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Abstract

This article presents a comparison between two new censored regression models which are extended
from some continuous distribution with the Burr-XII system. The two models are the Log-BXII
Weibull model(LBXIIW) and the Log-BXII Exponentiated Exponential model(LBXIIEE). The re-
sults of the comparison showed the LBXIIW model is best than the LBXIIEE model according to
the values of the model selection criteria when the Creatine is a dependent variable in the model.

Keywords: Burr-XII System, Log-BXII Exponentiated Exponential model, Log-BXII Weibull
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1. Introduction

Regression models are one of the basic statistical methods in studying and analyzing the relation-
ship between variables for any phenomenon. Regression models show the shape of the relationship to
these variables and the extent of the influence of the explanatory variables on the prediction of the
dependent variable according to each phenomenon or problem. Recently, many models have been
proposed through location regression models. The researcher Cordeiro presented a class of regression
models based on the Log-Gamma model extended from the Weibull distribution. The researcher
Hashimoto also proposed a log-BurrXII regression model for a set of survival data, among others [4].
Many univariate distributions have been used extensively for data modelling in many fields such as
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economics, engineering, biological studies, and environmental sciences. However, some applied fields
that have extended forms of these distributions have important data-related problems that do not
follow any of the classic statistical models [3].

It was necessary to model some distributions for the purpose of obtaining new shapes and models
that are able to identify new regression models that can be used in studies and analysis of survival
and reliability within censored data so that they become censored regression models.

One of the first attempts to analyze a statistical problem that includes censored data was Daniel’s
analysis, which was reached by Daniel Bernoulli in 1766 for data that shows the prevalence of a
particular disease and the deaths related to that disease. An example of this is the data of smallpox
disease, as there is an urgent need to prove the statistical importance of vaccination (Bernoulli.&
Blower(2004))[2]. Patricia M. Odell [8] in 1992 used a regression model based on the Weibull
distribution when observing left-handed and time-interval-censored data. Two methods of analysis
were considered, the first of which is to calculate the estimates of (MLE) for the observed censored
pattern. This method was compared with the estimates where the midpoints were replaced by the
left- and time-lapsed censored data (the midpoint estimator MDE), and the simulation studies used
here indicate that there are relatively large samples, and there are many cases where MLE is superior
to MDE for samples in which it is failure is likely to occur, as the percentage of interval-censored
data is small and therefore MDE is appropriate. An example using data from the Framingham
Heart Study is discussed. In 2010, Patricia F.Paranaibe and Edwin M.M [9]. proposed the
ML method and Bayesian analysis for estimating parameters of a new model of BurrXII system
which contains some distributions known in the analysis and study of censored data such as logistic
distribution and Weibull distribution. And they used simulations to show the results of their own
study. In 2019, researchers Morad Alizadeh and Mahdi Emadi [1] reviewed a new distribution
consisting of two parameters called log-logistic half-logistic and presented the theoretical properties
of this model, including the risk function, survival function and skew coefficients. The ML method
estimates were compared with different methods through Conducting simulations using real data for
the purposes of the study.

The current article aims to review new censored regression models, as well as estimation of
parameters of these models which are Log-BurrXII Exponentiated Exponential Model (LBXIIEE
model), and Log-BurrXII Weibull Model, as well as estimation of parameters of the two models in
the presence of data subject to the Maximum Likelihood Estimation (MLE) method, and comparison
between two models in the presence of censored data and choosing the best model between them
through the use of some statistical criteria in this field by applying the estimators to real data for
patients with renal failure.

2. Log-BXII Weibull (LBXIIW) Model

The Weibull distribution was introduced by the Swedish scientist Waloddi Weibull in 1939. This
distribution was named after him as he was the first to present it to represent the distribution of
breaking strength of materials, although this distribution was used earlier by the French scientist
Maurice in 1927 and was also applied by R. Rosin And E. Rammler in 1933, it was the scientist
Weibull who formally defined it as one of the continuous distributions and one of the most common
failure models in the past years, and it became of great importance and a wide place in the fields of
reliability and life tests [10].

Kao (1958 - 1959) called for the use of this distribution in the field of reliability and quality,
and this distribution is often appropriate when the strict randomness conditions of the exponential
distribution are not met [4], and thus this distribution adds flexibility, and it has several forms in
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terms of the number of parameters One parameter, two parameters, and three parameters [11]. The
mathematical formula of a two-parameter Weibull distribution is as follows:

Let x be a random variable representing the failure time, then both the probability density
function and the cumulative distribution function of the Weibull distribution are expressed as follows
[7, 11, 12]:

f(x;α, β)=αβ−1(x/β)α−1exp

(
−
(
x

β

)α)
(2.1)

F (x;α, β)= 1−exp

(
−
(
x

β

)α)
(2.2)

where x≥0, α≥0, β≥0, x is the random variable, α is the shape parameter and β is the scale param-
eter.

Table 1: Some characteristics of the Weibull distribution

Properties Formulas
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As we mentioned earlier that there are many newly proposed regressions models during the past
years, including the log-BurrXII Weibull model (LBXIIW), which is a model that is constructed
using the Location Regression model and the Burr distribution with Weibull. And the mathematical
formula in which BXIIW can be expressed is (Cordeiro,G.(2018))[3]:

f(x)=abαβ−1(x/β)α−1 exp
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1−exp
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(2.3)

x ∼ BXIIW (α,β, a, b)

where a, b parameters of the Burr distribution, x is a random variable, and location regression models
can be distinguished by that the random variable y = log(x) has a distribution, where position µ(ν)
depends on the explanatory variable vector (ν), in practice this means that for different values or
levels of explanatory variables x has different values for the position parameter. The site regression
model can be expressed as follows:

y = µ (ν)+σZ, (2.4)

where Z has a distribution that does not depend on (ν) and the random variable y for each (y ∈ R)
has a probability function and considering that the random variable x has a probability function
(2.3) and is distributed BXIIW and that the random variable y = log(x),

α=e−µ
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and

β=
1

σ
.

The probability function (2.11) is as follows:

f(y;a, b,µ,σ)=
ab

σ
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where a>0, b>0 are the two parameters of the shape and that µ∈R is the location parameter and
σ>0 is the scale parameter. Since the above equation represents the LBXIIW distribution and Y∼
LBXIIW (a, b, µ, σ).

Since Y∼ LBXIIW (a, b, µ, σ) and the standard random variable Z = (Y −µ)/σ, the probability
density function for Z is as follows:

f(z;a, b)= ab
[1− exp(−ez)]a−1

exp [−ez−z]
[1+[exp (ez) −1]a]

−(b+1)
, (2.6)

and a linear regression model that links the response variable yi and the explanatory variable vector
νi

T=(νi1, . . . .,νip) ,T is a random variable that follows a BXIIW distribution
It will be like this:

yi=µi+σzi i = 1, . . . , n (2.7)

where
zi : the random error has a probability density function (2.6);
µi: the location parameter of yi;
µi=νi

T τ , τ=(τ1, . . . ,τp)
T vector related to explanatory variables;

a > 0, b > 0, σ: unknown parameters.
We can use the LBXIIW model to fit different types of data where the explanatory variables have

significant effects on the average response to the Y variable.
Let G,H be a set of observations for yi that represent log-lifetime or log-censoring respectively

and by applying the method of MLE and taking the natural logarithm of equation (2.7) to estimate
the parameters of the vector θ= (a, b,τT ,σ) will be as following:

ui=e
zi zi=

(yi−µi)

σ

r = number of failed observations.
The equation will be as follows:
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∑
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. (2.8)

The estimations for the parameters vector θ̂ can be found using some statistical software, including
NLMixed in the SAS software.
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3. Log-BXII Exponentiated Exponential Model

It is a new continuous distribution of families of the exponential distribution which was discussed
by Gupta (1998) and this distribution contains two parameters which are the scaling parameter and
the shape parameter similar to the Weibull distribution family and the Gamma distribution. It was
noted that the properties of this distribution are somewhat similar to the properties of the Weibull
and Gamma distributions, and it can also be used as a possible alternative to them (Gupta,(2001))[5].

The probability density function pdf of the EE distribution can be expressed as follows:

f(x;α, λ)=αλ(1−e−λx)
α−1

e−λx, (3.1)

and the cumulative distribution function cdf for the distribution is as follows:

F (x;α,λ)=(1−e−λx)
α

(3.2)

whereas
λ: the scale parameter of the EE distribution;
α: shape parameter of the EE distribution;

Table 2: Some characteristics of the distribution
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Another recently proposed model is the Log-BXIIEE model reviewed by Mohamed I. and Haitham
M. (2020), which is an extension of the Exponentaited Exponentail distribution with the BXII
distribution using the location regression model. And the mathematical formula for BXIIEE is [6]:

f(x)= abαλe−λx (1−e−λx)
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(3.3)

x ∼ BXIIEE(a, b,α,λ).

In order to obtain the Log-BXIIEE regression model, we have to model the new BXIIEE distri-
bution in a similar manner to the LBXIIW model as follows: when x∼ BXIIEE, and Y = log(x),
the equation (3.3) is as follows:
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whereas
µ: location parameter;
σ>0: scale parameter;
The above equation represents the LBXIIEE distribution and Y∼ LBXIIEE (a, b, α,λ,µ,σ). Using

the location-scale regression model that links the explanatory variable vector νi
T=(νi1, . . . ,νip) with

the average response variable yi , and the model can be expressed as follows:

yi=νi
Tβ+σzi , i = 1, . . . , n (3.5)

where yi follows the LBXIIEE distribution and T is a random variable that follows the BXIIEE
distribution.

Assuming that M, N are a set of items for yi which represents log-lifetime or log-censoring respec-
tively, and assuming lifetimes and censoring times are independent, the LBXIIEE regression model
and by applying the MLE method to estimate the parameters of the vector θ=

(
a, b,α,λ,βT

)
and

taking the natural logarithm will be as follows [6]:
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σ
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Using NLMixed in SAS software, the estimations for the feature vector θ̂ can be obtained.

4. Data Analysis and Estimation

For the purpose of conducting a practical application to compare the two models of LBXIIW and
LBXIIEE, real data was taken regarding patients with renal failure in the Kirkuk General Hospital
/ Industrial College Unit in the city of Kirkuk - Iraq. A sample of 78 Males was taken from the
patient records, and the data were representative of the variables: age, Urea and Creatine. By
taking Creatine as a dependent variable for the models, as we mentioned previously in support of
the censoring models, the importance of which is one of the aims of this article. The mechanism of
analyzing these models includes extracting the standard error values S.E, the T-test values and the
P-values, on the basis of which the variables that significantly affect the dependent variable will be
known.

5. Results and Discussion

Table 3 that the parameters of the LBXIIW model for male patients were estimated and calcu-
lated, given that the dependent variable was Creatine. In the first step, all variables and parameters
were estimated and depended on the p-value. In the second step, the constant was excluded, being
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less influential on the variable. In the third step, the age variable was excluded, as it was less in-
fluential and the Urea variable was the most influential on the dependent variable for male patients
according to the LBXIIW model.

Table 3: Parameters Estimation by LBXIIW model for the Creatine variable for Males

Steps Variable’s in model β S.E T P-value

1 Constant 0.2887 9.7907 0.03 0.9765

Age 0.0053 0.0172 0.31 0.7579

Urea 0.1032 0.0122 8.44 0.0000

α 13.4328 35.0925 0.38 0.7029

β 0.4883 0.3363 1.45 0.1504

σ 9.7820 25.6741 0.38 0.7042

2 Age 0.0056 0.0167 0.34 0.7362

Urea 0.1033 0.0119 8.67 0.0000

α 12.5213 5.6855 2.20 0.0306

β 0.4819 0.3195 1.51 0.1355

σ 9.0691 2.7397 3.31 0.0014

3 Urea 0.1027 0.0115 8.95 0.0000

α 11.6149 4.7557 2.44 0.0168

β 0.4600 0.2925 1.57 0.1198

σ 8.3544 1.6463 5.07 0.0000

The following table 4 represents the criteria table of the LBXIIW model for the dependent variable
Creatine for male patients, in which we note that the values of the criteria AIC, BIC, H-QIC are
changed according to the steps. These criteria reach their lowest value in the last step and each step
represents the values of the three criteria for the same step in Table 3.

Table 4: Comparative criteria values for the Creatine variable by LBXIIW model for Males

Steps AIC BIC H-Q

1 63.6 77.8 69.3

2 61.6 73.5 66.4

3 59.7 69.2 63.5

Table 5 shows the estimates of the parameters and variables of the LBXIIEE model for males,
considering the Creatine variable as the dependent variable and depending on the P-value in deter-
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mining the variable most affecting the dependent variable. It was found in the second step that the
Urea variable was the most influential on the dependent variable in the first place.

Table 5: Parameters Estimation by LBXIIEE model for the Creatine variable for Males

Steps Variable’s in model β S.E T P-value

1 Constant 1.3807 21.6993 0.06 0.9494

Age 3.3474 0.4209 7.95 0.0000

Urea -1.1056 0.3733 -2.96 0.0040

a 1.8441 1.1990 1.54 0.1280

b 2.1999 0.0001 203375 0.0000

α 0.8703 0.3202 2.72 0.0081

β 3.8625 2.3900 1.62 0.1101

σ 89.5632 25.6268 3.49 0.0008

2 Age 5.2556 0.8731 6.02 0.0000

Urea -1.1385 0.5586 -2.04 0.0339

a 1.0829 1.3838 0.78 0.4362

b 3.0387 0.0001 192776 0.0000

α 0.6147 0.6270 0.98 0.3299

β 3.2736 2.6090 1.25 0.2133

σ 90.8850 20.3288 4.47 0.0000

The following table 6 represents the criteria table of the LBXIIEE model for the dependent
variable Creatine for male patients, in which we note that the values of the criteria AIC, BIC, H-QIC
are change according to the steps. These criteria reach their lowest value in the last step, and each
step represents the values of the three criteria for the same step in Table (3-25).

Table 6: Comparative criteria values for the Creatine variable by LBXIIEE model for Males

Steps AIC BIC H-Q

1 132.1 151.1 139.7

2 128 144.6 134.7

6. Conclusions

Through the results obtained from the application of some censored regression models for renal
failure data, we conclude that the LBXIIW model is the best model compared to the LBXIIEE model
according to the model selection criteria values, where the values of these criteria for the LBXIIEE
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model were great than the values of the same criteria for the LBXIIW model when Creatine as a
dependent variable in the model. Also, we note that the criteria values (AIC, BIC, H-QIC) change and
decrease according to the steps used to estimate and analyze the two models (LBXIIW, LBXIIEE)
according to the dependent variable specified Creatine.
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