [O,W]}.
Also,

1
lar (y1 (t1,7)) = @1 (w2 (G, VI < 5 Mlvn = vel-
Subsequently, the hypothesis of Theorem are fulfilled. Therefore, the system is controllable.
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