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Abstract

The generalization of distributions is an important topic in probability theory. Several distributions,
whether symmetrical, semi-symmetrical or heavily skewed, are unsuitable for modelling modern
data. In this paper, the Rayleigh Gompertz distribution as a new compound flexible distribution is
introduced. Several important statistical properties of the new distribution have been examined and
studied as well as its flexibility is proved through various real datasets with different information
fitting criteria. The flexibility of this new distribution allows using it in various application areas.
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1. Introduction

Many researchers have focused their attention on the class of generalized or expanded distribu-
tions. Different flexible new distributions and families are introduced, such as Beta-G [1], Marshall
Olkin–G [2], generalized gamma–G [3], Kumaraswamy–G [4], Weibull–G [5], Rayleigh–G [6] and
many others, through various procedures. In this article, the Rayleigh–G family is considered to
introduce a new extension distribution of Gompertz named Rayleigh Gompertz.

The Gompertz distribution is a flexible distribution that can be skewed to both sides (right and
left). This distribution is a generalization of exponential distribution and is widely used in many
applied problems, particularly in modeling survival and human mortality. For more details about
the Go distribution and its applications, see [7] and [8]. The remains of this article are established
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as follows: In section 2, a brief detail about the new extension of Gompertz distribution is provided.
Sections 3, 4, 5, and 6 respectively address the properties, entropies, reliability stress strength model,
and the maximum likelihood estimators of the new distribution. Section 7 address the numerical
illustration through the application of different real data sets. The concluding remarks are presented
in section 8.

2. New compound of Gompertz Distribution

For any baseline distribution with the cumulative distribution function (cdf), say G (x), and
probability density function (pdf), say g (x), Al-Noor and Assi [6] proposed a new flexible family of
probability distributions named Rayleigh-G (R −G) with the following general formulas of cdf and
pdf

F (x)R−G=e−
θ
2
(−lnG(x)) 2

; x≥0, θ> 0 (2.1)

f (x)R−G=θ
g (x)

G (x)
(−lnG (x) ) e−

θ
2
(−lnG(x)) 2

(2.2)

where θ is the scale parameter.
Now, assume that G (x) and g (x) be the Gompertz distribution with the cdf and its associated

pdf given respectively by [9]

G(x)Go= 1−e−
α
λ (eλx−1) ; x≥0, α, λ> 0 (2.3)

g(x)Go=α eλxe−
α
λ
(eλx−1) (2.4)

where α and λ are the scale and shape parameters respectively.
After substituting (2.3) and (2.4) in (2.1) and (2.2) instead of G(x) and g(x), a new sub-model

of the Rayleigh-G family named Rayleigh Gompertz (RGo) is proposed. The cdf and pdf of the new
distribution will be as

F (x)RGo = e
− θ

2

[
−ln

(
1−e−

α
λ
(eλx−1)

)]2
(2.5)

f (x)RGo =
θα eλxe−

α
λ
(eλx−1)

1− e−
α
λ
(eλx−1)

[
−ln

(
1− e−

α
λ
(eλx−1)

)]
e
− θ

2

[
−ln

(
1−e−

α
λ
(eλx−1)

)]2
(2.6)

Figures 1 and 2 demonstrate different shapes for the cdf and pdf of the RGo distribution with
various parameter values. The pdf shape can be decreased and different skewed. The distribution is
therefore highly flexible to model different positive data.
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Figure 1: Plot of RGO cdf with various pa-
rameter values

Figure 2: Plot of RGO pdf with various pa-
rameter values

3. Properties of the RGo Distribution

In this section, several important statistical properties of the new distribution have been examined
and studied.
Property 1. The non-central rth moment of RGo distribution can be found through

E (Xr)RGo =

∫ ∞

0

xrf(x)RGo dx (3.1)

where f(x)RGo represents the pdf as in (2.6). Since

e−z =
∞∑
i=0

(−1)i

i!
zi (S1)

Then

e
− θ

2

[
−ln

(
1−e−

α
λ
(eλx−1)

) ]2
=

∞∑
i=0

(−1)i

i!

(
θ

2

)i [
−ln

(
1− e−

α
λ
(eλx−1)

) ]2i
The pdf in (2.6), will be

f(x)RGo =
θα eλxe−

α
λ
(eλx−1)

1− e−
α
λ
(eλx−1)

∞∑
i=0

(−1)i

i!

(
θ

2

)i[
−ln

(
1− e−

α
λ
(eλx−1

) ]2i+1

(3.2)

Using the following especial formula (see [10])

[−lnz ]a =
∞∑

k,l=0

k∑
j=0

(−1)j+k+l a

a− j
C

k−a

k

Ck
j C

a+k
l Pj,k zl (S2)

where Pj, 0 = 1 for j ≥ 0 and Pj,k = k−1
∑k

m=1
(−1)m[m(j+1)−k]

m+1
Pj,k−m for k = 1, 2, . . . .
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The
[
−ln

(
1− e−

α
λ
(eλx−1

) ]2i+1

will be

[
−ln

(
1− e−

α
λ
(eλx−1

) ]2i+1

=
∞∑

k,l=0

k∑
j=0

(−1)j+k+l (2i+ 1)

2i+ 1− j
C

k−(2i+1)
k Ck

j C
2i+1+k
l Pj,k

(
1− e−

α
λ
(eλx−1)

)l

Consequently, the pdf in (3.2), will be

f (x)RGo =
∞∑

i,k,l=0

k∑
j=0

(−1)i+j+k+l (2i+ 1)

i!(2i+ 1− j)

θi+1

2i
C

k−(2i+1)
k Ck

j C
(2i+1)+k
l Pj,k

α eλx e−
α
λ
(eλx−1)

(
1− e−

α
λ
(eλx−1)

)l−1

(3.3)

Let A =
∑∞

i,k,l=0

∑k
j=0

(−1)i+j+k+l (2i+1)
i!(2i+1−j)

θi+1

2i
C

k−(2i+1)
k Ck

j C2i+1+k
l Pj,k , then

f (x)RGo = A α eλx e−
α
λ
(eλx−1)

(
1− e−

α
λ
(eλx−1)

)l−1

(3.4)

Now, E (Xr)RGo in (3.1) will be

E (Xr)RGo = A

∫ ∞

0

xrα eλx e−
α
λ
(eλx−1)

(
1− e−

α
λ
(eλx−1)

)l−1

dx

= A
1

l

∫ ∞

0

xrαl eλx e−
α
λ
(eλx−1)

(
1− e−

α
λ
(eλx−1)

)l−1

dx

The result of the above integration is the rth moment of the generalized Gompertz distribution (see
[11]) with parameters α, λ and l , i.e.∫ ∞

0

xrαl eλxe−
α
λ (eλx−1)

(
1− e−

α
λ (eλx−1)

)l−1

dx

= αl Γ (r + 1)
∞∑

m,t=0

C l−1
m

(−1)m+t

Γ (t+ 1)

( α

λ
(m+ 1)

)t
(
− 1

λ (t+ 1)

)r+1

e
α
λ
(m+1)

Therefore, the rth moment of the RGo distribution is

E (Xr)RGo = AαΓ (r + 1)
∞∑

m,t=0

C l−1
m

(−1)m+t

Γ (t+ 1)

( α

λ
(m+ 1)

)t
(
− 1

λ (t+ 1)

)r+1

e
α
λ
(m+1) (3.5)

Property 2. The RGo characteristic function can be achieved by CX(t)RGo =
∑∞

r=0
(it)r

r!
E (Xr)RGo

as

CX(t)RGo = Aα
∞∑

m,t,r=0

(it)r

r!
Γ (r + 1)C l−1

m

(−1)m+t

Γ (t+ 1)

( α

λ
(m+ 1)

)t
(
− 1

λ (t+ 1)

)r+1

e
α
λ
(m+1) (3.6)

Property 3. The RGo quantile function can be attained through inverting the cdf in (2.5) as

x(q)−RGo =
1

λ
ln

[
1− λ

α
ln

(
1− e−(−

2
θ
ln(q) )

1
2

) ]
(3.7)
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The median of RGo random variable can be attained from (3.7) by setting q = 1
2
as

MedianRGo = x( 1
2)−RGo =

1

λ
ln

[
1− λ

α
ln

(
1− e−(−

2
θ
ln( 1

2) )
1
2

) ]
(3.8)

Property 4. The RGo random sample can be simulated based on U that has standard uniform
distribution as

xRGo =
1

λ
ln

[
1− λ

α
ln

(
1− e−(−

2
θ
ln(u) )

1
2

) ]
(3.9)

Property 5. The RGo reliability function and hazard function can be easily obtained from (2.5)
and(2.6) as

R(x)RGo = 1− F (x)RGo = 1− e
− θ

2

[
−ln

(
1−e−

α
λ
(eλx−1)

)]2
(3.10)

h(x)RGo =
f(x)RGo

R(x)RGo

=
θα eλxe−

α
λ
(eλx−1)

[
−ln

(
1− e−

α
λ
(eλx−1)

)]
e
− θ

2

[
−ln

(
1−e−

α
λ
(eλx−1)

)]2
(
1− e−

α
λ
(eλx−1)

)(
1− e

− θ
2

[
−ln

(
1−e−

α
λ
(eλx−1)

)]2) (3.11)

4. Shannon and Relative Entropies of the RGo Distribution

The RGo Shannon entropy can be found through

ShRGo = −
∫ ∞

0

ln (f(x)RGo) f(x)RGo dx (4.1)

where f(x)RGo represents the pdf of RGo distribution.
Using especial formulas

(1− z)b=
∞∑
i=0

(−1)i

i!

Γ (b+ 1)

Γ (b− i+ 1)
zi =

∞∑
i=0

(−1)i Cb
i zi ; |z| < 1, b > 0 (S3)

(1− z)−b =
∞∑
i=0

Γ(b+ i)

i! Γ(b)
zi ; |z| < 1, b > 0 (S4)

Now, according to (2.6) and then (3.3),
(
1−e−

α
λ
(eλx−1)

)l−1

have two cases as

(
1− e−

α
λ
(eλx−1)

)l−1

=



∞∑
m=0

(−1)m

m!

Γ (l)

Γ (l −m)
e−

αm
λ

(eλx−1) ; l − 1 > 0

∞∑
m=0

Γ (l − 1 +m)

m! Γ (l − 1)
e−

αm
λ

(eλx−1) ; l − 1 < 0

For l − 1 > 0, f (x)RGo in (3.3) will be

f (x)RGo =
∞∑

i,k,l,m=0

k∑
j=0

(−1)i+j+k+l+m (2i+ 1)

i!m! (2i+ 1− j)

θi+1

2i
C

k−(2i+1)
k Ck

j C
2i+1+k
l

Pj,k
Γ (l)

Γ (l −m)
α eλxe−

α(m+1)
λ

(eλx−1)
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Using (S1)

e−
α(m+1)

λ (eλx−1) =
∞∑
s=0

(−1)s

s!

(
α (m+ 1)

λ

)s(
eλx − 1

)s
and since

(a+ b)n=
∞∑
k=0

Cn
k an−k bk =

∞∑
k=0

Cn
k ak bn−k ; n ≥ 0 (S5)

Now

e−
α(m+1)

λ (eλx−1) =
∞∑

s,t=0

(−1)s+t

s!

(
α (m+ 1)

λ

)s

Cs
t e

λtx

Then

f (x)RGo =
∞∑

i,k,l,m,s,t=0

k∑
j=0

(−1)i+j+k+l+m+s+t (2i+ 1)

i!m!s! (2i+ 1− j)

θi+1

2iλs
C

k−(2i+1)
k Ck

j C
2i+1+k
l

Cs
tPj,k

Γ (l)

Γ (l −m)
αs+1(m+ 1)s eλ(t+1)x

Similarly for (l − 1) < 0, f(x)RGo in (3.3) will be

f (x)RGo =
∞∑

i,k,l,m,s,t=0

k∑
j=0

(−1)i+j+k+l+s+t (2i+ 1)

i!m!s! (2i+ 1− j)

θi+1

2iλs
C

k−(2i+1)
k Ck

j C
2i+1+k
l Cs

tPj,k

Γ (l − 1 +m)

Γ (l − 1)
αs+1(m+ 1)s eλ(t+1)x

Let

B =



∞∑
i,k,l,m,s,t=0

k∑
j=0

(−1)i+j+k+l+m+s+t (2i+ 1)

i!m!s! (2i+ 1− j)

θi+1αs+1

2iλs
(m+ 1)s

C
k−(2i+1)
k Ck

j C
2i+1+k
l Cs

tPj,k
Γ (l)

Γ (l −m)
; l − 1 > 0

∞∑
i,k,l,m,s,t=0

k∑
j=0

(−1)i+j+k+l+s+t (2i+ 1)

i!m!s! (2i+ 1− j)

θi+1αs+1

2iλs
(m+ 1)s

C
k−(2i+1)
k Ck

j C
2i+1+k
l Cs

tPj,k
Γ (l − 1 +m)

Γ (l − 1)
; l − 1 < 0

(4.2)

Then

f (x)RGo = B eλ(t+1)x (4.3)

Now, ln (f(x)RGo) in (4.1) can be attained from (4.3) as

ln (f(x)RGo) = ln (B) + λ (t+ 1)x

and then simply, the RGo Shannon entropy in (4.1) can be found as

ShRGo = −ln (B) − λ (t+ 1)E(X)RGo (4.4)
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where E(X)RGo as in (3.5) with r = 1.
Furthermore, the RGo relative entropy can be obtained from

RERGo=

∫ ∞

0

ln

(
f(x)RGo

f1(x)RGo

)
f(x)RGo dx (4.5)

where f(x)RGo and f1(x)RGo represent the pdf with parameters (θ, α, λ) and (θ1, α1, λ1) respec-
tively. With recall (4.3)

ln

(
f (x)RGo

f1 (x)RGo

)
=ln

(
B eλ(t+1)x

B1 eλ1(t+1)x

)
= ln

(
B

B1

)
+ λ (t+ 1)x− λ1 (t+ 1)x

=ln

(
B

B1

)
+ (λ (t+ 1)− λ1 (t+ 1))x

The RGo relative entropy in (4.5) can be then obtained as

RERGo = ln

(
B

B1

)
+ (λ (t+ 1)− λ1 (t+ 1))E(X)RGo (4.6)

Where B, B1 as in (4.2) with specific parameters and E(X)RGo as in (3.5) with r = 1.

5. The Reliability Stress Strength Model of the RGo Distribution

Consider Y(stress) and X(strength) two independent random variables have RGO with param-
eters (θ1, α1, λ1) and (θ, α, λ) respectively. The reliability stress strength model can be obtained
as

SSRGo = P (Y < X) =

∫ ∞

0

fX(x)RGo FY (x)RGo dx (5.1)

Recall the cdf in (2.5) with parameters (θ1, α1, λ1), and based on (S1) , (S2) , (S3) we get

FY (x)RGo = e
− θ1

2

[
−ln

(
1−e

− α1
λ1

(eλ1x−1)
)]2

=
∞∑
i=0

(−1)i

i!

(
θ1
2

)i [
−ln

(
1− e

− α1
λ1

(eλ1x−1)
) ]2i

=
∞∑
i=0

(−1)i

i!

(
θ1
2

)i ∞∑
k,l=0

k∑
j=0

(−1)j+k+l 2i

2i− j
Ck−2i

k Ck
j C

2i+k
l Pj,k

(
1− e

− α1
λ1

(eλ1x−1)
)l

=
∞∑

i,k,l,s=0

k∑
j=0

(−1)i+j+k+l+s 2i

i! (2i− j)

(
θ1
2

)i

Ck−2i
k Ck

j C
2i+k
l C l

s P j,k e
− α1s

λ1
(eλ1x−1)

and for e
− α1s

λ1
(eλ1x−1)

follow the same steps in page 3510, then

FY (x)RGo =
∞∑

i,k,l,s,m,t,r=0

k∑
j=0

(−1)i+j+k+l+s+2m−t (2i)

i!m!r! (2i− j)

(
θ1
2

)i

Ck−2i
k Ck

j C
2i+k
l C l

s C
m
t Pj,k

(
α1s

λ1

)m

(λ1t)
rxr
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Therefore, the stress strength of RGo distribution in (5.1) can be obtained as

SSRGo=
∞∑

i,k,l,s,m,t,r=0

k∑
j=0

(−1)i+j+k+l+s+2m−t (2i)

i!m!r! (2i− j)

(
θ1
2

)i

Ck−2i
k Ck

j C
2i+k
l

C l
s C

m
t Pj,k

(
α1s

λ1

)m

(λ1t)
rE (Xr)RGo (5.2)

where E (Xr) as in (3.5).

6. The Maximum Likelihood Estimators of the RGo Parameters

For the parameters vector τ = (θ, α, λ)T , the natural logarithm likelihood function of a complete
random sample with size n, say (x1, x2, . . . , xn), follow RGo distribution (recall (2.6)) is

ℓ (τ |x) =nln (θα) + λ

n∑
i=1

xi − α

λ

n∑
i=1

(
eλxi − 1

)
−

n∑
i=1

ln
(
1− e−

α
λ (eλxi−1)

)
+

n∑
i=1

ln
[
−ln

(
1− e−

α
λ
(eλxi−1)

)]
− θ

2

n∑
i=1

[
−ln

(
1− e−

α
λ (eλxi−1)

)]2
(6.1)

The maximum likelihood estimators (MLE) of the RGo parameters can be obtained by solving

the three nonlinear differential equations ∂ℓ(τ |x)
∂θ

= 0, ∂ℓ(τ |x)
∂α

= 0, ∂ℓ(τ |x)
∂λ

= 0 . The estimators are
not in closed forms, so numerical method is used.

7. Real Applications

Three real data sets are considered here.
Data -1: The first data set represents the crude mortality rate among people who inject drugs with
a sample size of 65 observations [12].
”2.01, 6.32, 3.52, 2.15, 5.42, 2.04, 2.77, 2.26, 1.95, 1.00, 2.45, 0.74, 0.98, 1.27, 2.77, 3.68, 1.18, 1.09,
1.60, 0.57, 3.33, 0.91, 7.14, 2.08, 3.85, 1.99, 7.76, 2.52, 1.57, 4.67, 4.22, 1.92, 1.59, 4.08, 2.02, 0.84,
6.85, 2.18, 2.04, 1.05, 2.91, 1.37, 2.43, 2.28, 3.74, 1.30, 1.59, 1.83, 3.85, 6.30, 4.83, 0.50, 3.40, 2.33,
4.25, 3.49, 2.12, 0.83, 0.54, 3.23, 4.50, 0.71, 0.48, 2.30, 7.73”.

Data -2: The second data set represents the failure times in hours from an accelerated life test with
a sample size of 59 conductors. The observations are as follows [13][14].
”6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 6.958,
4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.369, 7.024,
8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 4.531,
7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071, 10.941, 5.923”.

Data -3: The third data set represents the single fibers that were tensioned at 10mm gauge lengths
with a sample size of 63. The observations are as follows [15][16].
”1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525,
2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937,
2.977,2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346,
3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027,
4.225, 4.395, 5.020”.
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For comparison with the new distribution, six additional distributions also fitted including Rayleigh
Gompertz (RGo), Gamma Gompertz (GaGo), Marshall Olkin Gompertz (MOGo), Kumaraswamy
Gompertz (KuGo), Gompertz (Go), Beta Gompertz (BeGo), and Exponentiated Generalized Gom-
pertz (EGGo) distributions (for more details about these distributions, also see references [9][17]-[21].
The R software used to compute MLEs of their parameters and the well-known information crite-
ria: (−ℓ) Negative Log-Likelihood, (AIC) Akaike Information Criteria, (CAIC) Consistent Akaike
Information Criteria, (BIC) Bayesian Information Criteria, (HQIC) Hanan and Quinn Information
Criteria. Minimum values of these measures indicate the distribution has a better fitting. The MLEs
of the parameters for each model and the information criteria fitted to the different real-data sets
are shown in Tables 1-3.

From the results, RGo has the lowest values of information criteria, making it the best fit to
describe three considered real data sets. Furthermore, the plots of empirical cdfs, the histogram, and
the estimated densities in Figures 3-8 demonstrate this best-fitting.

Table 1: The MLEs of the parameters for the models and the information criteria fitted to data-1.

Model Estimates −ℓ AIC CAIC BIC HQIC

RGo 1.0713 0.1038 0.1496 — 118.4245 242.8489 243.2424 249.3721 245.4227

GaGo 0.1847 0.1924 1.3696 — 121.9779 249.9558 250.3492 256.4789 252.5296

MOGo 13.8406 -0.1374 1.3422 — 121.7713 249.5427 249.9361 256.0658 252.1165

KuGo 6.3026 0.1466 0.0982 2.5538 118.1797 244.3594 245.0261 253.0569 247.7911

Go 0.2262 0.2168 — — 124.2617 252.5234 252.7170 256.8722 254.2393

BeGo 4.4803 0.1361 0.1070 2.6861 118.3171 244.6342 245.3008 253.3317 248.0659

EGGo 0.8114 2.7460 -0.0097 0.8114 119.0462 246.0924 246.7591 254.7900 249.5242

Table 2: The MLEs of the parameters for the models and the information criteria fitted to data-2.

Model Estimates −ℓ AIC CAIC BIC HQIC

RGo 3.0508 0.3013 0.0304 — 111.3743 228.7486 229.1849 234.9812 231.1815

GaGo 0.0927 0.3208 0.3449 — 125.7948 257.5896 258.0260 263.8222 260.0226

MOGo 0.6639 0.6290 0.0037 — 116.4862 238.9725 239.4088 245.2051 241.4054

KuGo 7.7732 0.9610 0.2178 0.1543 111.2992 230.5983 231.3390 238.9085 233.8423

Go 0.4755 0.0131 — — 119.0604 242.2296 242.4439 246.3847 243.8516

BeGo 7.1155 0.6206 0.2618 0.1554 111.2809 230.5617 231.3025 238.8719 233.8057

EGGo 0.1337 2.4942 0.2662 0.5407 116.0791 240.1582 240.8989 248.4683 243.4021
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Table 3: The MLEs of the parameters for the models and the information criteria fitted to data-3.

Model Estimates −ℓ AIC CAIC BIC HQIC

RGo 51.8522 0.2440 0.4308 — 56.1989 118.3979 118.8047 124.8273 120.9266

GaGo 0.1478 0.8856 0.3825 — 73.4993 152.9988 153.4055 159.4282 155.5275

MOGo 96.5475 0.3163 0.9067 — 62.9824 131.9650 132.3718 138.3944 134.4937

KuGo 43.8886 0.2509 0.6835 0.6550 56.1471 120.2944 120.9840 128.8669 123.6660

Go 1.1165 0.0286 — — 71.6282 147.2727 147.4727 151.5590 148.9585

BeGo 35.1650 0.3847 0.5340 0.7535 56.2292 120.4586 121.1482 129.0311 123.8302

EGGo 1.1970 70.2495 0.1587 1.0134 56.2571 120.5143 121.2040 129.0869 123.8860

Figure 3: Data-1 histogram plot of RGo with
other compared distributions

Figure 4: Data-1 empirical cdf plot of RGo
with other compared distributions
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Figure 5: Data-2 histogram plot of RGo with
other compared distributions

Figure 6: Data-2 empirical cdf plot of RGo
with other compared distributions

Figure 7: Data-3 histogram plot of RGo with
other compared distributions

Figure 8: Data-3 empirical cdf plot of RGo
with other compared distributions

8. Concluding Remarks

A new compound three-parameter model named the Rayleigh Gompertz distribution is intro-
duced. The non-central moments, characteristic function, quantile function, median, simulated data,
reliability and hazard functions, Shannon and relative entropies, and the stress-strength model of re-
liability are provided. The estimation of the parameters by maximum likelihood is discussed. Three
applications of the new distribution are given to prove its flexibility to fit different real-life data
compared with six other known distributions.
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