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Abstract

The generalization of distributions is an important topic in probability theory. Several distributions,
whether symmetrical, semi-symmetrical or heavily skewed, are unsuitable for modelling modern
data. In this paper, the Rayleigh Gompertz distribution as a new compound flexible distribution is
introduced. Several important statistical properties of the new distribution have been examined and
studied as well as its flexibility is proved through various real datasets with different information
fitting criteria. The flexibility of this new distribution allows using it in various application areas.

Keywords: The Rayleigh Gompertz Distribution, exponential distribution, reliability function and
hazard function.

1. Introduction

Many researchers have focused their attention on the class of generalized or expanded distribu-
tions. Different flexible new distributions and families are introduced, such as Beta-G [I], Marshall
Olkin-G [2], generalized gamma—~G [3], Kumaraswamy—-G [4], Weibull-G [5], Rayleigh-G [6] and
many others, through various procedures. In this article, the Rayleigh-G family is considered to
introduce a new extension distribution of Gompertz named Rayleigh Gompertz.

The Gompertz distribution is a flexible distribution that can be skewed to both sides (right and
left). This distribution is a generalization of exponential distribution and is widely used in many
applied problems, particularly in modeling survival and human mortality. For more details about
the Go distribution and its applications, see [7] and [§]. The remains of this article are established
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as follows: In section 2, a brief detail about the new extension of Gompertz distribution is provided.
Sections 3, 4, 5, and 6 respectively address the properties, entropies, reliability stress strength model,
and the maximum likelihood estimators of the new distribution. Section 7 address the numerical
illustration through the application of different real data sets. The concluding remarks are presented
in section 8.

2. New compound of Gompertz Distribution

For any baseline distribution with the cumulative distribution function (cdf), say G (x), and
probability density function (pdf), say g (z), Al-Noor and Assi [6] proposed a new flexible family of
probability distributions named Rayleigh-G (R — G) with the following general formulas of cdf and
pdf

F(2)p_g=e™ 200 % 220, 0> 0 (2.1)
P0Gy (-G (o) )eHinoe) (2.

where 6 is the scale parameter.
Now, assume that G (x) and g () be the Gompertz distribution with the cdf and its associated
pdf given respectively by [9]

G(w)g,=1—¢ 37220, 0, 4> 0 (2.3)

9(@)g,=a eMem K (2.4)

where o and A are the scale and shape parameters respectively.

After substituting (2.3) and (2.4) in (2.1) and (2.2)) instead of G(z) and g(z), a new sub-model
of the Rayleigh-G family named Rayleigh Gompertz (RGo) is proposed. The cdf and pdf of the new

distribution will be as

Flo) = ¢ [tn(1em 82 0)] .
o eXme= (71

0 ~ gt
o _ - 3(6)‘171) -3 —In(1—e" X
f(l')RGO - 1— e o (Aw_1) |: In (1 e X ):| e |: ( )} (26)
Figures [I] and 2] demonstrate different shapes for the cdf and pdf of the RGo distribution with
various parameter values. The pdf shape can be decreased and different skewed. The distribution is

therefore highly flexible to model different positive data.
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Figure 1: Plot of RGO cdf with various pa- Figure 2: Plot of RGO pdf with various pa-
rameter values rameter values

3. Properties of the RGo Distribution

In this section, several important statistical properties of the new distribution have been examined

and studied.
Property 1. The non-central v moment of RGo distribution can be found through

B (X Vo= | o Fhng, do (3.)

where f(x) g, represents the pdf as in (2.6]). Since

e % — Z (_'1)1 Zi (Sl)

=0

Then , ' '

N e e I - Y e 2

AR )]_ZO (5 [—ln(l—e 3 H
The pdf in (2.6)), will be

O e 3D (1) 0’ a (A 2i+1
_ 7 i I G|
f(x)RGo - 1 — e S (Aw_1) - il (2) [ In (1 e A ) ] (32)

Using the following especial formula (see [10])

>~ k (_1)j+k+l a k—a
[~z ]T=) "> T C  crkepttpy A (S2)
k,1=0 j=0 i

where Pj o =1for j > 0and Py, =k ' 5k CHMUUM po o for b =1,2, ... .

m=1
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2i+1
The [—m (1 _ e—%@”—l) } will be

. o k
o e 2i+1 J+k+l 2 1 A ' o .
(1) o Yo S B B D eingrepisip (1 et )

k,1=0 j=0 22 +1-
Consequently, the pdf in (3.2)), will be
Z+J+k+l ( . 1) 9i+1 ' 4
i, j=
-1
a e e <1 - e_%(eM_l)) (3.3)
1yiHITREL (g i ey :
Let A = szl OZJ 0 Z'(J21+1 J(? 1) 92#0: @i+1) C]k 012 +1+kPj7k , then
o e SV A |
/ (:E)RGO — A e e 5D (1 G _1)> (3.4)

Now, E(X")zq, in (3.1) will be

e ey x a x -1
E(X")pgo = A/ 2o e e 3 _1)<1 — e 5@ _1)) dx
0

[e’s) -1
= A%/ 2 al e e_%(em_l)<1 — 6—%@”—1)) dz
0

The result of the above integration is the 7" moment of the generalized Gompertz distribution (see
[T1]) with parameters o, A and [ , i.e

& o e o/ e -1
/ 2al e (1) <1 —e 5( _1)> dx
0

-1 ( 1)m+t a t o 1 s 2 (m+1)
— ol T(r+1) g:o ol —F(t+1)<)\(m+1)> Sirn) ¢

Therefore, the r* moment of the RGo distribution is

E(X7) Aol (r +1) Z lokn 1&(3( +1)>t o ™ S (m+1) (3.5)
rao = Aal(r A T T AT \t+ 1) € '

Property 2. The RGo characteristic function can be achieved by Cx () zq, = D neg %E (X)) ko

o0 i r m—+t o t r+1 N
Cx(Op, =0 3 STr e net Tl (o) (rg5g) < F 60

Property 3. The RGo quantile function can be attained through inverting the cdf in (2.5)) as

1 A 2 3
T(g)—RGo = Xln [1 — aln (1 — e (=fml@ )2) } (3.7)
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The median of RGo random variable can be attained from (3.7]) by setting ¢ = % as

, 1 A C(—2m(1) )?
Mediangg, = T(1)_Rao = Xln [1 — aln <1 _ e (=im(3) ) ) } (3.8)
Property 4. The RGo random sample can be simulated based on U that has standard uniform
distribution as
1
TRGo = I {1 SN (1 — (= finw V) ] (3.9)
A «

Property 5. The RGo reliability function and hazard function can be easily obtained from ([2.5))

and([2.6]) as

Ri#)agy =1~ Fle)gy =1~ ¢+ (7 577) (310

T T e e (e | O (e )

(@) pao = = PP (3.11)
i nc (1—e 36 (1 e 8 [ AT )
4. Shannon and Relative Entropies of the RGo Distribution
The RGo Shannon entropy can be found through
Shagy =~ [ 1 (F@)a,) f(@)ng, do (11)
0

where f(x)p, represents the pdf of RGo distribution.
Using especial formulas

(1— z)bzi (_1)1 F(b—{.— D) ) 2= i(—l)i Cl2i: 2 <1, >0 (S3)

—~ il I'(b—i+1 —
b o= T(b+14)
1—2)"= —_— 2 1,0 4

1
Now, according to (2.6) and then (3.3)), (1—6_%(6M_1)> have two cases as
(

> D7 T - speey S 1—-1>0
m! ’

> F—<l_1+m>) e RED c1—-1<0

o
3
=
|
—

For i —1>0, f(2)pq, in (3.3) will be

1 i+j+k+14+m ( . 1) 9i+1 K (241) b 201k
—(a 1+14

i,k,l,m=0 j=0

F(l) T — a(m+1) AT _
Pj,kma 6)\ e A ( 1)
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Using (S1)
a(m+1) ( re (=17 fa(m+1) » s
o e oy O ( DY (o)
s=0 ’
and since . .
(a+b)"=) " Cra*b=>" Crdv* ;n>0
k=0 k=0
Now »
a(mt1) (e = (—1)° a(m+1) . M
€ (1) — Z Sl ( \ Cre
s,t=0 ’
Then

z+]+k+l+m+s+t (21 + 1) €i+1

_ k—(2i+1) ~k ~2i+1+k
f (9‘3)RG0 Z Z z'm's' 2i+1— ]) i \s Ck Cj Cl

i,k,l,m,s,t=0 j=0

I

sp.,_— \'
ClE = m)

OéSJrl(m—i—l)s eA(tJrl)x

Similarly for (I — 1) <0, f(2)pzeq, in (3.3) will be

'L+J+k+l+s+t ( . 1) 91'_1,_1

_ k—(2i+1) ~k ~2i4+14+k s
f (‘T>RG0 - Z Z Z'm'S‘ 2 +1— ]) i \s Ck OJ Cl Ct‘F)J

i,k,l,m,s,t=0 j=0

s 1)* (t+1)z
TOoD) T m+1) e
Let
( z+]+k+l+m+5+t (22’ + 1) gitlostl
Z Z Z|mlsl (20 +1— ) 208 (m+1)°
i,k,l,m,s,t=0 j=0 J
o | r
C,lj (2 +1)Cfcl2z+1+kctsf)] F (l (_)m> : l -1 > 0
B =
z+J+k+l+s+t . i+1, s+1
1+1)60 s
Z Z valsl 22+1(_ ) ) 23\5 (m+1)
i,k,l,m,s,t=0 j=0 J
o A r'il—1+m)
C (21+1)C'I»€C2Z+1+kcsp‘k : l—1<0
\ . i Ci A (=
Then

[ (@) e, = B A
Now, In (f(x)gq,) in can be attained from as
In(f(z)pg,) =In(B) +A(t+1)z
and then simply, the RGo Shannon entropy in can be found as

Shrao = —In(B) — A(t+1) E(X>RG0

(4.2)

(4.4)
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where E(X) g, as in (3.5) with r = 1.
Furthermore, the RGo relative entropy can be obtained from

RE o= /0 "o (%) (@) ey, d (4.5)

where f(2)ps, and fi(x)gq, represent the pdf with parameters (6, «, A) and (61, a1, A1) respec-
tively. With recall ({4.3])

f (m)RGO B B eA(t—l—l)m B B
hl(m —ln m —hl E +>\(t+1)l’—A1<t+1)l‘
B
=In (B?) + At+1)=N({t+1)x
1
The RGo relative entropy in (4.5)) can be then obtained as
B
RERGO =1In (g) -+ ()\ (t —+ 1) - /\1 (t + 1)) E(X)RGO (46)
1
Where B, By as in (4.2)) with specific parameters and E(X) ., as in (3.5) with r = 1.

5. The Reliability Stress Strength Model of the RGo Distribution

Consider Y(stress) and X(strength) two independent random variables have RGO with param-
eters (61, a1, A1) and (6, a, \) respectively. The reliability stress strength model can be obtained
as

SSRGO = P(Y < X) = /OOO fx(aT)RGO Fy(l’)RGO dx (51)

Recall the cdf in with parameters (01, o, A1), and based on (S1), (52), (S3) we get
o [, SL(EMT-1)
Fy () pao =c : [ : ( ﬂ
B e’} (_1)2 _ ﬂ(e)‘lz—l) 21
=2 [ i (15 )|
( ) Z Z j+k+l 2Z

1=0 k=0 j

Ck 2zokc2z+kp (1 e (;i(exlgc—l))l

o] k ( 1)Z+]+k+l+s

_ - 0 k—2i vk 12i+k Al — 58 (eM7-1)
—'ZZ:: i1(2i— ) ()C GG Pare

and for e~ M " Viollow the same steps in page [3510] then

)l+j+k+l+s+2m t( i) (0 k—2i vk itk Al s
Fy(2) py = Z Z ( )C Reilerallel Omp”‘(&) (\t) @

i'm!r! (20 — j) 2
i,k,l,s,m,t,r=0 j=0
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Therefore, the stress strength of RGo distribution in (/5.1)) can be obtained as

z+j+k+l+s+2m t ( )(91

S5 rGo= Z Z z'm'r' 2i — j) 2

i,k,l,s,m,t,r=0 j=0

) Ck 21 C«kCZH—k

a1s

cterpa(5E) OB (X, 62
where F (X") as in (3.5)).

6. The Maximum Likelihood Estimators of the RGo Parameters

For the parameters vector 7 = (6, a, )\)T, the natural logarithm likelihood function of a complete
random sample with size n, say (zi, 22, ..., z,), follow RGo distribution (recall (2.6)) is

¢ (7]z) =nln (6a) +)\le _X - (1 Zln<1_€ 2 (Avim 1)>

=1

+ Z:ln [—ln (1 —e” %(6”"—1)” — gzn: [—ln (1 —e” i(em_l)ﬂQ (6.1)

1=

The maximum likelihood estimators (MLE) of the RGo parameters can be obtained by solving

ol(rlz) _ ol(r]z) _ oL(t|z)
80 0, =5 =0, “ox

> = (0 . The estimators are
«

the three nonlinear differential equations
not in closed forms, so numerical method is used.

7. Real Applications

Three real data sets are considered here.
Data -1: The first data set represents the crude mortality rate among people who inject drugs with
a sample size of 65 observations [12].
72.01, 6.32, 3.52, 2.15, 5.42, 2.04, 2.77, 2.26, 1.95, 1.00, 2.45, 0.74, 0.98, 1.27, 2.77, 3.68, 1.18, 1.09,
1.60, 0.57, 3.33, 0.91, 7.14, 2.08, 3.85, 1.99, 7.76, 2.52, 1.57, 4.67, 4.22, 1.92, 1.59, 4.08, 2.02, 0.84,
6.85, 2.18, 2.04, 1.05, 2.91, 1.37, 2.43, 2.28, 3.74, 1.30, 1.59, 1.83, 3.85, 6.30, 4.83, 0.50, 3.40, 2.33,
4.25, 3.49, 2.12, 0.83, 0.54, 3.23, 4.50, 0.71, 0.48, 2.30, 7.73”.

Data -2: The second data set represents the failure times in hours from an accelerated life test with
a sample size of 59 conductors. The observations are as follows [13][14].

76.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 6.958,
4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.369, 7.024,
8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 4.531,
7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071, 10.941, 5.923".

Data -3: The third data set represents the single fibers that were tensioned at 10mm gauge lengths
with a sample size of 63. The observations are as follows [I5][16].

71.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525,
2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937,
2.977,2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346,
3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.5564, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027,
4.225, 4.395, 5.020”.
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For comparison with the new distribution, six additional distributions also fitted including Rayleigh
Gompertz (RGo), Gamma Gompertz (GaGo), Marshall Olkin Gompertz (MOGo), Kumaraswamy
Gompertz (KuGo), Gompertz (Go), Beta Gompertz (BeGo), and Exponentiated Generalized Gom-
pertz (EGGo) distributions (for more details about these distributions, also see references [9][17]-[21].
The R software used to compute MLEs of their parameters and the well-known information crite-
ria: (—¢) Negative Log-Likelihood, (AIC) Akaike Information Criteria, (CAIC) Consistent Akaike
Information Criteria, (BIC') Bayesian Information Criteria, (HQIC') Hanan and Quinn Information
Criteria. Minimum values of these measures indicate the distribution has a better fitting. The MLEs
of the parameters for each model and the information criteria fitted to the different real-data sets
are shown in Tables 113

From the results, RGo has the lowest values of information criteria, making it the best fit to
describe three considered real data sets. Furthermore, the plots of empirical cdfs, the histogram, and
the estimated densities in Figures demonstrate this best-fitting.

Table 1: The MLEs of the parameters for the models and the information criteria fitted to data-1.

Model Estimates —{ AlIC CAIC BIC HQIC
RGo | 1.0713 | 0.1038 | 0.1496 — | 118.4245 | 242.8489 | 243.2424 | 249.3721 | 245.4227
GaGo | 0.1847 | 0.1924 | 1.3696 — 1121.9779 | 249.9558 | 250.3492 | 256.4789 | 252.5296
MOGo | 13.8406 | -0.1374 | 1.3422 — 121.7713 | 249.5427 | 249.9361 | 256.0658 | 252.1165
KuGo | 6.3026 | 0.1466 | 0.0982 | 2.5538 | 118.1797 | 244.3594 | 245.0261 | 253.0569 | 247.7911
Go 0.2262 | 0.2168 — — 124.2617 | 252.5234 | 252.7170 | 256.8722 | 254.2393
BeGo | 4.4803 | 0.1361 | 0.1070 | 2.6861 | 118.3171 | 244.6342 | 245.3008 | 253.3317 | 248.0659
EGGo | 0.8114 | 2.7460 | -0.0097 | 0.8114 | 119.0462 | 246.0924 | 246.7591 | 254.7900 | 249.5242

Table 2: The MLEs of the parameters for the models and the information criteria fitted to data-2.

Model Estimates 4 AIC CAIC BIC HQIC
RGo |3.0508 | 0.3013 | 0.0304 — 111.3743 | 228.7486 | 229.1849 | 234.9812 | 231.1815
GaGo |0.0927 | 0.3208 | 0.3449 — 125.7948 | 257.5896 | 258.0260 | 263.8222 | 260.0226
MOGo | 0.6639 | 0.6290 | 0.0037 | — 116.4862 | 238.9725 | 239.4088 | 245.2051 | 241.4054
KuGo | 7.7732 1 0.9610 | 0.2178 | 0.1543 | 111.2992 | 230.5983 | 231.3390 | 238.9085 | 233.8423
Go 0.4755 | 0.0131 — — 119.0604 | 242.2296 | 242.4439 | 246.3847 | 243.8516
BeGo | 7.1155 | 0.6206 | 0.2618 | 0.1554 | 111.2809 | 230.5617 | 231.3025 | 238.8719 | 233.8057
EGGo | 0.1337 | 2.4942 | 0.2662 | 0.5407 | 116.0791 | 240.1582 | 240.8989 | 248.4683 | 243.4021
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Table 3: The MLEs of the parameters for the models and the information criteria fitted to data-3.

Model Estimates —0 AIC CAIC BIC HQIC
RGo | 51.8522 | 0.2440 | 0.4308 | — [56.1989 | 118.3979 | 118.8047 | 124.8273 | 120.9266
GaGo | 0.1478 | 0.8856 | 0.3825 | — |73.4993 | 152.9988 | 153.4055 | 159.4282 | 155.5275
MOGo | 96.5475 | 0.3163 | 0.9067 | — |62.9824 | 131.9650 | 132.3718 | 138.3944 | 134.4937
KuGo | 43.8886 | 0.2509 | 0.6835 | 0.6550 | 56.1471 | 120.2944 | 120.9840 | 128.8669 | 123.6660
Go 1.1165 | 0.0286 — — | 71.6282 | 147.2727 | 147.4727 | 151.5590 | 148.9585
BeGo | 35.1650 | 0.3847 | 0.5340 | 0.7535 | 56.2292 | 120.4586 | 121.1482 | 129.0311 | 123.8302
EGGo | 1.1970 | 70.2495 | 0.1587 | 1.0134 | 56.2571 | 120.5143 | 121.2040 | 129.0869 | 123.8860
3 . -
= o 7
o | - - — RGo
R £ — oa
- = L ¥ — MOGo
2 ] - KuG
o i — G
- i BeGa
84 K : : o _/ EGGO
e 7 T T L.

Figure 3: Data-1 histogram plot of RGo with

other compared distributions

Figure 4: Data-1 empirical cdf plot of RGo

with other compared distributions
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Figure 5: Data-2 histogram plot of RGo with Figure 6: Data-2 empirical cdf plot of RGo
other compared distributions with other compared distributions
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Figure 7: Data-3 histogram plot of RGo with

Figure 8: Data-3 empirical cdf plot of RGo
other compared distributions

with other compared distributions

8. Concluding Remarks

A new compound three-parameter model named the Rayleigh Gompertz distribution is intro-
duced. The non-central moments, characteristic function, quantile function, median, simulated data,
reliability and hazard functions, Shannon and relative entropies, and the stress-strength model of re-
liability are provided. The estimation of the parameters by maximum likelihood is discussed. Three
applications of the new distribution are given to prove its flexibility to fit different real-life data
compared with six other known distributions.
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