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Abstract

We define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological
space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also
fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D.
Furthermore, we propose and prove a number of statements about these ideas.
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1. Introduction

To begin with we work in the category of Fibrewise (briefly F.W.) sets on a given set, named the
base set. If the base set is stated by D then a F.W. set on D consists of a set E together with a
functionX is X : E → D, named the projection (briefly, project.). For every point d of D the fibre
on d is the subset Ed = X−1(d) of E; fibres will be empty let we do not require X to be surjection,
also for every subset D∗ of D we regard ED∗ = X−1(D∗) as a F.W. set on D∗ with the project.
determined by X. A multi-function [2] Ω of a set E in to F is a correspondence such that Ω (e) is a
nonempty subset of F for every e ∈ E. We will denote such a multi-function by Ω : E → F . For
a multi-function Ω, the upper and lower inverse set of a set V of F, will be denoted by Ω+(V) and
Ω−(V) respectively that is Ω+(V) = {e ∈ E : Ω(e) ⊆ V} and Ω−(V) = {e ∈ E: Ω(e) ∩ V ̸= ∅ }.

Definition 1.1. [5] Suppose that E and F are F.W sets on D, with project. XE : E → D and
YF : F → D, respectively, a function Ω : E → F is named to be F.W. if YF ◦ Ω = XE, that is
to say if Ω(Xd) ⊂ F d for every point d of D.
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It should be noted that a F.W. function Ω : E → F on D determines, by restriction, F.W. function
ΩD∗ : E → FD∗ onD∗ for every D∗ of D.

Let Er be an indexed family of F.W. sets on D the F.W. product
∏

D Er is stated, as a F.W. set
on D, and comes included with the family of F.W. projection πr :

∏
D Er → Er. Specifically the F.W.

product is stated as the subset of the ordinary product
∏

Er where in the fibres are the products
of the relevant fibers of the factors Er. The F.W. product is recognized by the following Cartesian
property: for every F.W. set E on D the F.W. functions Ω : E →

∏
r Er correspond precisely to

the families of F.W. functions {Ωr}, with Ωr = πr ◦ Ω : E → Er. For example if Er = E for every
index r the diagonal ∆ : E →

∏
D E, is stated so that πr ◦ ∆ = idE for every r. If {Er} is as

before,the F.W. coproduct
∐

D E
r is with stated, as F.W. set on D, and comes included with the

family of F.W. insertions σ : Er →
∐

D Er, specifically the F.W. coproduct synchronize, as a set,
with the ordinary coproduct (disjoint union), the fibres being the coproducts of the relevant fipers
of the summands Er. The F.W. coproduct is recognized by the following Cartesian property, for
every F.W. set E on D the F.W. functions φ :

∐
D Er → E correspond precisely to the families of

F.W. functions {φr}, where in φr = φoσr: Er → E. For example, if Er = E for every index r
the codiagonal ∇ :

∐
D E → E is stated so that, ∇ ◦ σr = idE for every r. The notation E×D F

is used for the F.W. product in the case of the family {E,F}, of two F.W. sets and similarity for
finite families generally. As well as, we builte on some of the result in [1, 7, 6]. For other notions or
notations that are not defined here we follow closely [5, 4, 3].

Definition 1.2. [5] Let D be topological space, the F.W. topology space (briefly, F.W.T.S.) on a
F.W. set E on D, mean any topology on E for which the project. X is continuous.

Remark 1.3. [5]

(a) The coarsest like topology is the topology trace by X, where in the open sets of E are precisely
the pre image of the open sets of D, this is named the F.W. indiscrete topology.

(b) The F.W.T.S. on D is stated to be a F.W. set on D with a F.W.T.S.

Definition 1.4. [5] The F.W. functions Ω : E → F ; E and F are F.W. spaces on D is named:

(a) Continuous (briefly, cont.) if each e ∈ Ed; d ∈ D, the Ω−1(e) is open set of e.

(b) Open if for every e ∈ Ed, d ∈ D, the direct image of each open set of e is an open set of Ω (e) .

Definition 1.5. [5] The F.W.T.S. E on D is named F.W. closed (resp., open) if the project. X is
closed (resp., open) functions.

Definition 1.6. [2] Let Ω : E → F be a multi-function. Then Ω is upper cont. (briefly, U. cont.)
iff Ω+(V ) open in E for all V open in F. That is, Ω+(V ) = {x ∈ E : Ω(x) ⊆ V }.V ⊆ F.

Definition 1.7. [2] Let Ω : E → F be a multi-function. Then Ω is lower cont. (briefly, L. cont.)
iff Ω−(V ) open in E for all V open in F. That is, Ω−(V ) = {e ∈ E : Ω(e) ∩ V ̸= ∅}.V ⊆ F.

Let Ω : E → F be a multi-function. Then Ω is mult cont. (briefly, M. cont.) iff it is U. cont. and L.
cont.
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2. Fibrewise Multi-Topological spaces

In this part, we submit the ideas of fibrewise multi-topology several Topological on the obtained
fibrewise multi-topology are studies.

Definition 2.1. Let D be topologicalspace, the F.W. upper topology space(briefly, F.W.U.T.S.) on
a F.W. set E on D mean any topology on E for which the project. X is U. cont.

Definition 2.2. Let D be topologicalspace the F.W. lower topology space (briefly, F.W.L.T.S.) on
a F.W. set E on D mean any topology on E for which the project. X is L. cont.

Let D be topological space the fibrewise multi-topology space (briefly, F.W.M.T.S.) iff it is F.W.U.T.S.
and F.W.L.T.S.

Remark 2.3.

a) Every F.W.M.T.S. is F.W.U.T.S. but the convers is not true.

b) Every F.W.M.T.S. is F.W.L.T.S. but the convers is not true.

c) The F.W.U.T.S. and F.W.L.T.S. are independence

Example 2.4.

(a) Let E = D = {a, b, c} . let τ(E) = {E,∅, {a}}. and ρ = discrete topology. Define the project.
X :

(
E, τ(E)

)
→ (D, ρ) by X(a) = X(b) = X(c) = {a}.

Then X is U. cont., L. cont. and M. cont. Thus, E is F.W.U.T.S., F.W.L.T.S., and F.W.M.T.S.

(b) Let E = R with the usual topology τ and let D = {a, b, c} with the topology ρ = {∅, Y, {a}}.
Define multi-function

X : (R, τ)→ (D, ρ ) by X (x) =

{
{a} ; x ≤ 0

{a, c} ; x > 0

Then X is L. cont. but is not U. cont. and is not M. cont. Thus, E is F.W. L.T.S. But not
F.W.U.T.S. And not F.W.M.T.S.

(c) Let E = R with the usual topology τ and D = {a, b, c} with the topology ρ = {∅, Y, {a}}.
Define multi-function

X : (R, τ)→ (D, ρ ) by X (x) =

{
{a} ; x ≤ 0

∅; x > 0

Then X is U. cont. but not L. cont. and is not M. cont. Thus, E is F.W.U.T.S., but not
F.W.L.T.S. and not F.W.M.T.S.
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(d) Let E = R with the usual topology τ and D = {a, b, c} with the topologyρ = {∅, Y, {a}} .
Define multi-function

X : (R, τ)→ (D, ρ ) by X (x) =


{a} ; x < 0

{a, b} ; x = 0

{c} ; x > 0

Then X is not U. cont., not L. cont. and is not M. cont. Thus, E is not F.W.U.T.S., not
F.W.L.T.S. and not F.W.M.T.S.

Definition 2.5. A F.W. function Ω : E → F ; E and F are F.W.T.S. on D is named

(a) Upper continuous (briefly, F.W.U. cont.) if for every e ∈ Ed; d ∈ D and each open set M
of Ω(e) we have Ω(e) ⊂M

(b) Lower continuous (briefly, F.W.L. cont.) if for every e ∈ Ed; d ∈ D and each open set M
of Ω(e) we have Ω(e) ∩M ̸= ϕ

(c) multi continuous (briefly, F.W.M. cont.) if Ω(e) is upper cont. and (lower cont.).

Let Ω : E −→ F be a F.W. function where in E is a F.W. set and F is a F.W.T.S. on D. we are
able to give E the trace topology, in the normal sense, and this is necessarily a F.W.T. We may refer
to it, as the trace F.W.T.

Proposition 2.6. Let Ω : E → F be a F.W. function, where in F is a F.W.U.T.S. (resp., F.W.L.T.S.)
on D and E is a F.W. set has the trace F.W.T. If for every F.W.U.T.S. (resp., F.W.L.T.S.) N, a
fibrewise function φ : N → E is U. cont. (resp., L cont.) iff the composition Ω ◦ φ : N → F is U.
cont. (resp., L cont.).
Proof .
=⇒ Suppose that φ is U. cont. (resp., L. cont.). Let n ∈ Nd; d ∈ D and M open set of (Ω ◦φ)(n) =
f ∈ Fd in F. Let Ω is U. cont. (resp., L. cont.), Ω+(M) (resp. Ω−(M) is an open set containing
φ(n) = e ∈ Eb in E. Let φ is U. cont. (resp., L. cont.), then φ+(Ω+(M) (resp., φ−(Ω−(M) is an
open set containing n ∈ Nd in N, and φ+(Ω+(M)) = (φoφ)+(M) (resp., φ−(Ω−(M)) = (φoΩ)−(M)
is an open set containing n ∈ Nd in N, then Ω ◦ φ : N → F is U. cont. (resp., L. cont.).
⇐= Suppose that Ω ◦ φ is U. cont. (resp., L. cont.). Let n∈ Nd; d ∈ D and V open set of φ(n) = e
∈ Ed in E. Since Ω is open, Ω(V) is an open set containing Ω(e) = Ω(φ(n)) = f ∈ Fd in F. Since
Ω ◦φ is U. cont. (resp., L. cont.), then (Ω ◦ φ)+(Ω(V )) = φ+(V ) (resp. (Ω ◦ φ)−(Ω(V )) = φ−(V ) is
an open set containing n ∈ Nd in N, then φ(V ) is U. cont. (resp., L. cont.). □

Corollary 2.7. Let Ω : E → F be a F.W. function; F is a F.W.M.T.S. on D and E is a fibrewise
set has the trace F.W.T. If for every F.W.M.T.S. N, a F.W. function φ : N → E is M. cont. iff the
composition Ω ◦ φ : N → F is M. cont.

Proposition 2.8. Let Ω : E → F be a F.W. function, where in F is a F.W.T.S. on D and E is
a F.W. set has the trace F.W.T. If for every a F.W.T.S. N, a F.W. function φ : N → E is open,
surjection iff the composition Ω ◦ φ : N → F is open.
Proof . Clear □

Let us pass of general cases of Propositions 2.6 as follows: likewise, in the case of families {Ωr} of F.W.
function; Ωr : E → Fr with Fr F.W.U.T.S. (resp., F.W.L.T.S.) on D for every r. In particular, given
a family {Er} of F.W.U.T.S. (resp., F.W.L.T.S.) on D, the F.W.U.T.S. (resp., F.W.L.T.S.) product
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D Er is stated to be F.W. product with the F.W.T. trace be the family of project. πr :

∏
D Er → Er.

Then for every F.W.U.T.S. (resp., F.W.L.T.S.) N on D a F.W. function α : N →
∏

D Er is U. cont.
(resp., L. cont.) iff each of the F.W. function πr ◦ α : N → Er is U. cont. (resp. ,L. cont.). For
example, when Er = E for every index r we see that the diagonal ∆ : E →

∏
r E is U. cont. (resp.,

L. cont.) iff the composition πr ◦∆ = idx is U. cont.(resp., L. cont.).
Again if {Er} is a family of F.W.U.T.S. (resp. ,F.W.L.T.S.) on D and φ :

∐
D Er → E is a

F.W. function; E a F.W.T. on D and
∐

D Er is F.W.U.T.S. coproduct at the set-theoretic level
with the ordinary coproduct topology, also for every F.W.T. Er with the family of F.W. insertions
σr : Er →

∐
D Er is U cont. (resp., L. cont.), iff the composition φr = φ ◦ σr : Er → E is U.

cont. (resp., L. cont.). For example, when Er = E for every index r we see that the codiagonal
∇ :

∐
D E → E is U. cont. (resp., L. cont.).

Now, we study the ideas of F.W. closed and open topology spaces. topology property on the obtained
ideas are studies.

Definition 2.9. A F.W.U.T.S. (resp., F.W.L.T.S.) E on D is named F.W. closed if the project.
function XE is closed.

A F.W.M.T.S. E on D is named F.W. closed if the project. XE is closed.

Proposition 2.10. Let Ω : E → F be a closed F.W. function; E and F are F.W.U.T.S. (resp.,
F.W.L.T.S.) on D, if F is F.W. closed, then E is F.W. closed.
Proof . Suppose that Ω : E → F is closed F.W. function and F is F.W. closed i.e., the project.
function YF : F → D is closed. To show that E is F.W. closed i.e., the project. function XE : E → D
is closed. Now let G be a closed subset of Ed, where in d ∈ D, let Ω is closed, then Ω(G) is closed
subset of Fd. Since YF is closed, then YFΩ(G) is closed in D, but YFΩ(G)) = (YF ◦ Ω)(G) = XE(G)
is closed in D. Thus XE is closed and E is F.W. closed. □

Corollary 2.11. Let Ω : E → F be a closed F.W. function, where in E and F are F.W.M.T.S. on
D, if F is F.W. closed, then E is F.W. closed.

Proposition 2.12. Let E be a F.W.U.T.S. (resp., F.W.L.T.S.) on D, suppose that Ei is F.W. closed
for every member Ei of a finite covering of E. Then E is F.W. closed.
Proof . Let E be a F.W.U.T.S. (resp., F.W.L.T.S.) on D, then the project. function XE : E → D
exist. To show that XE is closed.
Now, since Ei is F.W. closed, then the project. function XEi : Ei → D is closed for every member
Ei of a finite covering of E. Let G be a closed subset of E, then XE(G) = ∪XEi(Ei ∩ G) that is a
finite union of closed set and hence XE is closed. Thus, E is F.W. closed. □

Corollary 2.13. Let E be a F.W.M.T.S. on D, suppose that Ei is F.W. closed for every member Ei

of a finite covering of E. Then E is F.W. closed.

Proposition 2.14. Let E be a F.W.U.T.S. (resp., F.W.L.T.S.) on D. Then E is F.W. closed iff
for every F.W. Ed of E and each open set H of Ed in E, there exists an open set O of d such that
Eo ⊂ H.
Proof .
⇒ Suppose that E is F.W. closed, the project. function XE : E → D is closed.
Now, let d ∈ D and H open set of Ed in E, then E − H is closed in E, this implies XE(E − H)
is closed in D, let O = D − XE(E − H), then O an open set of d in D and Eo = X+

E (O) =
E − XE

+(XE (E −H))(resp. Eo = X−
E (O) = E − XE

−(XE (E −H))) ⊂ H.



3468 Jaber, Yousif

⇐ Suppose that the assumption holds and XE : E → D. Now, let G be a closed subset of E and d
∈ D− XE(G) and each open set H of fibre Ed in E. By assumption there exists an open O of d such
that EO ⊂ H. It is easy to show that O ⊂ D − XE(G), hence D − XE(G) is open in D and this
implies XE(G) is closed in D and XE is closed. Thus XE is F.W. closed. □

Corollary 2.15. Let E be a F.W.M.T.S. on D. Then E is F.W. closed iff for every fibre Ed of E
and each open set H of Ed in E, there exists an open set O of d such that Eo ⊂ U

Definition 2.16. A F.W.U.T.S. (resp., F.W.L.T.S.) E on D is named F.W. open if the project.
function XE is open.

A F.W.M.T.S. E on D is named F.W. open if the project. function XE is open.

Proposition 2.17. Let Ω : E → F be an open F.W. function; E and F are F.W.U.T.S. (resp.,
F.W.L.T.S.) on D, if F is F.W. open, then E is F.W. open.
Proof . Suppose that Ω : E → F is open F.W. function and F is F.W. open, the project. function
YF : F → D and open. To show that E is F.W. open, the project. function XE : E → D is open.
Now let O is open subset of Ed, ; d ∈ D, since Ω is open, then Ω(O) is open subset of Fd, let YF is
open, then YF (Ω(O)) is open in D, but YF (Ω(O)) = (YFoΩ) (O) = XE(O) is open in D. Thus XE is
open and E is F.W. open. □

Corollary 2.18. Let Ω : E → F be an open F.W. function; E and F are F.W.M.T.S. on D, if F is
F.W. open, then E is F.W. open.

Proposition 2.19. Let {Er} be a finite family of F.W. open on D. Thus, the F.W.U.T.S. (resp.,
F.W.L.T.S.) product E =

∏
D Er is also open.

Proof . Suppose that E =
∏

D Er is a F.W.U.T.S. (resp., F.W.L.T.S) on D, then X : E =
∏

D Er →
D is exist. To show that X is open. Now, let {Er} be a finite family of F.W. open spaces on D,
then the project. function Xr : Er → D is open for every r. Let O be an open subset of E, then
X(O) = X(

∏
D(Er (O)) =

∏
DXr (Er ∩O) that is a finite product of open set and hence X is open.

Thus, the F.W.U.T.S. (resp., F.W.L.T.S.) product E =
∏

D Er is a F.W. is open. □

Corollary 2.20. Let {Er} be a finite family of F.W. open on D. Thus, the F.W.M.T.S. product
E =

∏
D Er is also open.

That is to say, the class of F.W. open topological space is finitely multi plicativr. In fact, Proposition
2.19 and Corollary 2.20 remains true for infinite families provided each member of the family is F.W.
nonempty in the sense that project. is surjective.

Remark 2.21. If E is F.W. open then the second projection function πr : E×DF → F is open
for all F.W.U.T.S. (resp., F.W.L.T.S. and F.W.M.T.S.) F. because for every non-empty open set
M1×DM2 ⊂ E×DF , we have π2(M1×DM2) = M2 is open. We use this in the proof of the following
results.

Proposition 2.22. Let Ω : E → F be a F.W. function, where in E and F are F.W.U.T.S. (resp.,
F.W.L.T.S.) on D. Let idE × Ω : E×DE → E×DF, if idE×Ω is open and that is F.W. open. Then
Ω itself is open
Proof . Consider the following commutative diagram:
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The projection function on the left is surjection and open, since F is F.W. open, while the projection
function on the right is open, since E is F.W. open. Therefore π2 ◦ (idE × Ω) = Ω ◦ π2is open, and
so Ω is open, by Proposition 2.17 as asserted. □

Corollary 2.23. Let Ω : E → F be a F.W. function; E and F are F.W.M.T.S. on D. Let idE × Ω :
E×DE → E×DF, if idE×Ω is open and that is F.W. open. Then Ω itself is open

Our next three results apply equally to F.W. closed and the F.W. open.

Proposition 2.24. Let Ω : E → F be a cont. F.W. surjection; E and F are F.W.U.T.S. (resp.,
F.W.L.T.S.) on D. If E is F.W. closed (resp. open), then F is F.W. closed (resp. open).
Proof . Suppose that Ω : E → F is cont. F.W. surjection and E is F.W. closed (resp. open), the
projection function X : E → D is closed (resp. open). To show that F is F.W. closed (resp. open),
the projection function Y : F → D is closed (resp. open). Let G be a closed (resp. open) subset of
Fd, wherein d ∈ D. Since Ω is cont. F.W., then Ω−1(G) is closed (resp. open) subset of Ed. Since X
is closed (resp. open), then X (Ω−1(G)) is closed (resp. open) in D, but X(Ω−1(G)) = (X ◦Ω−1(G) =
Y (G) is closed (resp. open) in D. Thus, Y is closed (resp. open) and Y is F.W. closed (resp. open).
□

Corollary 2.25. Let Ω : E → F be a cont. F.W. surjection, where in E and F are F.W.M.T.S. on
D. If E is F.W. closed (resp. open), then F is F.W. closed (resp. open).

Proposition 2.26. Let E be a F.W.U.T.S. (resp., F.W.L.T.S.) on D. Suppose that E is F.W. closed
(resp., open) on D. Then E+

D∗ (resp., E−
D∗) is F.W. closed (resp., open) on D∗ for every subspace

D∗ of D.
Proof . Suppose that E is a F.W. closed (resp. open), the projection X : E → D is closed (resp.,
open). To show that E+

D∗ (resp., E−
D∗) , the projection function XD∗ : E+

D∗ (resp., E−
D∗) → D∗ is

closed (resp., open). Now, let G be a closed (resp., open) subset of E, then G∩E+
D∗ (resp., E−

D∗)
is closed (resp., open) in subspace E+

D∗ (resp., E−
D∗) and XD∗(G ∩ E+

D∗ (resp., E−
D∗)) = X(G ∩

E+
D∗ (resp., E−

D∗)) = X(G) ∩D∗ that is closed (resp., open) set in D∗. Thus XD∗ is closed (resp.,
open) and E+

D∗ (resp., E−
D∗)is F.W. closed (resp., open) on D∗. □

Corollary 2.27. Let E be a F.W.M.T.S. on D. Suppose that E is F.W. closed (resp., open) on D.
Then E+

D∗ (resp., E−
D∗) is F.W. closed (resp., open) on D∗ for every subspace D∗ of D.

Proposition 2.28. Let E be a F.W.U.T.S. (resp., F.W.L.T.S.) on D. Suppose that E+
D∗ (resp., E−

D∗)
is F.W. closed (resp., open) on Di for every member Di of an open covering of D. Then E is F.W.
closed (resp., open).
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Proof . Suppose that E is a F.W.U.T.S. (resp., F.W.L.T.S.) on D, then the projection function
X : E→ D exists. To show that X is open. Now, since E+

Di∗ (resp., E−
Di∗) is F.W. open on Di,

then the projection function X+
Di: E

+
Di → Di (resp., X

−
Di : E

−
Di → Di ) is open for every member

Di of an open covering of D. Let G be an open subset of E, then we have X(G) = ∪X+
Di (E

+
Di ∩ G)

(resp., ∪X−
Di (E

−
Di ∩ G)) that is a union of open sets and hence X is open. Thus, E is F.W. open

on D. □

Corollary 2.29. Let E be a F.W.M.T.S. on D. Suppose that ED∗ is F.W. closed (resp., open) on
Di for every member Di of an open covering of D. Then E is F.W. closed (resp., open).

3. Fibrewise Multi-Locally Sliceable and Fibrewise Multi-Locally Sectionable Multi-
topological spaces

We present the ideas of fibrewise upper (resp., fibrewise lower and fibrewise multi) locally sliceable
and fibrewise upper (resp., fibrewise lower and fibrewise multi) locally sectionable multi-topologicalspaces
on (D, ρ), several topologicalproperties on the obtained ideas are studied.

Definition 3.1. The F.W.U.T.S. (resp., F.W.L.T.S.) (E, τ) on (D, ρ) is named upper (resp.,
lower) locally sliceable if for every point e ∈ Ed; d ∈ D, there exist an open set W of d and a
section s+ : W → E+

W (resp., (s− : W → E−
W ) and s+(d) = e (resp., s−(d) = e).

The F.W.M.T,S. (E, τ) on (D, ρ) is named multi-locally sliceable if for every point e ∈ Ed; d ∈ D,
there exist an open set W of d and a section s+ : W → E+

W (resp. s− : W → E−
W ) and s+(d) =

e(resp.s−(d) = e).

Definition 3.2. The F.W.U.T.S. (resp., F.W.L.T.S.) (E, τ) on (D, ρ) is named upper (resp.,
lower) locally sliceable if for every point e ∈ Ed; d ∈ D, there exist an open set W of d and a
section s: W → EW and s(d) = e.

The F.W.M.T.S. (E, τ) on (D, ρ) is named multi-locally sliceable if for every point e ∈ Ed; d ∈ D,
there exist an open set W of d and a section s : W → EW and s(d) = e.
The condition lead to X is open for U is an open set of e in E, then s−1(E+

W (resp., E−
W ) ∩U ⊂ X(U)

is an open set of d in W and hence in D. The class of multi-locally sliceable multi-topologicalspace
is finitely multiplicative stated in.

Proposition 3.3. Let {(W+
r (resp.,W−

r ), τr)}kr=1 be a finite family of upper (resp., lower) locally
sliceable upper (resp., lower) space on (D, ρ). The F.W.U.T. (resp., F.W.L.T.) productW = ΠDW r

is upper (resp., lower) locally sliceable.
Proof . Let e = (er) be a point of E+

d (resp., E−
d ; d ∈ D,) so that er = πr(e) for every index r. Sense

E+
r (resp., E−

r ) is upper (resp., lower) locally sliceable upper (resp., lower) topologicalspace there is
an open set N r of d and a section s+r : W r → E+

r |W r(resp., s−r : W r → E−
r |W r) where in s+r (d)

(resp., s−r (d) = er.) Then the intersection W = E1 ∩ . . . ∩ En is an open set of d and a section
s : W → E+

N (resp., E−
N) is given by πr ◦ s(w) = sr(w) for every index r and every point w ∈ W. □

Corollary 3.4. Let {(Er, τr)}kr=1 be a finite family of multi-locally sliceable multi space on (D, ρ).
The F.W.M.T. product E = ΠDEr is multi-locally sliceable.
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Proposition 3.5. Let Ω : E → F be cont. F.W. surjection, where in (E, τ) and (F, ω) are
F.W.U.T.S. (resp., F.W.L.T.S.) on (D, ρ). If E is upper (resp., lower) locally sliceable, then F
is so.
Proof . Let f ∈ F d; d ∈ D. Then f = Ω(e), for some e ∈ E+

d (resp., E−
d ). If E+ (resp., E−)

is upper (resp., lower) locally sliceable then, there is an open set W of d and a section s+ : N →
E+

N

(
resp., s− : N → E−

N

)
is section such that s+(d) (resp., s−(d) = w). □

Corollary 3.6. Let Ω : E → F be cont. F.W. surjection, where in (E, τ) and (F, ω) are F.W.M.T.S.
on (D, ρ). If E is multi-locally sliceable, then F is so.

Definition 3.7. The F.W.U.T.S. (resp., F.W.L.T.S.) (E, τ) on (D, ρ) is named F.W.U. (resp.,
F.W.L.) discrete if the projection function X is upper (resp., lower) a local homeomorphism.

The F.W.M.T.S. (E, τ) on (D, ρ) is named F.W. multi-discrete if the projection function X is multi-
local homeomorphism.
This means, we recall that for every point d of D and every e of E+

d (resp., E−
d ) there is τ -open set

V of e in E and a ρ open set N of d in D where in X maps V homomorphically onto N. It is clear
that F.W. multi-discrete topologicalspace and multi-locally sliceable there for F.W. open.
The class of F.W. multi-discrete topologicalspaces are finitely multiplicative.

Proposition 3.8. let {(Er, τr)}kr=1 be a finite family of F.W. upper (resp., lower) discrete topolog-
icalspace on (D, ρ). Then the F.W.U.T. (resp., F.W.L.T.) product E = ΠDEr, τ is F.W. upper
(resp., lower) discrete.
Proof . Given a point e ∈ E+

d (resp., E−
d ); d ∈ D, there is for every index r a τ open set Ur of

πr (e) inEr, where in the projection function Xr = X ◦ π−1
r maps Ur homomorphically onto the

ρ-open Xr(Ur) = W r of d. Then the τr-open ΠDUr of e is mapped homomorphically intersection
W = ∩E+

r (resp., E−
r ) which, a ρ open of d. □

Corollary 3.9. let {(Er, τ r)}kr=1 be a finite family of F.W. multi-discrete topologicalspace on (D, ρ).
Then the F.W.M.T. product E = ΠDEr, τ is F.W. multi-discrete.

An attractive characterization of F.W. multi-discrete topologicalspaces are given by the following:

Proposition 3.10. If (E, τ r) F.W.U.T.S. (resp., F.W.L.T.S.) on (D, ρ). Then, E is F.W. upper
(resp., lower) discrete iff:

(a) E is F.W. open

(b) The diagonal embedding ∆ : E → E ×D E is open.

Proof .
⇐ Suppose that (a) and (d) are satisfied. Let e ∈ Ed; d ∈ D, then ∆(e) = (e, e) admits a τ r × τ r-
open set in E ×DEthat is entirely contained in ∆(E). Without really lacking in general we may
suppose the τ r × τ r-open set of the form U ×D U, where in U is a τ r-open set of e in E. Then X|U is
homeomorphism. There for, E is F.W. upper (resp., lower) discrete.
⇒ Assum that E is F.W. upper (resp., lower) discrete. We have already seen that E is F.W. open.
To prove that ∆ is open it is sufficient to prove that ∆(E) is τ r × τ r-open in E ×D E. So, let e
∈ Ed; d ∈ D, and let U be a τ r-open set of e in E, where in N = X(U) is a ρ-open set of d in D and
X maps U homomorphically onto N. Then U ×D U is contained in ∆(E) since if not then there exist
distinct E , E∗ ∈ EN , where in n ∈ N and E , E∗ ∈ U, that is absurd. □
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Open subset of F.W. upper (resp., lower) discrete topologicalspace is also F.W. upper (resp., lower)
discrete, actually, we have.

Corollary 3.11. If (E, τ r) F.W.M.T.S. on (D, ρ). Then, E is F.W. multi-discrete iff:

(a) E is F.W. open

(b) The diagonal embedding ∆ : E → E ×D E is open.

Proposition 3.12. 3.5. Assume that Ω : E → F is a cont. F.W. injection, where in (E, τ), (F, ω)
are F.W. open upper (resp., lower) topologicalspaces on (D, ρ). If F is F.W. upper (resp., lower)
discrete. Then E is so.
Proof . Consider the diagram shown below.

Since Ω is cont. so is Ω × Ω. Now ∆(E) ω × ω-open in N ×D N, by Proposition 3.10. Since F
is F.W., ∆(E) = ∆(Ω+(F )) (resp.,Ω−(F )) = (Ω × Ω)+ (resp., (Ω × Ω)−)(∆(F ))τ × τ -open in
E ×D E. Thus, (Proposition 3.13) follows from (Proposition 3.10). □

Corollary 3.13. Assume that Ω : E → F is a cont. F.W. injection, where in (E, τ), (F, ω) are
F.W. open multi-topological space on (D, ρ). If F is F.W. multi-discrete. Then E is so.

Proposition 3.14. 3.6. Assume that Ω : E → F be an open F.W. surjection, where in (E, τ),
(F, ω) are F.W. open upper (resp., lower) topologicalspaces on (D, ρ). If E is F.W. upper (resp.,
lower) discrete. Then F is so.
Proof .. In the above figure, with these fresh hypotheses on Ω is E is F.W.U (resp., F.W.L.) discrete
.then ∆(E) is τ × τ -open in E ×DE by Proposition 3.10, so ∆(F ) = ∆Ω(M) = (Ω× Ω)(∆(E)) is
(ω × ω)-open in F ×D F. Thus, Proposition ?? follows from Proposition 3.10 again. □

Corollary 3.15. 3.6. Assume that Ω : E → F be an open F.W. surjection, where in (E, τ), (F, ω)
are F.W. open multi-topologicalspaces on (D, ρ). If E is F.W. multi-discrete. Then F is so.

Proposition 3.16. If Ω, ψ : E → F is cont. F.W. function, where in (E, τ) is F.W.U.T. (resp.,
F.W.L.T.) and (F, ω) is F.W. upper (resp., lower) discrete topological space on (D, ρ). Then the
coincidence set K(Ω, ψ) of Ω and ψ is open in E.
Proof . The coincidence set is precisely ∆−(Ω× ψ)− (resp.,∆+(Ω× ψ)+)∆(N), where:

E
∆→ E ×D E

Ω × Ψ→ F ×D F
∆← F . Hence Proposition 3.16 follows at once from Proposition 3.10.

In particular take E = F, take Ω = idE and take ψ = s ◦X wherein s is a section, we conclude that
s is an open embedding when E is F.W. upper (resp., lower)discrete. □
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Corollary 3.17. If Ω, ψ : E → F is cont. F.W. function, where in (E, τ) is F.W.M.T.S. and (F, ω)
is F.W. multi-discrete topological space on (D, ρ). Then the coincidence set K(Ω, ψ) of Ω and ψ is
open in E.

Proposition 3.18. 3.8. If Ω : E → F is cont. F.W. function, where in (E, τ) is F.W. open and
(F, ω) is F.W. upper (resp., lower) discrete topologicalspace on (D, ρ). Then the F.W. graph:

Γ : E → E ×D F

Of Ω is an open embedding.
Proof . The F.W. graph is defend in the same way as the ordinary graph, but with values in the
F.W.U.T. (resp., F.W.L.T.) product, therefore the diagram shown below is commutative.
Since ∆(F ) is ω-open in F ×B F, by (Proposition 3.10), so Γ(E) = (Ω × idF )− (resp., (Ω ×
idF )+(∆(F ))) is (τ × ω)-open in E ×D F. □

Corollary 3.19. If Ω : E → F is cont. F.W. function, where in (E, τ) is F.W. open and (F, ω) is
F.W. multi-discrete topologicalspace on (D, ρ). Then the F.W. graph above of Ω is an open embedding.

Remark 3.20. If (E, τ) is F.W. upper (resp., lower) discrete topological space on (D, ρ) then for
every point e ∈ Ed; d ∈ D, there is a ρ-open set W of d a unique section s : W → EW exist satisfying
s(d) = e, we may refer to s as the section through m.
Also, if (E, τ) is F.W. multi-discrete topologicalspace on (D, ρ) then for every point e ∈ Ed; d ∈ D,
there is a ρ-open set W of d a unique section s : W → EW exist satisfying s(d) = e, we may refer to
s as the section through m.

Definition 3.21. The F.W.U.T.S. (resp., F.W.L.T.S.) (E, τ) on (D, ρ) is named upper (resp.,
lower) locally sectionable if for every point d ∈ D, admits an open set W and a section s : W → EW .

The F.W.M.T.S. (E, τ) on (D, ρ) is named multi-locally sectionable if for every point d ∈ D, admits
an open set W and a section s : W → EW .

Remark 3.22. The F.W. non-empty upper (resp., lower) locally sliceable upper (resp., lower) topo-
logical spaces are upper (resp., lower) locally sectionable, but the converse is false. In fact, upper
(resp., lower, multi) locally sectionable upper (resp., lower, multi) topological spaces are not neces-
sarily F.W. open, for example take E = (−1, 1] ⊂ R with (E, τ) : τ1 = τ2, the natural projection
onto D = R|Z; (D, ρ) : ρ1ρ2.
The class of upper (resp., lower, multi) locally sectionable upper (resp., lower, multi) topological
spaces is finitely multiplicative.
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Proposition 3.23. If {(Er,τ r)} is a finite family of upper (resp., lower) locally sectionable upper
(resp., lower) topologicalspaces on (D, ρ). The F.W.U.T. (resp., F.W.L.T.) product E = ΠDM r is
upper (resp., lower) locally sectionable.
Proof . Given a point d of D, there exist ρ-open set N r of d and a section sr : N r → M r|N r for
every index r. Since there are finite number of index the intersection N of the ρ-open sets N r is also
a ρ-open set of d, and a section sr : N → (ΠDM

r)N is given by πr ◦ s(N) = sr(N), for n ∈ N. □

Our last two result apply equally well to every of the above three propositions.

Corollary 3.24. If {(Er,τ r)} is a finite family of multi-locally sectionable multi-topologicalspaces on
(D, ρ). The F.W.M.T. product E = ΠDM

r is multi-locally sectionable.

Proposition 3.25. If {(Er,τ r)} is a F.W. upper (resp., lower) discrete topologicalspace on (D, ρ).
Suppose that (Er,τ r) is upper (resp., lower) locally sliceable, F.W. upper (resp., lower) discrete or
upper (resp., lower) locally sectionable on (D, ρ). Then so is ED∗ on D∗ for every ρ-open set D∗ of D.

Corollary 3.26. If {(Er,τ r)} is a F.W. multi-discrete topological space on (D, ρ). Suppose that
(Er,τ r) is multi-locally sliceable, F.W. multi-discrete or multi-locally sectionable on (D, ρ). Then so
is ED∗ on D∗ for every ρ-open set D∗ of D.

Proposition 3.27. Let (Er,τ r) be a F.W.U.T.S. (resp. F.W.L.T.S.) on (D, ρ). Assume that EDj
is

upper (resp., lower) locally sliceable F.W. upper (resp., lower) discrete or upper (resp., lower) locally
sectionable on Dj for every member Dj of a ρ-open covering of D. So is E over

Corollary 3.28. Let (Er,τ r) be F.W.M.T.S. on (D, ρ). Assume that EDj
is multi-locally sliceable

F.W. multi-discrete or multi-locally sectionable on Dj for every member Dj of a ρ- open covering of
D. So is E on D.

Remark 3.29. It is not difficult to give example of different F.W. multi-discrete multi-topology on
the same F.W. set that are in equivalent, as (F.W.M.T.). For this reason, we must be careful not to
say the F.W. multi-discrete topology.
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