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Abstract

In this paper, we discuss the existence and uniqueness of fixed point and common fixed point theorems
in complex valued extended b-metric space for a pair of mappings satisfying some rational contraction
conditions which generalize and unify some well known results in the literature.
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1. Introduction

The Fixed point theory is a well known research field in mathematical sciences. Fixed point tech-
nique is an important tool in the area of the non-linear analysis. The Banach contraction mapping
principle [3] plays a vital role in fixed point theory. In 1969, Nadler [13] developed the fixed point
theorems for multi-valued mappings. Huange and Zhange [9] initiated the concept of cone metric
space as a generalization of metric spaces. The well-known fixed point results involving rational
contractions could not be extended in cone metric spaces. To rectify this restriction, Azam et al. [1]
developed the concept of complex valued metric spaces and introduced sufficient conditions involving
rational expressions. In 1989 Bakhtin [2] presented a new space called b-metric space which is the
generalization of metric space. Czerwik [7] extended the Banach principle in b-metric space. Many
researchers proved fixed point theorems on single valued and multi valued mapping in b-metric space
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[5] [10]. Rao et al. [14] introduced complex valued b-metric space, continuously Mukheimer [12], A.
K. Dubey [8], Dayana [15], Carmel [6] verified the existence of some common fixed point theorems
in complex valued b-metric space. In 2017, Kamran et al [11] introduced extended b- metric space
and Naimat Ullah and et al [16] initiated the concept of complex valued extended b-metric spaces.
In this paper, we prove fixed point theorems in complex valued extended b-metric space by using
rational contractions.

2. Preliminaries

Definition 2.1. [1] Let C be the set of complex numbers and z1, z2 ∈ C . Define a partial order ⪯
on C as follows:
z1 ⪯ z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2) . Thus z1 ≤ z2 if one of the following
holds:

1. Re(z1) = Re(z2) and Im(z1) = Im(z2) ;

2. Re(z1) < Re(z2) and Im(z1) = Im(z2) ;

3. Re(z1) = Re(z2) and Im(z1) < Im(z2) ;

4. Re(z1) < Re(z2) and Im(z1) < Im(z2) ;

We will writez1 ⋨ z2 if z1 ̸= z2 and one of (2), (3), and (4) is satisfied; also we will write z1 ≺ z2 if
only (4) is satisfied.
It follows that

(i) 0 ⪯ z1 ⋨ z2 implies |z1| < |z2| ;
(ii) z1 ⪯ z2 and z2 ≺ z3 imply z1 ≺ z3 ;

(iii) 0 ⪯ z1 ⪯ z2 implies |z1| ≤ |z2| ;
(iv) if a, b ∈ R, 0 ≤ a ≤ b and z1 ⪯ z2 then az1 ≺ bz2 for all z1, z2 ∈ C.

Definition 2.2. [1] Let W be a non-empty set. A function dcv : W ×W → C is called a complex
valued metric on W , if for all l,m, n ∈ W , the following conditions are satisfied:

(i) 0 ⪯ dcv(l,m) and dcv(l,m) = 0 if and only if l = m;

(ii) dcv(l,m) = dcv(m, l);

(iii) dcv(l,m) ⪯ dcv(l, n) + dcv(n,m).

Then the pair (W,dcv) is called a complex valued metric space.

Example 2.3. [1] Let W = [0, 1] and l,m ∈ W . Define dcv : W ×W → C by

dcv(l,m) =

0 if l = m
i

2
if l ̸= m

(2.1)

Then dcv is a complex valued metric and hence (W,dcv) is a complex valued metric space.

Definition 2.4. [1] Let (W,dcv) be a complex valued metric space.

(i) We say that a point l ∈ W is an interior point of a set M ⊆ W , whenever there exists 0 ≺ r ∈ C
such that

B(l, r) = m ∈ W : dcv(m, l) ≺ r,
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(ii) We say that a point l ∈ W is a limit point of a set M ⊆ W , whenever for every 0 ≺ r ∈ C
such that

B(l, r) ∩M − l ̸= ∅.

Definition 2.5. [2][7]Let W be a non-empty set and s ≥ 1 be a given real number. A function
db : W × W → [0,∞) is called b-metric on W if for all l,m, n ∈ W , the following conditions are
satisfied:

(b1) db(l,m) = 0 if and only if l = m;

(b2) db(l,m) = db(m, l);

(b3) db(l,m) ≤ s[db(l, n) + db(n,m)].

Then the pair (W, db) is called a b-metric space.

Example 2.6. [4] Let W = Lp[0, 1] be the space of all real functions l(t), t ∈ [0, 1] such that
1∫
0

|l(t)|p < ∞ with 0 < p < 1. Define db : W ×W → R+ as:

db(l,m) =

 1∫
0

|l(t)−m(t)|pdt


1
p

then (W,db) is b-metric space with coefficient s = 2
1
p .

Definition 2.7. [14] Let W be a non-empty set and let s ≥ 1 be a given real number. A function
dcvb : W × W → C is called a complex valued b-metric on W if for all l,m, n ∈ W , the following
conditions are satisfied:

(i) 0 ⪯ dcvb(l,m) and dcvb(l,m) = 0 if and only if l = m;

(ii) dcvb(l,m) = dcvb(m, l);

(iii) dcvb(l,m) ⪯ s[dcvb(l, n) + dcvb(n,m)].

Then the pair (W,dcvb) is called a complex valued b-metric space.

Example 2.8. [14] If W = [0, 1], define the mapping dcvb : W ×W → C by

(l,m) = |l −m|2 + i|l −m|2

for all l,m ∈ W . Then (W,dcvb) is a complex valued b-metric space with s = 2.

Definition 2.9. [11] Let W be a non-empty set and λ : W × W → [1,∞) be a function. Then
dλ : W ×W → [0,∞) is called an extended b-metric if for all l,m, n ∈ W it satisfies:

(i) dλ(l,m) = 0 if and only if l = m;

(ii) dλ(l,m) = dλ(m, l);

(iii) dλ(l, n) ≤ λ(l, n)[dλ(l,m) + dλ(m,n)].

Then the pair (W,dλ) is called an extended b-metric space.
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Example 2.10. Let W = 1, 2, 3. Define λ : W ×W → R+ and dλ : W ×W → R+ as:

λ(l,m) = 1 + l +m

dλ(1, 1) = dλ(2, 2) = dλ(3, 3) = 0

dλ(1, 2) = dλ(2, 1) = 80, dλ(1, 3) = dλ(3, 1) = 1000

dλ(2, 3) = dλ(3, 2) = 600

then (W,dλ) is an extended b-metric space.

Definition 2.11. [11] Let (W,dλ) be an extended b-metric space.

(i) A sequence {ln} in W is said to converge to l ∈ W , if for every ϵ > 0 there exists N = N(ϵ) ∈ N
such that dλ(ln, l) < ϵ, for all n ≥ N . In this case, we write lim

n→∞
ln = l.

(ii) A sequence {ln} in W is said to be Cauchy, if for every ϵ > 0 there exists N = N(ϵ) ∈ N such
that dλ(lm, ln) < ϵ, for all m,n ≥ N .

(iii) If every Cauchy sequence in W is convergent, then (W,dλ) is said to be a complete extended
b-metric space.

Lemma 2.12. [11] Let (W,dλ) be an extended b-metric space. If dλ is continuous, then every con-
vergent sequence has a unique limit.

Definition 2.13. [16] Let W be a non-empty set and θ : W × W → [1,∞) be a function. Then
dθ : W ×W → C is known as a complex valued b-metric space if the following conditions are satisfied
for all l,m, n ∈ W :

(i) 0 ⪯ dθ(l,m) and dθ(l,m) = 0 if and only if l = m;

(ii) dθ(l,m) = dθ(m, l);

(iii) dθ(l, n) ⪯ θ(l, n)[dθ(l,m) + dθ(m,n)].

Then the pair (W,dθ) is called a complex valued extended b-metric space.

Example 2.14. If W be a non-empty set and θ : W ×W → [1,∞] be defined as:

θ(l,m) =
1 + l +m

l +m

further, Let

(i) dθ(l,m) =
i

lm
for all l,m ∈ (0, 1];

(ii) dθ(l,m) = 0 ⇐⇒ l = m for all l,m ∈ [0, 1];

(iii) dθ(l, 0) = dθ(0, l) =
i

l
for all l ∈ (0, 1].

Then the pair (W,dθ) is known as a complex valued extended b-metric space.

Example 2.15. Let W = [0,∞). θ : W ×W → [1,∞) be a function defined by θ(l,m) = 1 + l +m
and dθ : W ×W → C be given as

dθ(l,m) =

{
0 if l = m
i if l ̸= m

}
Then (W,dθ) is a complex valued extended b - metric space.
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3. Main results

Theorem 3.1. Let (W,dθ) be a complete complex valued extended b-metric space; let θ : W ×W →
[1,∞) and let U, V be self-mappings from W into itself satisfy the following inequality:

dθ(Ul, V m) ⪯ µ1dθ(l,m) + µ2
dθ(l, Ul)dθ(m,V m)

dθ(l, V m) + dθ(m,Ul) + dθ(l,m)
(3.1)

for all l,m ∈ W , such that l ̸= m, dθ(l, V m) + dθ(m,Ul) + dθ(l,m) ̸= 0 where µ1 and µ2 are non
negative reals with µ1 + µ2θ(l1, l2) < 1, ζ = µ1 + µ2θ(l1, l2) where ζ ∈ [0,∞), lim

n,m→∞
θ(ln, lm) <

1
ζ
. or

dθ(Ul, V m) = 0 if dθ(l, V m) + dθ(m,Ul) + dθ(l,m) = 0. Then U and V have a unique common fixed
point in W .

Proof . For any arbitrary point l0 ∈ W , define a sequence {ln} in W such that

l2n+1 = Ul2n and l2n+2 = V l2n+1 ∀n ≥ 0 (3.2)

Now we prove that {ln} is a Cauchy sequence.
Let l = l0, m = l1 in (3.1)

dθ(l1, l2) = dθ(Ul0, V l1)

⪯ µ1dθ(l0, l1) + µ2
dθ(l0, Ul0)dθ(l1, V l1)

dθ(l0, V l1) + dθ(l1, Ul0) + dθ(l0, l1)

= µ1dθ(l0, l1) + µ2
dθ(l0, l1)dθ(l1, l2)

dθ(l0, l2) + dθ(l1, l1) + dθ(l0, l1)

= µ1dθ(l0, l1) + µ2
dθ(l0, l1)dθ(l1, l2)

dθ(l0, l2) + dθ(l0, l1)
.

Then

|dθ(l1, l2)| = µ1|dθ(l0, l1)|+ µ2
|dθ(l0, l1)||dθ(l1, l2)|

|dθ(l0, l2)|+ |dθ(l0, l1)|
Using triangular inequality

dθ(l1, l2) ≤ θ(l1, l2)[dθ(l1, l0) + dθ(l0, l2)]

|dθ(l1, l2)| ≤ µ1|dθ(l0, l1)|+ µ2
|dθ(l0, l1)||dθ(l1, l2)|

|dθ(l1, l2)|
|θ(l1, l2)|

= (µ1 + µ2θ(l1, l2))|dθ(l0, l1)|
|dθ(l1, l2)| ≤ (µ1 + µ2θ(l1, l2))|dθ(l0, l1)|.

Since |dθ(l1, l2)| < 1 + |dθ(l1, l2)|,

|dθ(l1, l2)| ≤ ζ|dθ(l0, l1)|
|dθ(l2, l3)| ≤ ζ2|dθ(l0, l1)|
|dθ(l3, l4)| ≤ ζ3|dθ(l0, l1)|

...

|dθ(ln, ln+1)| ≤ ζn|dθ(l0, l1)|



3484 Raj, Xavier, Joseph, Marudai

Now, by triangular inequality, for any m > n, m,n ∈ N, we have

dθ(ln, lm) ⪯ θ(ln, lm)ζ
ndθ(l0, l1) + θ(ln, lm)θ(ln+1, lm)ζ

n+1dθ(l0, l1) . . .

+ θ(ln, lm)θ(ln+1, lm) . . . θ(lm−2, lm)θ(lm−1, lm)ζ
m−1dθ(l0, l1).

Then

dθ(ln, lm) ⪯ dθ(l0, l1)[θ(ln, lm)ζ
n + θ(ln, lm)θ(ln+1, lm)ζ

n+1 . . .

+ θ(ln, lm)θ(ln+1, lm) . . . θ(lm−2, lm)θ(lm−1, lm)ζ
m−1]

Since, lim
n,m→∞

θ(ln, lm)ζ < 1, so the series
∞∑
n=1

ζn
n∏

i=1

θ(li, lm) converges by ratio test for each m ∈ N.

Let

S =
∞∑
n=1

ζn
n∏

i=1

θ(li, lm), Sn =
n∑

j=1

ζj
j∏

i=1

θ(li, lm)

Thus, for m > n, the above can be written as

dθ(ln, lm) ⪯ dθ(l0, l1)[Sm−1 − Sn] and

|dθ(ln, lm)| ≤ |dθ(l0, l1)|[Sm−1 − Sn]

Letting n → ∞, we obtain
|dθ(ln, lm)| → 0.

Thus, {ln} is a Cauchy sequence in W . Since W is complete there exists some t ∈ W such that
ln → t as n → ∞ .
Assume not, then there exits z ∈ W such that

|dθ(t, Ut)| = |z| > 0. (3.3)

So by using the triangular inequality and (3.1), we have

z = dθ(t, Ut)

⪯ θ(t, Ut)dθ(t, l2n+2) + θ(t, Ut)dθ(l2n+2, Ut)

= θ(t, Ut)dθ(t, l2n+2) + θ(t, Ut)dθ(V l2n+1, Ut)

⪯ θ(t, Ut)dθ(t, l2n+2) + θ(t, Ut)µ1dθ(t, l2n+1)

+ θ(t, Ut)µ2
dθ(t, Ut)dθ(l2n+1, V l2n+1)

dθ(t, V l2n+1) + dθ(l2n+1, Ut) + dθ(t, l2n+1)

= θ(t, Ut)dθ(t, l2n+2) + θ(t, Ut)µ1dθ(t, l2n+1)

+ θ(t, Ut)µ2
dθ(t, Ut)dθ(l2n+1, l2n+2)

dθ(t, l2n+2) + dθ(l2n+1, Ut) + dθ(t, l2n+1)

|z| = |dθ(t, Ut)| ≤ θ(t, Ut)|dθ(t, l2n+2)|+ θ(t, Ut)µ1|dθ(t, l2n+1)|

+ θ(t, Ut)µ2
|dθ(t, Ut)||dθ(l2n+1, l2n+2)|

|dθ(t, l2n+2)|+ |dθ(l2n+1, Ut)|+ |dθ(t, l2n+1)|
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As n → ∞, we obtain that |z| = |dθ(t, Ut)| ≤ 0, a contradiction.
Thus, |z| = 0.
Hence, Ut = t. Similarly, we obtain V t = t.
Now, we show that U and V have a unique common fixed point. To prove this,assume that t

′ ̸= t is
another common fixed point of U and V . Then

dθ(t, t
′) = dθ(Ut, V t′)

⪯ µ1dθ(t, t
′) + µ2

dθ(t, Ut)dθ(t
′, V t′)

dθ(t, V t′) + dθ(t′, Ut) + dθ(t, t′)

Then,

|dθ(t, t′)| ≤ µ1|dθ(t, t′)|+ µ2
|dθ(t, Ut)||dθ(t′, V t′)|

|dθ(t, V t′)|+ |dθ(t′, Ut)|+ |dθ(t, t′)|
|dθ(t, t′)| ≤ µ1|dθ(t, t′)|,

which is a contradiction.
Hence, t = t′, which shows the uniqueness of common fixed point in W .

Now, we consider the second case:

dθ(l, V m) + dθ(m,Ul) + dθ(l,m) = 0.
l = l2n and m = l2n+1.
dθ(l2n, V l2n+1) + dθ(l2n+1, Ul2n) + dθ(l2n, l2n+1) = 0
dθ(Ul2n, V l2n+1) = 0
So that l2n = Ul2n = l2n+1 = V l2n+1 = l2n+2

Thus,we have l2n+1 = Ul2n = l2n, so there exist E1 and f1 such that
E1 = Uf1 = f1 where E1 = l2n+1 and f1 = l2n.
Using foregoing arguments, we show that there exist E2 and f2
such that E2 = V f2 = f2 where E2 = l2n+2 and f2 = l2n+1.
As, dθ(f1, V f2) + dθ(f2, Uf1) + dθ(f1, f2) = 0 which implies
dθ(Uf1, V f2) = 0. E1 = Uf1 = V f2 = E2.
Thus we obtain E1 = Uf1 = UE1.
Similarly,we have E2 = V E2.
As E1 = E2 ⇒ UE1 = V E1 = E1,
Hence E1 = E2 is common fixed point of U and V .
For uniqueness of common fixed point, assume that E ′

1 in W is another common fixed point of U
and V . Then we have UE ′

1 = V E ′
1 = E ′

1

As dθ(E1, V E ′
1) + dθ(E

′
1, UE1) + dθ(E1, E

′
2) = 0,

therefore dθ(E1, E
′
1) = dθ(UE1, V E ′

1) = 0
This implies that E1 = E ′

1.
This completes the proof of the theorem. □

Corollary 3.2. Let (W,dθ) be a complete complex valued extended b-metric space; let θ : W ×W →
[1,∞) and let V : W → W be a mapping satisfying:

dθ(V l, V m) ⪯ µ1dθ(l,m) + µ2
dθ(l, V l)dθ(m,V m)

dθ(l, V m) + dθ(m,V l) + dθ(l,m)
(3.4)
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for all l,m ∈ W , such that l ̸= m, dθ(l, V m) + dθ(m,V l) + dθ(l,m) ̸= 0 where µ1 and µ2 are non
negative reals with µ1 + µ2θ(l1, l2) < 1, ζ = µ1 + µ2θ(l1, l2) where ζ ∈ [0,∞), lim

n,m→∞
θ(ln, lm) <

1
ζ
. or

dθ(V l, V m) = 0 if dθ(l, V m) + dθ(m,V l) + dθ(l,m) = 0. Then V has a unique fixed point in W .

Proof . By using theorem 3.1 with U = V , we can prove this result. □

Corollary 3.3. Let (W,dθ) be a complete complex valued extended b-metric space; let θ : W ×W →
[1,∞) and let V : W → W be a mapping satisfying (for some fixed n),

dθ(V
nl, V nm) ⪯ µ1dθ(l,m) + µ2

dθ(l, V
nl)dθ(m,V nm)

dθ(l, V nm) + dθ(m,V nl) + dθ(l,m)
(3.5)

for all l,m ∈ W , such that l ̸= m, dθ(l, V
nm) + dθ(m,V nl) + dθ(l,m) ̸= 0 where µ1 and µ2 are non

negative reals with µ1 + µ2θ(l1, l2) < 1, ζ = µ1 + µ2θ(l1, l2) where ζ ∈ [0,∞), lim
n,m→∞

θ(ln, lm) <
1
ζ
. or

dθ(V
nl, V nm) = 0 if

dθ(l, V
nm) + dθ(m,V nl) + dθ(l,m) = 0. Then V has a unique fixed point in W .

Proof . By using corollary 3.2 with V = V n, we can prove this result. □

Example 3.4. Let W = [0,∞). Define θ : W ×W → [1,∞) by

θ(l,m) =
2 + l +m

1 + l +m
for all l,m ∈ W,

and dθ : W ×W → C by

dθ(l,m) = |l −m|2 + i|l −m|2 for all l,m ∈ W

Then (W,dθ) is a complex valued extended b - metric space with s = 2. Consider the mappings
U, V : W → W defined by

Ul =


[
0, l

5

]
, if l ∈ [0, 1]

[l, 3l] , otherwise.

V l =


[
0, l

10

]
, if l ∈ [0, 1]

[3l, 7l] , otherwise.

If l = m = 0, conditions of Theorem 3.1 hold trivially. Suppose l and m are non zero with l < m .
Then

dθ(l, Ul) = |l − l

5
|2 + i|l − l

5
|2,

dθ(m,V m) = |m− m

10
|2 + i|m− m

10
|2,

dθ(m,Ul) = |m− l

5
|2 + i|m− l

5
|2,

dθ(l, V m) = |l − m

10
|2 + i|l − m

10
|2,

s(Ul, V m) = s

(
| l
5
− m

10
|2 + i| l

5
− m

10
|2
)
.

By taking µ1 =
1

2
and µ2 = 0, it can be verified that all the conditions of Theorem 3.1 are satisfied.

Hence 0 is a common fixed point of U and V .
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Theorem 3.5. Let (W,dθ) be a complete complex valued extended b-metric space; let and let U, V
be self-mappings from W into itself satisfy the following inequality,

dθ(Ul, V m) ⪯ µ1dθ(l,m) + µ2[dθ(l, Ul) + dθ(m,V m)] + µ3
[d2θ(l, V m) + d2θ(m,Ul)]

dθ(l, V m) + dθ(m,Ul)
(3.6)

for all l,m ∈ W , such that l ̸= m, dθ(l, V m) + dθ(m,Ul) ̸= 0 where µ1, µ2 and µ3 are non negative
reals with µ1+2µ2+2θ(l0, l2)µ3 < 1, ζ(1−µ2−µ3θ(l0, l2)) = (µ1+µ2+µ3θ(l0, l2)) where ζ ∈ [0,∞),
lim

n,m→∞
θ(ln, lm) <

1
ζ
. or dθ(Ul, V m) = 0 if dθ(l, V m) + dθ(m,Ul) = 0. Then U and V have a unique

common fixed point in W .

Proof . For any arbitrary point l0 ∈ W , define a sequence {ln} in W such that

l2n+1 = Ul2n and l2n+2 = V l2n ∀n ≥ 0 (3.7)

Now we prove that {ln} is a Cauchy sequence.
Let l = l0, m = l1 in(3.6).

dθ(l1, l2) = dθ(Ul0, V l1)

⪯ µ1dθ(l0, l1) + µ2[dθ(l0, Ul0) + dθ(l1, V l1)] + µ3
[d2θ(l0, V l1) + d2θ(l1, Ul0)]

dθ(l0, V l1) + dθ(l1, Ul0)

= µ1dθ(l0, l1) + µ2[dθ(l0, l1) + dθ(l1, l2)] + µ3
[d2θ(l0, l2) + d2θ(l1, l1)]

dθ(l0, l2) + dθ(l1, l1)

= µ1dθ(l0, l1) + µ2[dθ(l0, l1) + dθ(l1, l2)] + µ3
[d2θ(l0, l2)]

dθ(l0, l2)

Then

|dθ(l1, l2)| ≤ µ1|dθ(l0, l1)|+ µ2[|dθ(l0, l1)|+ |dθ(l1, l2)|] + µ3
[|d2θ(l0, l2)|]
|dθ(l0, l2)|

|dθ(l1, l2)| ≤ µ1|dθ(l0, l1)|+ µ2[|dθ(l0, l1)|+ |dθ(l1, l2)|] + µ3|dθ(l0, l2)|
Using triangular inequality, we have

dθ(l0, l2)| ≤ θ(l0, l2)[dθ(l0, l1) + dθ(l1, l2)]

|dθ(l1, l2)| ≤ µ1|dθ(l0, l1)|+ µ2[|dθ(l0, l1) + dθ(l1, l2)] + µ3θ(l0, l2)[|dθ(l0, l1)|+ |dθ(l1, l2)|]
= (µ1 + µ2 + µ3θ(l0, l2))|dθ(l0, l1)|+ (µ2 + µ3θ(l0, l2))|dθ(l1, l2)|

|dθ(l1, l2)| =
(µ1 + µ2 + µ3θ(l0, l2))

(1− µ2 − µ3θ(l0, l2))
|dθ(l0, l1)|

Then, we obtain
|dθ(l1, l2)| ≤ ζ|dθ(l0, l1)|

Similarly,

|dθ(l1, l2)| ≤ ζ|dθ(l0, l1)|
|dθ(l2, l3)| ≤ ζ2|dθ(l0, l1)|
|dθ(l3, l4)| ≤ ζ3|dθ(l0, l1)|

...

|dθ(ln, ln+1)| ≤ ζn|dθ(l0, l1)|
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Now, by triangular inequality, for any m > n, m,n ∈ N we have

dθ(ln, lm) ⪯ θ(ln, lm)ζ
ndθ(l0, l1) + θ(ln, lm)θ(ln+1, lm)ζ

n+1dθ(l0, l1) . . .

+ θ(ln, lm)θ(ln+1, lm) . . . θ(lm−2, lm)θ(lm−1, lm)ζ
m−1dθ(l0, l1)

Then

dθ(ln, lm) ⪯ dθ(l0, l1)[θ(ln, lm)ζ
n + θ(ln, lm)θ(ln+1, lm)ζ

n+1 . . .

+ θ(ln, lm)θ(ln+1, lm) . . . θ(lm−2, lm)θ(lm−1, lm)ζ
m−1].

Since, lim
n,m→∞

θ(ln, lm)ζ < 1, series
∞∑
n=1

ζn
n∏

i=1

θ(li, lm) converges by ratio test for each m ∈ N.

Let

S =
∞∑
n=1

ζn
n∏

i=1

θ(li, lm), Sn =
n∑

j=1

ζj
j∏

i=1

θ(li, lm)

Thus, for m > n, the above expression can be written as

dθ(ln, lm) ⪯ dθ(l0, l1)[Sm−1 − Sn]

and
|dθ(ln, lm)| ≤ |dθ(l0, l1)|[Sm−1 − Sn]

Letting n → ∞, we get
|dθ(ln, lm)| → 0.

Thus, {ln} is a Cauchy sequence in W . Since W is complete there exists some t ∈ W such that
{ln} → t as n → ∞ .
Assume not, then there exits z ∈ W such that

|dθ(t, Ut)| = |z| > 0. (3.8)

Using the triangular inequality, we have

z = dθ(t, Ut)

⪯ θ(t, Ut)dθ(t, l2n+2) + θ(t, Ut)dθ(l2n+2, Ut)

= θ(t, Ut)dθ(t, l2n+2) + θ(t, Ut)dθ(V l2n+1, Ut)

⪯ θ(t, Ut)dθ(t, l2n+2) + θ(t, Ut)µ1dθ(t, l2n+1) + θ(t, Ut)µ2[dθ(t, Ut) + dθ(l2n+1, V l2n+1)]

+ θ(t, Ut)µ3
[d2θ(t, V l2n+1) + d2θ(l2n+1, Ut)]

dθ(t, V l2n+1) + dθ(l2n+1, Ut)

= θ(t, Ut)dθ(t, l2n+2) + θ(t, Ut)µ1dθ(t, l2n+1) + θ(t, Ut)µ2[dθ(t, Ut) + dθ(l2n+1, l2n+2)]

+ θ(t, Ut)µ3
[d2θ(t, l2n+2) + d2θ(l2n+1, Ut)]

dθ(t, l2n+2) + dθ(l2n+1, Ut)

|z| = |dθ(t, Ut)| ≤ |θ(t, Ut)|
(
|dθ(t, l2n+2)|+ µ1|dθ(t, l2n+1) + µ2

[
|dθ(t, Ut)|+ |dθ(l2n+1, l2n+2)|

]
+ µ3

[|d2θ(t, l2n+2)|+ |d2θ(l2n+1, Ut)|]
|dθ(t, l2n+2)|+ |dθ(l2n+1, Ut)|

)
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As n → ∞, we obtain that |z| = |dθ(t, Ut)| ≤ 0, a contradiction.
Thus, |z| = 0.
Hence, Ut = t. Similarly, we obtain V t = t.
Now, we show that U and V have a unique common fixed point. To prove this,assume that t

′ ̸= t is
another common fixed point of U and V . Then

dθ(t, t
′) = dθ(Ut, V t′)

⪯ µ1dθ(t, t
′) + µ2[dθ(t, Ut) + dθ(t

′, V t′)] + µ3
[d2θ(t, V t′) + d2θ(t

′, Ut)]

dθ(t, V t′) + dθ(t′, Ut)

Then,

|dθ(t, t′)| ≤ µ1|dθ(t, t′)|+ µ2[|dθ(t, Ut)|+ |dθ(t′, V t′)|] + µ3
[|d2θ(t, V t′)|+ |d2θ(t′, Ut)|]
|dθ(t, V t′)|+ |dθ(t′, Ut)|

|dθ(t, t′)| ≤ (µ1 + µ3)|dθ(t, t′)|,

which is a contradiction. Hence t = t′ which shows the uniqueness of common fixed point in W .
For the second case, dθ(Ul, V m) = 0 if dθ(l, V m) + dθ(m,Ul) = 0,the proof of unique common fixed
point can be completed in the line of Theorem 3.1.
This completes the proof of the theorem. □

Corollary 3.6. Let (W,dθ) be a complete complex valued extended b-metric space; let θ : W ×W →
[1,∞) and let V be self-mapping from W into itself satisfy the following inequality,

dθ(V l, V m) ⪯ µ1dθ(l,m) + µ2[dθ(l, V l) + dθ(m,V m)] + µ3
[d2θ(l, V m) + d2θ(m,V l)]

dθ(l, V m) + dθ(m,V l)

for all l,m ∈ W , such that l ̸= m, dθ(l, V m) + dθ(m,V l) ̸= 0 where µ1, µ2 and µ3 are non negative
reals with µ1+2µ2+2θ(l0, l2)µ3 < 1, ζ(1−µ2−µ3θ(l0, l2)) = (µ1+µ2+µ3θ(l0, l2)) where ζ ∈ [0,∞),
lim

n,m→∞
θ(ln, lm) <

1
ζ
. or dθ(V l, V m) = 0 if dθ(l, V m)+dθ(m,V l) = 0 Then V has a unique fixed point

in W .

Proof . By using the theorem 3.5 with U = V , we can prove this result. □

Corollary 3.7. Let (W,dθ) be a complete complex valued extended b-metric space; let θ : W ×W →
[1,∞) and let V : W → W be a mapping satisfying (for some fixed n)

dθ(V
nl, V nm) ⪯ µ1dθ(l,m) + µ2[dθ(l, V

nl) + dθ(m,V nm)] + µ3
[d2θ(l, V

nm) + d2θ(m,V nl)]

dθ(l, V nm) + dθ(m,V nl)

for all l,m ∈ W , such that l ̸= m, dθ(l, V
nm)+ dθ(m,V nl) ̸= 0 where µ1, µ2 and µ3 are non negative

reals with µ1+2µ2+2θ(l0, l2)µ3 < 1, ζ(1−µ2−µ3θ(l0, l2)) = (µ1+µ2+µ3θ(l0, l2)) where ζ ∈ [0,∞),
lim

n,m→∞
θ(ln, lm) <

1
ζ
. or dθ(V

nl, V nm) = 0 if dθ(l, V
nm) + dθ(m,V nl) = 0 Then V has a unique fixed

point in W .

Proof . By using the corollary 3.6 with V = V n, we can prove this result. □
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