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Abstract

In this paper, we prove the Hyers-Ulam stability in β-homogeneous probabilistic modular spaces via
fixed point method for the functional equation

f(x+ ky) + f(x− ky) = f(x+ y) + f(x− y) +
2(k + 1)

k
f(ky)− 2(k + 1)f(y)

for fixed integers k with k 6= 0,±1.
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1. Introduction and preliminaries

More than a half century ago, Ulam [32] posed the famous Ulam stability problem which was partially
solved by Hyers [10] in the framework of Banach spaces. The Hyers-theorem was generalized by
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Aoki [2] for additive mappings. In the year 1978, a generalized solution for approximately linear
mappings was provided by Rassias [29]. He considered a mapping f : X → Y satisfying the condition
‖f(x1 + x2)− f(x1)− f(x2)‖ ≤ ε(‖x1‖p + ‖x2‖p) for all x1, x2 ∈ X, where ε ≥ 0 and 0 ≤ p < 1.
This theorem was later extended for p 6= 1 and generalized by several mathematicians (cf. Gajda [6],
Rassias and Semrl [30] and [3, 4, 7, 8, 11, 12, 13, 14, 15, 18, 28]).
The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is related to a symmetric bi-additive function (cf. [1, 16]). It is natural that (1.1) is called a
quadratic functional equation. In particular, every solution of the quadratic (1.1) is said to be a
quadratic function. For other types of quadratic functional equations (cf. [3, 5, 13]).
Now, we consider a mapping f : X → Y that satisfies the following general mixed additive and
quadratic (”AQ” for short) functional equation:

f(x+ ky) + f(x− ky) = f(x+ y) + f(x− y) +
2(k + 1)

k
f(ky)− 2(k + 1)f(y), (1.2)

for fixed integers k with k 6= 0,±1. It is easy to see that the function f(x) = ax2 + bx is a solution
of the functional equation (1.2).
In the present paper, we will study the Hyers-Ulam stability of the given equation (1.2) from linear
spaces into probabilistic modular spaces by applying the fixed point theorem in modular spaces (see
Theorem 1.8).

Definition 1.1. Let X be an arbitrary vector space.
(a) A functional ρ : X → [0,∞] is called modular if for arbitrary x, y ∈ X ,
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α + β = 1 and α, β ≥ 0,
(b) if (iii) is replaced by
(iii)

′
ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α + β = 1 and α, β ≥ 0,

then we say that ρ is convex modular.

The vector subspace Xρ = {x ∈ X : ρ(νx)→ 0 as ν → 0} of X is called a modular space. Let ρ be
a convex modular, the modular space Xρ can be equipped with a norm called the Luxemburg norm,
defined by

‖x‖ρ = inf
{
ν > 0 ; ρ

(x
ν

)
≤ 1
}
.

A function modular is said to satisfy the ∆2-condition if there exists ` > 0 such that ρ(2x) ≤ `ρ(x)
for all x ∈ Xρ.

Definition 1.2. Let {xn} and x be in Xρ. Then

(i) the sequence {xn}, with xn ∈ Xρ, is ρ-convergent to x and write xn
ρ−→ x if ρ(xn − x) → 0 as

n→∞.
(ii) The sequence {xn}, with xn ∈ Xρ, is called ρ-Cauchy if ρ(xn − xm)→ 0 as n,m→∞.
(iii) A subset B of Xρ is called ρ-complete if and only if any ρ-Cauchy sequence is ρ-convergent to
an element of B.

The modular ρ has the Fatou property if and only if ρ(x) ≤ lim infn→∞ ρ(xn) whenever the sequence
{xn} is ρ-convergent to x.
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Remark 1.3. Note that ρ is an increasing function. Suppose 0 < a < b. Then the property (iii) of
Definition 1.1 with y = 0 shows that ρ(ax) = ρ

(
a
b
bx
)
≤ ρ(bx) for all x ∈ X . Moreover, if ρ is a

convex modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x) and also ρ(x) ≤ 1
2
ρ(2x) for all x ∈ X .

The theory of modular spaces was, in fact, initiated by Nakano [25] and generalized by Musielak
[24] and Orlicz [27]. for more, the reader is referred to [19, 20, 21, 22, 31, 33]. On the other hand,
in 1942 a generalization of the notion of metric space was introduced by Menger [23] under the
name of statistical metric space which is now called probabilistic metric space. Such a probabilistic
generalization of metric space appears when there is an uncertainty about the distance between the
points and we know only the probabilities of possible values this distance. After the appearance of
Menger’s paper, the study of probabilistic metric spaces was performed rapidly by many authors
in theory and application, and many concepts and results in classical functional analysis obtained
some generalizations and counterparts in probabilistic functional analysis. In [9], after introducing
the probabilistic modular, authors then investigated some basic facts in such spaces and study linear
operators defined between them.
In the following, ∆ stands for the set of all non-decreasing functions f : R → R+

0 satisfying
inft∈R f(t) = 0, and supt∈R f(t) = 1. We also denote the function min by ∧.

Definition 1.4. A pair (X,µ) is called a probabilistic modular space (PM-space) if X is a real
vector space, and µ is a mapping from X into ∆ satisfying the following conditions:

(1) µ(x)(0) = 0;
(2) µ(x)(t) = 1 for all t > 0, if and only if x = θ (θ is the null vector in X);
(3) µ(−x)(t) = µ(x)(t);
(4) µ(αx+ βy)(s+ t) ≥ µ(x)(s) ∧ µ(y)(t), for all x, y ∈ X, and α, β, s, t ∈ R+

0 , α + β = 1.

We say (X,µ) is β-homogeneous, where β ∈ (0, 1] if,

µ(αx)(t) = µ(x)

(
t

|α|β

)
for every x ∈ X, t > 0, and α ∈ R \ {0}.

Example 1.5. Suppose that X is a real vector space and ρ is a modular on X. Define

µ(x)(t) =


0, t ≤ 0

t
t+ρ(x)

, t > 0 .

Then (X,µ) is a probabilistic modular space.

Definition 1.6. Let (X,µ) be a PM-space, {xn} a sequence in X and x ∈ X. Then

(i) the sequence {xn}, with xn ∈ (X,µ), is µ-convergent to x and write xn
µ→ x, if for every t > 0

and λ ∈ (0, 1), there exists a positive integer n0 such that µ(xn − x)(t) > 1− λ for all n ≥ n0.
(ii) the sequence {xn}, with xn ∈ (X,µ), is µ-Cauchy, if for every t > 0 and λ ∈ (0, 1), there exists
a positive integer n0 such that µ(xn − xm)(t) > 1− λ for all m,n ≥ n0.

By [9], every µ-convergent sequence in a PM-space is a µ-Cauchy sequence. If each µ-Cauchy
sequence is µ-convergent in a PM-space (X,µ), then (X,µ) is called a µ-complete PM-space.
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A PM-space (X,µ) possesses Fatou property if for any sequence {xn} of X µ-converging to x, we
have

µ(x)(t) ≥ lim sup
n≥1

µ(xn)(t)

for each t > 0.

Remark 1.7. Note that for any x ∈ X, µ(x)(.) is an increasing function, since µ(x) ∈ ∆. Moreover,
if µ is a β-homogeneous probabilistic modular on X and x, y ∈ X, then the property (4) of Definition
1.4 shows that

µ(x+ y)
(
2β(s+ t)

)
= µ

(
1

2
x+

1

2
y

)
(s+ t) ≥ µ(x)(s) ∧ µ(y)(t).

For more details about the PM-space, the readers refer to [26].
Our aim is based on the fixed point approach:

Theorem 1.8 ([17]). Let Xρ be a modular space such that ρ satisfies the Fatou property. Let C be
a ρ-complete nonempty subset of Xρ and let T : C → C be a quasicontraction, that is, there exists a
K < 1 such that

ρ(T (x)− T (y)) ≤ K max{ρ(x− y), ρ(x− T (x)), ρ(y − T (y)), ρ(x− T (y)), ρ(y − T (x))}.

Let x ∈ C such that
δρ(x) := sup{ρ(T n(x)− Tm(x)) : m,n ∈ N} <∞.

Then T n(x) ρ-converges to ω ∈ C. Moreover, if ρ(ω − T (ω)) < ∞ and ρ(x − T (ω)) < ∞, then
the ρ-limit of T n(x) is a fixed point of T . Furthermore, if ω∗ is any fixed point of T in C such that
ρ(ω − ω∗) <∞, then one has ω = ω∗.

In the rest of this paper, we will assume that µ is a probabilistic modular on X with the Fatou
property (in the probabilistic modular sense) and (X,µ) is a µ-complete β-homogeneous PM-space
with β ∈ (0, 1].

2. Approximate Mixed Additive and Quadratic Mappings

Theorem 2.1. Let  ∈ {−1, 1} be fixed. Let E be a linear space and (X,µ) a µ-complete β-
homogeneous PM-space. Suppose that an odd mapping f : E → (X,µ) satisfies the condition
f(0) = 0 and an inequality of the form

µ
(
f(x+ ky) + f(x− ky)− f(x+ y)− f(x− y)− 2(k + 1)

k
f(ky)

+ 2(k + 1)f(y)
)

(t) ≥ ψ(x, y)(t),
(2.1)

for all x, y ∈ E, where ψ : E × E → ∆ is a given function such that

ψ(0, kx)(kβLt) ≥ ψ(0, x)(t)

for all x ∈ E and has the property

lim
n→∞

ψ(knx, kny)(kβnt) = 1 (2.2)
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for all x, y ∈ E and a constant 0 < L < 1
2β

. Then there exists a unique additive mapping A : E →
(X,µ) satisfies (1.2) and

µ
(
A(x)− f(x)

)( t

(k + 1)βL
−1
2 (1− 2βL)

)
≥ ψ(0, x)(t) (2.3)

for all x ∈ E.

Proof . Putting x = 0 in (2.1), we get by the oddness of f,

µ

(
2(k + 1)

k
f(ky)− 2(k + 1)f(y)

)
(t) ≥ ψ(0, y)(t)

for all y ∈ E . Therefore,

µ

(
1

k
f(ky)− f(y)

)
(t) = µ

(
2(k+1)
k

f(ky)− 2(k + 1)f(y)
)

(2β(k + 1)βt)

≥ ψ(0, y)(2β(k + 1)βt)

for all y ∈ E . Replacing y by x in the above inequality, we have

µ

(
1

k
f(kx)− f(x)

)
(t) ≥ ψ(0, x)

(
2β(k + 1)βt

)
(2.4)

for all x ∈ E . Replacing x by k−1x in (2.4), we obtain

µ

(
f(k−1x)

k−1
− f(x)

)
(t) = µ

(
f(x)

k
− f(k−1x)

)(
t

kβ

)
(2.5)

≥ ψ(0, k−1x)

(
2β(k + 1)βL−1

Lt

kβ

)
≥ ψ(0, x)

(
2β(k + 1)βL−1t

)
.

By (2.4) and (2.5),

µ

(
f(kx)

k
− f(x)

)
(t) ≥ ϕ(x)(t) := ψ(0, x)

(
2β(k + 1)βL

−1
2 t
)

(2.6)

for all x ∈ E . Consider the set N := {g : E → (X,µ)| g(0) = 0} and introduce the modular ρ on
N as follows,

ρ(g) = inf{r > 0 : µ(g(x))(rt) ≥ ϕ(x)(t)}.

It is clear that ρ is even and ρ(0) = 0. If ρ(g) = 0, then for each r > 0, µ(g(x))(rt) ≥ ϕ(x)(t) for all
t > 1 and all x ∈ E . If we let t → +∞ and ε = rt is fixed, then µ(g(x))(ε) = 1, which implies that
g = 0. Now let ε > 0 be given. Then there exist r1 > 0 and r2 > 0 such that

r1 ≤ ρ(g) + ε; µ(g(x))(r1t) ≥ ϕ(x)(t)

and
r2 ≤ ρ(h) + ε; µ(h(x))(r2t) ≥ ϕ(x)(t).
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If α + β = 1 and α, β ≥ 0, then we have

µ(αg(x) + βh(x))(r1t+ r2t) ≥ µ(g(x))(r1t) ∧ µ(h(x))(r2t) ≥ ϕ(x)(t),

and so
ρ(αg + βh) ≤ r1 + r2 ≤ ρ(g) + ρ(h) + 2ε.

This shows that ρ(αg + βh) ≤ ρ(g) + ρ(h) if α + β = 1 and α, β ≥ 0.
Now, we are going to prove that ρ satisfies the ∆2-condition with ` = 2β. For ε > 0 given, there
exists r > 0 such that

r ≤ ρ(g) + ε; µ(g(x))(r t) ≥ ϕ(x)(t).

Since (X,µ) is a β-homogeneous PM-space, we get

µ(2g(x))(2βr t) = µ(g(x))(r t) ≥ ϕ(x)(t),

and so ρ(2g) ≤ 2βr ≤ 2β ρ(g) + 2β ε. Hence ρ(2g) ≤ 2β ρ(g). Thus ρ satisfies the ∆2-condition with
` = 2β.
Next, we show that ρ satisfies the Fatou property (in the modular sense). To do this, let {gn} be a
ρ-convergent in N to g. We can easily show that {gn(x)} µ-converging to g(x) for any x ∈ E . Let
℘ := lim infn→∞ ρ(gn) < ∞ and ρ(g) > ℘. We have µ(g(x))(℘t) < ϕ(x)(t) for all t > 0. Since µ
satisfies the Fatou property (in the probabilistic modular sense), we see that

lim sup
n≥1

µ(gn(x))(℘t) ≤ µ(g(x))(℘t) < ϕ(x)(t), ∀t > 0.

This shows that there exists a positive integer n0 ∈ N such that µ(gn(x))(℘t) < ϕ(x)(t) and so
ρ(gn) > ℘ for all n ≥ n0. Thus lim infn→∞ ρ(gn) > ℘, which is a contradiction. Therefore, ρ satisfies
the Fatou property.
Let δ > 0 and 0 < λ < 1. Since ϕ(x) ∈ ∆, there exists t0 > 0 such that ϕ(x)(t0) > 1− λ. Let {An}
be a ρ-Cauchy sequence in Nρ and let ε < δ

t0
be given. There exists a positive integer n0 ∈ N such

that ρ(An − Am) ≤ ε for all n,m ≥ n0. By definition of the modular ρ, we obtain

µ
(
An(x)− Am(x)

)
(δ) ≥ µ

(
An(x)− Am(x)

)
(εt0) ≥ ϕ(x)(t0) > 1− λ, (2.7)

for all x ∈ E and n,m ≥ n0. Let x ∈ E be an arbitrary point. Then (2.7) implies that {An(x)} is a
µ-Cauchy sequence in (X,µ). Since (X,µ) is µ-complete, {An(x)} is µ-convergent in (X,µ) for all
x ∈ E . Thus, we can define a mapping A : E → (X,µ) by

A(x) = lim
n→∞

An(x),

for any x ∈ E . Letting m→∞, inequality (2.7) implies that

ρ(An − A) ≤ ε

for all n ≥ n0, since µ has the Fatou property. Thus {An} is ρ-convergent sequence in Nρ. Therefore
Nρ is ρ-complete.
Now, we consider the mapping T : Nρ → Nρ as follows:

T A(x) :=
A(kx)

k
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for all A ∈ Nρ. Let g, h ∈ Nρ and let r > 0 be an arbitrary constant with ρ(g − h) ≤ r. From the
definition of ρ, we get

µ
(
g(x)− h(x)

)
(r t) ≥ ϕ(x)(t)

for all x ∈ E . By the assumption and the last inequality, we have

µ (T g(x)− T h(x)) (Lr t) = µ
(
k−g(kx)− k−h(kx)

)
(Lr t)

= µ(g(kx)− h(kx))(kβLr t)

≥ ϕ(kx)(kβL t)

≥ ϕ(x)(t)

for all x ∈ E . Hence ρ(T g − T h) ≤ Lρ(g − h), for all g, h ∈ Nρ, that is, T is a ρ-strict contraction.
By replacing x by kx in (2.6), we deduce that

µ
(
k−f(k2x)− f(kx)

)
(t) ≥ ϕ(kx)(t)

that is

µ
(
k−2f(k2x)− k−f(kx)

)
(Lt)

= µ
(
k−f(k2x)− f(kx)

)
(kβLt)

≥ ϕ(kx)(kβLt) ≥ ϕ(x)(t).

Hence

µ
(
f(k2x)
k2
− f(x)

) (
2β(Lt+ t)

)
≥ µ

(
f(k2x)
k2
− f(kx)

k

)
(Lt) ∧ µ

(
f(kx)
k
− f(x)

)
(t) (2.8)

≥ ϕ(x)(t)

for all x ∈ E . Replacing x and 2β(Lt + t) by kx and kβ2β(L2t + Lt) in (2.8), respectively, we find
that

µ
(
k−2f(k3x)− f(kx)

) (
kβ2β(L2t+ Lt)

)
≥ ϕ(kx)

(
kβLt

)
≥ ϕ(x)(t).

and so

µ
(
k−3f(k3x)− k−f(kx)

) (
2β(L2t+ Lt)

)
≥ ϕ(x)(t).

Hence,

µ

(
f(k3x)

k3
− f(x)

)(
2β
{

2β(L2t+ Lt) + t
} )

≥ µ

(
f(k3x)

k3
− f(kx)

k

)(
2β(L2t+ Lt)

)
∧ µ

(
f(kx)

k
− f(x)

)
(t)

≥ ϕ(x)(t)
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for all x ∈ E . By induction, one can check that

µ

(
f(knx)

kn
− f(x)

)({
(2βL)n−1 + 2β

n−1∑
i=1

(2βL)i−1

}
t

)
≥ ϕ(x)(t),

for all x ∈ E , and so

ρ(T nf − f) ≤ (2βL)n−1 + 2β
n−1∑
i=1

(2βL)i−1 ≤ 2β
n∑
i=1

(2βL)i−1 ≤ 2β

1− 2βL
. (2.9)

Next, we show that δρ(f) = sup {ρ (T n(f)− T m(f)) ;n,m ∈ N)} < ∞. To do this, Since ρ satisfies
the ∆2-condition with ` = 2β, it follows from (2.9) that

ρ (T nf − T mf) ≤ 1
2
ρ (2T nf − 2f) + 1

2
ρ (2T mf − 2f)

≤ `
2
ρ (T nf − f) + `

2
ρ (T mf − f) (2.10)

≤ 22β

1−2βL

for all n,m ∈ N. According to the above inequality, we have δρ(f) < ∞. Due to Theorem 1.8, we
get {T n(f)} is ρ-converges to A ∈ Nρ. Since ρ has the Fatou property, the inequality (2.9) gives
ρ(T A− f) <∞.
Setting m = n+ 1 in the inequality (2.10), we have

ρ
(
T n+1f − T nf

)
≤ 22β

1− 2βL
.

Hence, we determine that ρ(T A−A) ≤ (22β/1− 2βL) <∞. By using Theorem 1.8, we have ρ-limit
of {T n(f)} i.e., A ∈ Nρ is a fixed point of the map T . Let us replace x and y by knx and kny in
inequality (2.1), respectively. Then we obtain

µ
( 1

kn

{
f (kn(x+ ky))+f (kn(x− ky))−(f (kn(x+ y)) + f (kn(x− y))) −2(k + 1)

k
f(kn(ky))+2(k+1)f(kny)

})
(t) = µ

(
f (kn(x+ ky))+f (kn(x− ky))−(f (kn(x+ y)) + f (kn(x− y))) −2(k + 1)

k
f(kn(ky))+2(k+1)f(kny)

)
(knβt) ≥ ψ(knx, kny)(kβnt)

for all x, y ∈ E . As n tends to infinity, the right-hand side of the above inequality tends to one; so
we conclude that A satisfying the equation (1.2), that is, A is additive. From (2.9), we have

ρ(A− f) ≤ 2β

1− 2βL
.

Hence

µ
(
A(x)− f(x)

)( 2β

1− 2βL
t

)
≥ ϕ(x)(t) = ψ(0, x)

(
2β(k + 1)βL

−1
2 t
)
,

and so

µ
(
A(x)− f(x)

)( t

(k + 1)βL
−1
2 (1− 2βL)

)
≥ ψ(0, x)(t).

Hence (2.3) holds. Lastly, we prove that A is unique. To do this, let A∗ be another fixed point of T .
Then

ρ(A− A∗) ≤ 1

2
ρ(2T A− 2f) +

1

2
ρ(2T A∗ − 2f)
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≤ `

2
ρ(T A− f) +

`

2
ρ(T A∗ − f) ≤ 22β

1− 2βL
<∞.

Since T is ρ–strict contraction, we have

ρ(A− A∗) = ρ(T A− T A∗) ≤ Lρ(A− A∗),

which implies that ρ(A− A∗) = 0 or A = A∗, since ρ(A− A∗) <∞. Therefore A is unique. �

Theorem 2.2. Let  ∈ {−1, 1} be fixed. Let E be a linear space and (X,µ) a µ-complete β-
homogeneous PM-space. Suppose that an even mapping f : E → (X,µ) satisfies the condition
f(0) = 0 and inequality (2.1). Let ψ : E × E → ∆ is a given function such that

ψ(0, kx)(k2βLt) ≥ ψ(0, x)(t)

for all x ∈ E and has the property

lim
n→∞

ψ(knx, kny)(k2βnt) = 1 (2.11)

for all x, y ∈ E and a constant 0 < L < 1
2β

. Then there exists a unique quadratic mapping Q : E →
(X,µ) satisfies (1.2) and

µ
(
Q(x)− f(x)

)( t

kβL
−1
2 (1− 2βL)

)
≥ ψ(0, x)(t) (2.12)

for all x ∈ E.

Proof . Replacing x by kx in (2.1), we get

µ
(
f(k(x+ y)) + f(k(x− y)) −f(kx+ y)− f(kx− y)− 2(k+1)

k
f(ky) (2.13)

+2(k + 1)f(y)
)

(t) ≥ ψ(kx, y)(t)

for all x, y ∈ E . Putting x = 0 and replacing y by x in (2.13), we have by the evenness of f,

µ

(
2

k
f(kx)− 2kf(x)

)
(t) ≥ ψ(0, x)(t)

for all x ∈ E . Therefore,

µ

(
1

k2
f(kx)− f(x)

)
(t) = µ

(
2

k
f(kx)− 2kf(x)

)
(2βkβt) ≥ ψ(0, x)

(
2βkβt

)
(2.14)

for all x ∈ E . Now replacing x by k−1x in (2.14), we get

µ

(
f(k−1x)

k−2
− f(x)

)
(t) = µ

(
f(x)

k2
− f(k−1x)

)(
t

k2β

)
(2.15)

≥ ψ(0, k−1x)

(
2βkβL−1

Lt

k2β

)
≥ ψ(0, x)

(
2βkβL−1t

)
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for all x ∈ E . From inequality (2.14) and (2.15), we have

µ

(
f(kx)

k2
− f(x)

)
(t) ≥ ϕ(x)(t) := ψ(0, x)

(
2βkβL

−1
2 t
)

(2.16)

for all x ∈ E . Consider the set N ∗ := {g : E → (X,µ)| g(0) = 0} and introduce the functional ρ on
N ∗ as follows,

ρ(g) = inf{r > 0 : µ(g(x))(rt) ≥ ϕ(x)(t)}.
Similar to the proof of Theorem 2.1, we can show that ρ modular on N ∗ and it satisfies the Fatou
property and ∆2-condition with ` = 2β. Furthermore, N ∗ is ρ-complete.
Let x ∈ E be an arbitrary point. We consider the linear mapping T : N ∗ρ → N ∗ρ such that

T Q(x) :=
Q(kx)

k2

for all Q ∈ N ∗ρ. Proceeding as in the proof of Theorem 2.1, we obtain that ρ(g − h) ≤ r implies
that ρ(T g − T h) ≤ Lρ(g − h) for all g, h ∈ N ∗ρ . This means that T is a ρ-strict contraction.
By substituting x with kx in (2.16), we arrive

µ
(
k−2f(k2x)− f(kx)

)
(t) ≥ ϕ(kx)(t)

So

µ
(
k−2(2)f(k2x)− k−2f(kx)

)
(Lt)

= µ
(
k−2f(k2x)− f(kx)

)
(k2βLt)

≥ ϕ(kx)(k2βLt) ≥ ϕ(x)(t)

for all x ∈ E .
So

µ
(
f(k2x)

k2(2)
− f(x)

) (
2β(Lt+ t)

)
≥ µ

(
f(k2x)

k2(2)
− f(kx)

k2

)
(Lt) ∧ µ

(
f(kx)
k2
− f(x)

)
(t) (2.17)

≥ ϕ(x)(t)

for all x ∈ E . Replacing x and 2β(Lt+ t) by kx and k2β2β(L2t+ Lt) in (2.17), respectively, we get
for all x ∈ E ,

µ
(
k−2(2)f(k3x)− f(kx)

) (
k2β2β(L2t+ Lt)

)
≥ ϕ(kx)

(
k2βLt

)
≥ ϕ(x)(t).

It follows from the last inequality that

µ
(
k−3(2)f(k3x)− k−2f(kx)

) (
2β(L2t+ Lt)

)
≥ ϕ(x)(t),

which yields

µ

(
f(k3x)

k3(2)
− f(x)

)(
2β
{

2β(L2t+ Lt) + t
} )

≥ µ

(
f(k3x)

k3(2)
− f(kx)

k2

)(
2β(L2t+ Lt)

)
∧ µ

(
f(kx)

k2
− f(x)

)
(t)

≥ ϕ(x)(t)
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for all x ∈ E . In general, using induction on a positive integer n, we obtain that

µ

(
f(knx)

k2n
− f(x)

)({
(2βL)n−1 + 2β

n−1∑
i=1

(2βL)i−1

}
t

)
≥ ϕ(x)(t),

for all x ∈ E . Therefore, we have

ρ(T nf − f) ≤ (2βL)n−1 + 2β
n−1∑
i=1

(2βL)i−1 ≤ 2β
n∑
i=1

(2βL)i−1 ≤ 2β

1− 2βL
. (2.18)

Proceeding as in the proof of Theorem 2.1 and using Theorem 1.8, we obtain that {T n(f)} is ρ-
converges to Q ∈ N ∗ρ and ρ-limit of {T n(f)} i.e., Q ∈ N ∗ρ is a fixed point of the map T .
It follows from (2.18) that

ρ(Q− f) ≤ 2β

1− 2βL
.

This implies that

µ
(
Q(x)− f(x)

)( 2β

1− 2βL
t

)
≥ ϕ(x)(t) = ψ(0, x)

(
2βkβL

−1
2 t
)
.

So by the above inequality, we have

µ
(
Q(x)− f(x)

)( t

kβL
−1
2 (1− 2βL)

)
≥ ψ(0, x)(t).

This implies that the inequality (2.12) holds.
The rest of the proof is similar of Theorem 2.1. �

Theorem 2.3. Let  ∈ {−1, 1} be fixed. Let E be a linear space and (X,µ) a µ-complete β-
homogeneous PM-space. Suppose that a mapping f : E → (X,µ) satisfies the condition f(0) = 0
and inequality (2.1). Let ψ : E × E → ∆ is a given function such that

ψ(0, skx)(
kıβL

2
t) ≥ ψ(0, sx)(

t

2
)

and

lim
n→∞

min
{
ψ(knx, kny)(

kıβn

2
t), ψ(−knx,−kny)(

kıβn

2
t)
}

= 1

for all x, y ∈ E , a constant 0 < L < 1
2β
, s ∈ {−1, 1} and ı ∈ {1, 2}. Then there exist a unique additive

mapping A : E → (X,µ) and a unique quadratic mapping Q : E → (X,µ) such that

µ
(
f(x)− A(x)−Q(x)

)
(t) ≥ min

{
ψ(0, x)

(kβL −1
2 (1− 2βL)

2β+2
t
)
,

ψ(0,−x)
(kβL −1

2 (1− 2βL)

2β+2
t
)
,

ψ(0, x)
((k + 1)βL

−1
2 (1− 2βL)

2β+2
t
)
,

ψ(0,−x)
((k + 1)βL

−1
2 (1− 2βL)

2β+2
t
)}

for all x ∈ E.
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Proof . Let

fo(x) =
1

2
[f(x)− f(−x)]

for all x ∈ E . Then fo(0) = 0, fo(−x) = −fo(x), and

µ
(
fo(x+ ky) +fo(x− ky)− fo(x+ y)− fo(x− y)− 2(k+1)

k
fo(ky) (2.19)

+2(k + 1)fo(y)
)

(t) ≥ min
{
ψ(x, y)( t

2
), ψ(−x,−y)( t

2
)
}

for all x, y ∈ E . Hence, in view of Theorem 2.1, there exists a unique additive function A : E → (X,µ)
such that

µ
(
A(x)− fo(x)

)
(t) ≥ min

{
ψ(0, x)

(
(k+1)βL

−1
2 (1−2βL)
2

t
)
, (2.20)

ψ(0,−x)
(

(k+1)βL
−1
2 (1−2βL)
2

t
)}
.

Let

fe(x) =
1

2
[f(x) + f(−x)]

for all x ∈ E . Then fe(0) = 0, fe(−x) = fe(x), and

µ
(
fe(x+ ky) +fe(x− ky)− fe(x+ y)− fe(x− y)− 2(k+1)

k
fe(ky) (2.21)

+2(k + 1)fe(y)
)

(t) ≥ min
{
ψ(x, y)( t

2
), ψ(−x,−y)( t

2
)
}

for all x, y ∈ E . From Theorem 2.2, it follows that there exists a unique quadratic mapping Q : E →
(X,µ) such that

µ
(
Q(x)− fe(x)

)
(t) ≥ min

{
ψ(0, x)

(
kβL

−1
2 (1−2βL)

2
t
)
, (2.22)

ψ(0,−x)
(
kβL

−1
2 (1−2βL)

2
t
)}
.

Obviously, (2.19) follows from (2.20) and (2.22) . �
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