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Abstract

A new probability model for positively skewed datasets like economic data, medical, engineering and
other sciences was developed in this paper. The new distribution is named the Marshall Olkin Topp
Leon Exponential distribution and it was generated using the Marshall Olkin Topp Leon -G family of
distributions. It has three parameters and it is very flexible in fitting several and different datasets.
Its basic mathematical properties were studied and two methods like maximum likelihood estimation
via Gray Wolf optimization and Conjugate Gradient used for the estimation of model parameters.
A real-life dataset was used to illustrate the flexibility of the distribution and it was found that the
new model provides a better fit to real-life datasets than other distributions.

Keywords: Marshall Olkin distribution, Topp Leon-G family of distributions, Mathematical
properties, Exponential distribution.

1. Introduction

The purpose of generating new compound distributions from known families of distributions is
to extend the baseline distributions and develop them by adding one or more shape parameters.
These compound distributions have however been found to be better than the parent distribution
in terms of flexibility and modeling capability. There are several families of distributions that can
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be used for this purpose but in this research, the interest is on the Marshall Olkin Topp Leone -G
family of distributions. The Marshall Olkin Topp Leon -G family of distributions is relatively new,
and it has only two extra parameters [11]. By this, the resulting composite distribution will only
have three parameters; one from the baseline distribution (Exponential distribution) and two from
the Marshall Olkin Topp Leon -G family of distributions. We motivate the use of this distribution
in some ways. First, we extend exponential distribution by proposing the MOTLE by adding two
shape parameters to give the distribution more flexibility for application in real data. Further,
we find and study some mathematical properties of the new distribution. In 2019, Abdullah et
al., [2] estimating the parameters for extension of Burr Type X distribution by Using Conjugate
Gradient. As well as Abdullah et al., [1] Modified new conjugate gradient method for Unconstrained
Optimization. Exponential distribution is one of the most important probability models in the theory
of statistics and other fields of sciences. The model is appropriate for modeling real life phenomena
with monotonous failure rates [3]. It has many applications in statistics as well as life testing, circuit
studies and reliability analysis [14, 15]. This paper has been structured to develop the Marshall
Olkin Topp Leone exponential distribution, establish its various properties, estimate its unknown
parameters and to demonstrate its strength using a real life application.

2. Marshall-Olkin Topp-Leone-G (MOTL-G) Family of Distribution

For a given baseline distribution with cdf, W(x), and pdf, w(x), Marshall and Olkin (1997)
suggested a new flexible family of probability distributions based on defined a cumulative function
through presenting an additional parameter, ∝ > 0, known as the shape parameter. The cumulative
function and probability density function of the Marshall-Olkin (MO) family are defined by [9, 10],
respectively:

FMO−G=
M(x)

1−∝M (x)
, M (x)= 1−M (x) , ∝= 1−∝ (2.1)

fMO−G=
∝m(x)

[1−∝M (x) ]
2 (2.2)

A natural way of generating families of distributions on some other support from on the interval [0,
1] a simple starting parent distribution with probability density function is to apply the cumulative
function to a family of distributions. The cdf of the Topp and Leone distribution is given by

MTL(x) =[1− (1−G (x))2]
b

(2.3)

The PDF of Topp-Leone family as follows [4, 16]:

mTL (x)= 2b (1−G (x)) .g (x) .{ 1− (1−G (x))2}b−1
, b > 0 (2.4)

Compound Eq. (2.3) in Eq. (2.1) we get the cdf of new family, by driven the Eq. (2.5) we have the
pdf of new family

FMOTL−G (x)=
{ 1− [1−G(x)]2}b

1−∝
[
{ 1− [1−G(x)]2}b

] (2.5)

fMOTL−G (x)=
2∝b(1−G (x) ).g(x).{ 1− (1−G (x))2}b−1

(1−∝
[
{ 1− [1−G(x)]2}b

]
)2

(2.6)

where ∝, b are the shape parameters [13].
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3. MOTL-E Distribution

The random variable X is said to have an exponential (E) distribution with the scale parameter.
It is perhaps the most widely applied statistical distribution for many problems in reliability in many
fields. In this point, we propose a generalization of E distribution with the hope it will attract wider
applicability in real life phenomenones. let the cdf and the pdf of E distribution as follows

G (x)= 1−e−δx (3.1)

g (x)=∂e−δx (3.2)

inserting Eq. (3.2) in Eq. (2.6) we have the cdf of new distribution as follows:

FMOTLE (x)=
{ 1− (1−e−δx)2}b

1−∝
[
1−

{
1− (e−δx)2

}b
] (3.3)

The pdf and hazard function corresponding to Eq. (3.3) can be written as respectively

fMOTLE (x)=
2∝be−δxe−δx{1− e−2δx}b−1

(1−∝
[
{ 1− [1−e−2δx}b

]
)2

(3.4)

And hazard function can be found as follows [5]:

HMOTLE (x)=

2∝be−δxe−δx{1− e−2δx}b−1

(1−∝[{ 1−[1−e−2δx}b])2

1− { 1−(1−e−δx)2}b

1−∝
[
1−

{
1−(e−δx)

2
}b

] (3.5)

Figure 1: Plot for the pdf of Marshall Olkin Topp Leon Exponential distribution

Figures 1 illustrate some possible shapes of the density function for selected parameter values.
The density of MOTLE distribution as we see is more flexible than E distribution. The density of
MOTLE can be skewed from right, skewed from the left and also symmetric (see Figure 1). We
can see that the additional shape parameters ∝, and b, allows for a higher degree of flexibility. The
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survival function can be obtained for the Marshall Olkin Topp Leone Exponential distribution using
the following relationship:

SMOTLE (x)= 1− { 1− (1−e−δx)2}b

1−∝
[
1−

{
1− (e−δx)2

}b
] (3.6)

4. Properties of new Distribution

4.1. Expansion for the probability density function

Expanding the pdf of a probability model is very useful in developing and studying some mathe-
matical properties which otherwise would have required prolonged algebraic processes. Recall from
Equation (3.5) that:

fMOTLE (x)=
2∝be−δxe−δx{1− e−2δx}b−1

(1−∝
[
{ 1− [1−e−2δx}b

]
)2

By using binomial expansion on the denominator of pdf as follows

(1−∝
[
{ 1− [1−e−2δx}b

]
)−2 =

∞∑
j=0

(j + 1) (∝
[
{ 1− [1−e−2δx]}b

]
)j

=
∞∑
j=0

(j + 1) ∝j [{ 1− [1−e−2δx]}b]j

By using binomial expansion again as follows:

(1− z)−k =
∞∑
j=0

Γ(k + j)

Γk.j!
.zj (4.1)

(1− z)b−1 =
∞∑
i=0

(−1)i
(

b− 1
i

)
zi ,

(
b− 1
i

)
=⇒ Γ(b+ 1− j)

Γ(b− 1.j!

=
∞∑
j=0

(j + 1) ∝j

∞∑
i=0

(−1)j
Γ(j + 1)

Γj.j!
{ 1− e−2δx}bi

We can rewrite the pdf as follows:

fMOTLE (x) = 2∝b δ e−2δx

∞∑
j=0

∞∑
i=0

(j + 1)∝j (−1)
i
(

j
i

)
{ 1− e−2δx}b(i+1)−1

Let
∑∞

j=0

∑∞
i=0 (j + 1)∝j (−1)

i

(
j
i

)
= W then

fMOTLE (x)= 2∝b δ e−2δx W { 1− e−2∂x}b(i+1)−1

fMOTLE (x)= 2∝b δ e−2δxw
∞∑
k=0

(−1)k∝j (−1)
k
(

b (1 + 1)− 1
k

)
(e−2δx)

k
)
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fMOTLE (x)= 2∝b δ e−2δx .Wi,j,k e−2δkx (4.2)

where

Wi,j,k =
∞∑

j,i,k=0

(−1)k+1∝j (−1)
k
(j + 1)

(
j
i

)(
b (1 + 1)− 1

k

)
.

Equation (4.2) is the main equation in this subsection and it will use later to find some properties.

4.2. Quantile Function

This can easily be obtained as the inverse of the cdf as follows:
Let.

1− e−2δx = K (4.3)

This way, the quantile function for the Marshall Olkin Topp Leone Exponential distribution is
obtained as follows:

u =
(K)b

(1−∝[1− (K)b]

(K)b = u− u∝[1− (K)b]

(K)b = u− u∝+ u∝(K)b

(K)b − u∝(K)b = u(1−∝)

(K)b(1− u∝) = u(1−∝) =⇒ (K)b =
u(1−∝)

1−∝u(
(1− e−2δx)

b
)1/b

= (
u(1−∝)

1− u∝
)
1/b

1− e−2δx = (
u(1−∝)

1− u∝
)
1/b

e−2δx = 1− (
u(1−∝)

1− u∝
)
1/b

− 2δx = −ln[1−
(
u (1−∝)

1− u∝

) 1
b

]

To take ln two sides

x = −
−ln[1−

(
u(1−∝)
1−u∝

) 1
b
]

2δ

When u = 0.5, we find the median

x0.5 =
−ln[1−

(
0.5 ∝
1−0.5∝

) 1
b ]

2δ

x =
−ln[1−

(
U ∝
1−U∝

) 1
b ]

2∂
U ∼ Uniform(0, 1) (4.4)
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4.3. Moments

Moments play important roles in finding and measuring some statistical characteristics such as finding
flattening and spacing, coefficient of variation, standard deviation and other characteristics. The
rth moment of the Marshall Olkin Topp Leone Exponential distribution can be obtained using the
following relationship;

Mr (t) =

∫ ∞

0

xrf (x) dx = 2∝b δ Wi,j,k

∫ ∞

0

xre−2δx(1+k)dx

Let. y = 2bδx(1+k) =⇒ x = y
2∂(1+k)

and dx = dy
2δ(1+k)

then

∫ ∞

0

xre−2δx(1+k)dx =

∫ ∞

0

yr

2δ(1 + k)r
.e−y dy

2δ(1 + k)
=

1

(2δ(1 + k))r+1

∫ ∞

0

yr+1−1.e−ydy =
Γ(r + 1)

[2δ(1 + k)]r+1

M r (t) =
2 ∝ bδWi,j,kΓ (r + 1)

(2r+1δr+1 (k + 1)r+1 =
2 ∝ bWi,j,kΓ(r + 1)

(2δ)r (k + 1)
r+1 (4.5)

4.4. Moment generating function

For a random variable X, the moment generating function (mgf) is given by the relationship. By
expressing ext in form of a sequence:

E(ext) =E(
∞∑
x=r

trxr

r!
)

E(ext) =
∞∑
x=r

tr

r!
E(xr)

=
2 ∝ bWi,j,k

∑∞
r=0

tr

r!
Γ(r + 1)

(2δ)r (k + 1)
r+1

=
∞∑
r=0

2 ∝ bWi,j,k.t
rΓ(r + 1)

(2δ)r (k + 1)
r+1 (4.6)

4.5. Order Statistics

If x1, x2, . . . , xn denote random samples from the densities of a Marshall Olkin Topp Leone Ex-
ponential distribution as defined in (3.3) and Equation (3.4) respectively; the pdf of the kth order
statistics of the Marshall Olkin Topp Leone Exponential distribution is obtained as follows:

g(r,n) =
n!

(r − 1)! (n− r)!
[ FMOTLE (x)]r−1[1− FMOTLE (x)]n−r fMOTLE (x)

When r = 1 the distribution of minimum order statistics for the Marshall Olkin Topp Leone Expo-
nential distribution is therefore given as:

g(1,n) =
n!

(1− 1)! (n− 1)!
[1− FMOTLE (x)]n−1 fMOTLE (x)

=n[1− FMOTLE (x)]n−1. fMOTLE (x)
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And when r = n the distribution of maximum order statistics for the Marshall Olkin Topp Leone
Exponential distribution is therefore given as:

g(n,n) =
n!

(n− 1)! (n− n)!
[1− FMoTLE (x)]n−1 fMoTLE (x)

= n[FMoTLE. (x)]n−1. fMoTLE (x)

By substituting eq (3.3) and (3.4) in equation above we have

g(n,n) = n

 {
1− e−2∂x

}b[
1−∝{ 1− e−2∂x}b

]
 .[

2 ∝ b∂e−2∂x( 1− e−2∂x)
b−1

−((1−∝)[1− {1− e−2∂x}b])2
]

5. Metaheuristic Algorithm

Metaheuristic optimization algorithms have taken a great role in solving engineering application
problems, because they are easy to implement, have good ability to escape stagnation in a local
optimum, and due to their flexibility; therefore, they give a good solution to a range of issues in
various disciplines [8].

5.1. Gray wolf algorithm

The gray wolf optimization algorithm is one of the optimization algorithms. It has good ability to find
competing solutions with other best optimization algorithms, in which proposed by Mirjalili et al.,
2016 [8, 12, 18]. They Simulated the social behavior of gray wolves in search of food, where they live
in groups of 5-12 wolves, by means of applying the hierarchy of leadership strategy. The latter means
the hunting process These Strategy involves three steps such as a social hierarchy stratification, un
encircling the victim and assaulting it.

5.2. Social life

Wolves live in groups of 5-12 wolves to support each other in order to obtain food, by applying the
hierarchy of command strategy, in which group members are classified into four categories such as
alphas, betas, deltas and omega. The group is led by alphas, with decision-making powers such as
where to sleep, hunt, and details of group leadership and direction, and a key role in producing new
solutions. In the second level comes the role of the betas wolves, which remain next to the alphas
wolves, and through them the alphas can make a decision, which in turn provides a quick response
to the decisions of the leader alphas, while the secondary wolves, which belong to the categories of
seniors, guards, hunters, scouts and so-called deltas wolves are located at the third level. The Figure
(2.2) shows the leadership hierarchy in the wolf pack

Figure 2: Hierarchy of the social life of wolves
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5.3. Surround and Attack

The hunting mechanism begins with gray wolves encircling prey; mathematically, the encirclement
behavior is modeled as follows:

Y (t + 1)=Yp (t)−Z∗ |B∗Yp (t)−Y (t)| (5.1)

Z = 2z∗r1 −z (5.2)

L = 2∗r2 (5.3)

z = 2− 2
t

max− iter.
(5.4)

Where,
Y refers to the position vector of the gray wolf.
Yp refers to the position vectors of prey,
t refers to the current iteration,
Z and B refers to the coefficient vectors,
r1 and r2 refer to random vectors in [0, 1] ∧n, this vector is distance control parameter, where its
value decreases linearly from 2 to 0 over the course of iterations,
max− iter. is the maximum iterations
Now, the wolves finish Encircling the Prey. After completing the briefing phase, the wolves start
preparing for the attack phase. Gray wolves can identify the location of potential prey well, and the
search task is mainly entrusted with the guidance of α and the rest of the wolves. The algorithm
operates in an iterative fashion. The three best wolves are selected in each cycle. (α, β, δ) in the
current population are selected for retention, then the positions of the other wolves (agents of search)
are revised depending on their prior location data. The process of attacking the prey in sport was
modelled as follows:

Y1 = Yα − Z1 ∗ |L1 ∗ Yα − Y | (5.5)

Y2 = Yβ − Z2 ∗ |L2 ∗ Yβ − Y | (5.6)

Y3 = Yδ − Z3 ∗ |L3 ∗ Yδ − Y | (5.7)

Y (t+ 1) =
Y1 (t) + Y2 (t)+Y 3 (t)

3
(5.8)

Where the above equations represent the values,( Yα, Yβ, and Yδ), which refer to the wolf position
vectors (α, β and δ), respectively. The values of the calculations for (Z1, Z2, and Z3) are similar to
Z , also, the calculations for (L1, L2, and L3 ) are similar to L.
In fact, they are used Extracted (L) To update their prey and agency locations, use the following
numbers to indicate the distance between current candidate wolves and the top three wolves [18]:

Hα = L1 ∗ Yα − Y (5.9)

Hβ = L2 ∗ Yβ − Y (5.10)

Hδ = L3 ∗ Yδ − Y (5.11)
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Figure 3: Position Update of Prey Location for Grey Wolves Group

Figure 3 shows the steps for the candidate solution to finally fall within the positions circle by
the group of wolves (α, β, and δ) according to their role. Note that, the role of the second group
(β) in the hierarchy, whose mission is to follow, encircle, and harass prey until it stops moving. The
next stage is the orientation of the best three wolves in a relation to the location of the prey. The
rest of the groups updates it around the clock, as each group begins to search for information about
the location of prey in a scattered manner. In the harmony with the position of the leader of the
group and his assistants in a relation to the position of the prey, the positions update, and then he
begins to pounce on the prey to overthrow it. It is important to βand sometimes the prey can escape
intelligently. One can understand the working mechanism of this algorithm through the following
flowchart in figure (2.4) [6]:

Figure 4: Flowchart for Grey Wolves Algorithm



3500 Abdullah, Hussai, Fawzi, Abdal-hammed, Khaleel

6. Conjugate Gradient Methods

The method of Conjugate Gradient start with initial point xkand direction dkto generate converge
of iterations until get the minimum of the function fby use the following equation, where αk represent
the step size [7].

xk+1 = xk + αkdk (6.1)

dk+1 = −gk+1 + βkdk (6.2)

where gk+1 represented the gradient of the function f

7. BFGS Method

The BFGS algorithm is one specific way for updating the calculation of the inverse Hessian,
instead of recalculating it every iteration. It, or its extensions, may be one of the most popular
Quasi-Newton or even second-order optimization algorithms used for numerical optimization [17].
dk = −B−1

k ∇f(xk) , where BFGS update as follow

Bk+1=Bk+
yTk yk
yTk sk

−Bks
T
k skBk

sTkBksk
(7.1)

where
sk=xk+1−xk, yk=gk+1−gk

The update of inverse

B−1
k+1=

(
I−sky

T
k

yTk sk

)
B−1

k

(
I−yks

T
k

yTk sk

)
+
sks

T
k

yTk sk
(7.2)

8. Maximum Likelihood Estimation

Here, the parameters of the Marshall Olkin Topp Leone Exponential distribution are estimated
using the method of maximum likelihood. Let x1, x2, . . . , xn be random samples distributed according
to the Marshall Olkin Topp Leone Exponential distribution, the likelihood function is obtained by
the relationship. Using the expression in Equation (3.4) then;

L =
n∏

i=0

2∝be−2δxi{1− e−2δxi}b−1

(1−∝
[
{ 1− [1−e−2δxi}b

]
)2

(8.1)

By taking the natural logarithm, the log-likelihood function is obtained as;

Log (L) =nLog (2)+nLog (∝)+nLog (b)−
n∑

i=0

2δxi+(b− 1)
n∑

i=0

Log
({

1− e−2δxi
})

− 2
n∑

i=0

Log
((

1−∝
[
{ 1− [1−e−2δxi}b

]))
(8.2)

The estimate of each of the parameters can therefore be obtained when the first partial derivative of
the log-likelihood function for each of the parameters is taken, equated to zero and solved simulta-
neously. It is good to note that the solution cannot be obtained in closed form. This can however
be resolved by solving numerically using available software like R and other sophisticated software.
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9. Application

A real life application is presented in this section to demonstrate the usefulness of the Marshall
Olkin Topp Leone Exponential distribution. Comparisons are made with the Marshall Olkin Topp
Leone Exponential BFGS, Marshall Olkin Topp Leone Exponential CG, Marshall Olkin Topp Leone
Exponential GWO Methods with respect to their negative log-likelihood (NLL), Akaike Information
Criteria (AIC), Consistent Akaike Information Criteria (CAIC), Bayesian Information Criteria (BIC)
values.

The data represents the waiting time (mins) of 100 bank customers before service is being ren-
dered. The dataset has previously been analyzed by Oguntunde et al., (2017) [14] to predict the
failure times of these engines. The result is presented in Table 1.

Table 1: Table of result

Distributions NLL AIC CAIC BIC

MOTLEBFGS 317.014 640.029 640.279 647.844

MOTLECG 338.78 683.765 684.015 691.580

MOTLEGWO 317.083 640.166 640.416 647.9815

The newly developed MOTLEBFGS displays a very good potential in Table 1 as it has the lowest
values for the NLL, AIC, CAIC, BIC, statistic. The maximum likelihood estimates for the parameters
are provided in Table 2.

Table 2: Parameter estimates

Distributions Estimates

MOTLEBFGS α̂ = 2.3048, b̂ = 0.7621, δ̂ = 0.073

MOTLECG α̂ = 0.8044, b̂ = 0.8383, δ̂ = 0.0408

MOTLEGWO α̂ = 2.1945, b̂ = 1.022, δ̂ = 0.079

To further validate the results obtained, the histogram plot of the dataset with the distributions
compared is presented in Figure 5.
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Figure 5: Histogram plot of the dataset with the compared methods

The corresponding empirical cdf plot is presented in Figure 6. Figures 5 and 6 show that the
MOTLEBFGS method fits the dataset better than the other methods.

Figure 6: Empirical cdf of the dataset with the compared methods

10. Conclusions

The Marshall Olkin Topp Leone Exponential distribution has been successfully defined and stud-
ied in this paper. The model is positively skewed and unimodal in shape, its various statistical
properties were also obtained. The model is characterized by high flexibility. A parameter estima-
tion was using MLE to estimate the unknown model parameter. An application to real life dataset
reveals that the method of BFGS is a strong competitor then the other methods GC and GWO. The
model can also be applied to other real life datasets.
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