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Abstract

The method of selecting or designing the sample may be expensive or take a long time in some
studies. And with the existence of the relationship between the main and auxiliary variables, which
can employ in the process of selecting sampling units through the possibility of ranking for the
auxiliary variable at the lowest possible cost. Ranked set sampling (RSS ) is a method to achieve this
objective, and in sample surveys, it is usual to use auxiliary information to increase the precision
of estimators. This article addresses the problem of estimating the finite population variance in
ranked set sampling using auxiliary information, and that is through some suggested estimators.
The bias and mean squared error of the proposed estimators are obtained up to the first degree of
approximation. An asymptotic optimum estimator is identified with its approximate mean squared
error (MSE ) formula. An estimator based on “estimated optimum values” is also investigated. Some
special cases of these estimators are considered and compared using computer simulation. Finally,
we showed how to extend the proposed estimator if more than one auxiliary variable is available.
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1. Introduction

In his outstanding efforts to create an estimator that would be more effective for estimating the
produce of Australia’s vast grazing areas, McIntyre [9] was the first to propose the idea of Ranked
Set Sampling (RSS). The RSS concept appears to have gained traction only after Halls and Dell
[7] used it to estimate the production of animal fodder in pine woods, and they were the first to
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coin the name Ranked Set Sampling. The two scientists who first provided mathematical proofs for
this type of sampling, Takahase and Wakimoto [15], proved that the arithmetic mean of this type
of sampling is an unbiased estimator of the population’s arithmetic mean, and that the variance is
less than the variance of the arithmetic mean of a Simple Random Sample (SRS), assuming perfect
ranking of the elements. Dell & Clutter [6] got to the same conclusion as above, but without the
requirement that the elements are in perfect order, implying whether or not there are ranking errors.
Stokes [13] suggested using the auxiliary variable to estimate the ranks of the variable we want to
study (the main variable), which is difficult to rank units with the naked eye. Stokes [14] proposed
a variance estimator based on RSS data that is an asymptotic unbiased estimate of the population
variance. Yu et al. [16] investigated a set of unbiased variance estimates for a normal population
in the parameter case. MacEachern et al. [8] provide a new unbiased estimator for Population
variance of ranked set sample data, showing that it is more efficient than Stokes’ estimator, as well as
conventional sample variance from a simple random sample. Perron and Sinha [11] demonstrated that
in the nonparametric context, it is possible to create a class from an unbiased quadratic for variance
estimates in both the balanced and unbalanced cases. AL-Saleh and Samawi [1] the suggested
estimators are compared to other existing estimators based on bivariate simple random sample and
application to the bivariate normal distribution, using the bivariate ranked set sampling process to
estimate the correlation coefficient between two variables. Sengupta and Mukhuti [12] proposed some
unbiased estimators of the variance of an exponential distribution using a ranked set sample, and all
the proposed estimators are better than the non-parametric minimum variance unbiased quadratic
estimator based on a balanced ranked set sample as well as the uniformly minimum variance unbiased
estimator based on a simple random sampling. Chen and Lim [5] propose a plug-in estimator for each
variance group, which is more efficient than the empirical group for estimating variances of strata in
ranked set sampling. Biswas et al. [2] studied the two alternative variance estimation approaches in
a ranked set sample under a finite population framework using the Jackknife method. Ozturk and
Demirel [10] created a population variance estimator based on a multi-ranker partially rank-ordered
set design, and a simulation analysis offers experimental proof for the proposed estimator’s efficiency.
Zamanzade and Al-Omari [17] used Monte Carlo simulation to compare empirical mean and variance
estimators based on new ranked set sampling to their counterparts in ranked set sampling and simple
random sampling. When ranked set sampling design is utilized under ranking criteria instead of using
the process of a simple random sample, Bouza et al. [4] propose a model for the estimation of the
variance of sensitive variables in a randomized response procedure. Biswas et al. [3] offer two unbiased
variance estimations of ranked set sampling estimator under finite population framework using the
bootstrap method and compare the efficiency of these proposed variance estimation strategies using
a simulated study and real data application.

2. Ranked set sampling (RSS)

If we have the two variables Y and X representing the main and auxiliary variable respectively,
and to select a Ranked Set Sample(RSS) in the form of rank pairs with size n = mr, we first
selecting a simple random sample it size m2 is drawn from the population, and then the selected
sample is divided into m of sets, each set with size m represent a random sample. Each sample
is arranged based on one of the two variables, we assume that the arrangement depends on the
ranks of the auxiliary variable X and the main variable Y follows in the order, then accordingly the
auxiliary variable is perfect ranking, and the main variable contains a possible error in the ranking
say imperfect ranking, and the (RSS) items are selected according to the following. From the first-
ranked sample, we choose the first observation, and from the second-ranked sample, we choose the
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second observation and continue to the last sample m where we choose the last observation, and in
this case, the first cycle is completed, then we repeat this process r times to get the required sample
size n from the ranked sample, which is n = rm. The RSS procedure can be summarized as follows:

1. First, we select bivariate sample units with size m2 from the population are be random.

2. Divided the selected sample m2 as possible into m of sets each with size m.

3. Ranked each sample with respect to one of the main variables Y or the auxiliary variable X.
And upon it, we assume that judgment perfect ranking is done based on the variable X, while
the imperfect ranking of variable Y .

4. The first sample is taken the measured of a unit from with the smallest rank of variable X,
together with variable Y associated with the smallest rank of variable X. From the second
sample, the second smallest rank of variable X associated with the variable Y is measured, the
process is continued until the mth sample, since the highest rank of variable X associated with
the variable, Y is measured.

5. To reach the required sample size n, we repeat steps one to four r times until we get the size
n = mr.

Note we will use some simple formulas to differentiate between perfect and imperfect ranking. In the
case of perfect ranking, we will put the rank index in parentheses, say(i). Otherwise, in imperfect
ranking, we will put the rank index in brackets, say[i].
The elements of (RSS) for the auxiliary variable X and the main variable Y from one cycle can be
described as follows:

X11 X21 · · · Xm1

X12 X22 · · · Xm2
...

... · · · ...
X1m X2m · · · Xmm

 ⇒


X(1)1 X(2)1 · · · X(m)1

X(1)2 X(2)2 · · · X(m)2
...

... · · · ...
X(1)m X(2)m · · · X(m)m

 ;


Y11 Y21 · · · Ym1

Y12 Y22 · · · Ym2
...

... · · · ...
Y1m Y2m · · · Ymm

 ⇒


Y[1]1 Y[2]1 · · · Y[m]1

Y[1]2 X[2]2 · · · Y[m]2
...

... · · · ...
Y[1]m Y[2]m · · · Y[m]m

 ,

And upon it, the (RSS) units from one cycle for the auxiliary variable X and the main variable Y
are respectively.

(
X(1)1, X(2)2, · · ·X(m)m

)
&

(
Y[1]1, Y[2]2, · · ·Y[m]m

)
. And the binary pairs of the

(RSS) units for both the auxiliary and main variables in the case r of cycles are defined as follows
when the ranking is based on the auxiliary variableX.{(

Y[1]j, X(1)j

)
,
(
Y[2]j, X(2)j

)
, . . . ,

(
Y[m]j, X(m)j

)}
j = 1, 2, . . . , r

3. Some Population Variance estimators based on RSS

Assume that (Y [i]j ; i = 1, 2, · · · ,m & j = 1, 2, · · · , r) denote the ranked value of a unite of
the jth cycle having the ith rank from the complete balanced Ranked Set Sample (RSS) with set size
m and r cycles, and let the mean and variance of the ith judgment order statistic from a set of size
m are respectively µy(i) & σ2

y(i) . And assume that also Yij denote a Simple Random Sample (SRS)
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of size n = mr which this sample is iid random variables selected from the same population with
mean and variance, respectively µy & σ2

y .Oftentimes, the overall variation between population units

is extremely important. It is obvious that the parameter referred to is the population variance σ2
y,

from natural that the unbiased estimate of σ2
y in case of (SRS) of size n it is s2y where

s2y=
1

n− 1

r∑
j=1

m∑
i=1

(Yij−YSRS)
2 ; YSRS =

1

n− 1

r∑
j=1

m∑
i=1

Yij

In the case of (RSS), Stokes [14] proposed estimating the population variance σ2
y, for one cycle, it is

defined as follows.

σ2
s=

1

n− 1

r∑
j=1

m∑
i=1

(Y(i)j−YRSS)
2 ; YRSS=

1

n

r∑
j=1

m∑
i=1

Y(i)j

She showed that her estimator is asymptotically unbiased regardless of the presence of ranking error,
but this estimator owns a substantial amount of bias for finite sets and sample sizes. It is noticeable on
the method of calculating the Stokes estimator that it relied on the well-known formula in calculating
the sample variance, regardless of the information available from the design of the ranked set sample.
MacEachern et al. [8] suggested developing to stokes estimator. This estimator for any set and cycle
sizes is unbiased. Also, it is noted that the MacEachern estimator works better than the Stokes
variance estimator for small sample sizes and the MacEachern estimator as follows.

σ2
Rss(y) =

1

2r2m2

m∑
i ̸=l

r∑
j=1

r∑
k=1

(Y(i)j − Y(l)k)
2 +

1

2r (r − 1)m2

m∑
i=1

r∑
j=1

r∑
k=1

(Y(i)j − Y(i)k)
2 (3.1)

MacEachern studied the properties of the above estimator and proved that it is unbiased with respect
to the population variance σ2

y of any number of the cycles, and estimated its variance according to
the following formula.

V
(
σ2
Rss(y)

)
=

1

rm2

m∑
i=1

µy(i)4 +
4

rm2

m∑
i=1

µy(i)3τy(i) +
4

rm2

m∑
i=1

σ2
y(i)τ

2
y(i)

+
4

r2m2

m∑
i<l

σ2
y(i)σ

2
y(l) −

m2 (r − 1)− 2

r(r − 1)m4

m∑
i=1

σ4
y(i) (3.2)

where

µy(i)a=
m∑
i=1

(Y(i) − µy(i))
a , τy(i) = µy(i) − µy & σ2

y(i) = V ar(y(i))

4. Estimators Definition and Properties

Infinite populations, the classical methods of estimation the population parameters are based on
direct estimators, that means those which only use the main (study) variable Y . In another case,
indirect estimation of the unknown population parameters can be used by employing auxiliary infor-
mation to any auxiliary variable X (or more) associated with the main variable Y for the purpose
of estimating it; the indirect estimates are usually better than direct estimates because of the ancil-
lary information, which gives an increase inaccuracy. As an example of indirect methods, the ratio
method, the regression method, etc. Now assume that the problem is to estimate the population
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variance σ2
y of the study variable Y by using the indirect methods from via the information provided

by one or two auxiliary variables based onRSS. And suppose Y denote the study variable and aux-
iliary variable X whose population mean and variance are µy, µx and σ2

y , σ2
x respectively. Assuming

that the mean and variance of the population of the auxiliary variables are known, and the jth unit
of the population for the main variable and the auxiliary variable they respectively Yj & Xj , and
the ith order statistics of a sample of size m in the jth cycle of the variables Y&X is respectively
represent by Y(i)j & X(i)j Based on a RSS of size n = rm drawn from the population. We will now
suggest a ratio estimator for population variance of the variable Y based on RSS, as shown below.

σ̂2
a = σ2

Rss[y] (
σ2
Rss(x)

σ2
x

)a (4.1)

Where σ2
Rss[y] has been defined in (3.1) and represents the usual estimator σ2

y , σ2
Rss(x) and σ2

x denote
the sample and the population variance of the auxiliary variable X respectively, also, the estimated
formula to σ2

Rss(x) is defined as in (3.1) after replacing the symbol X instead of Y , and a it is a real

number will be chosen so that the variance of the estimatorσ̂2
a is as small as possible.

It is cannot to ranked two or more variables data at the same time. Therefore, ranking one of the
variables, say the auxiliary variable (x), and taking the corresponding values of other variables here
be the study variable [y] is an option. So it was written the proposed ratio estimator with the above
formula to indicate that the auxiliary variable is perfect ranking while the main variable is imperfect
ranking.

4.1. Some Notions

In this research, the following definitions will be used to studying the properties of the proposed

estimator. Let e0 =
σ̂2
Rss[y]

−σ2
y

σ2
y

; e1 =
σ̂2
Rss(x)

−σ2
x

σ2
x

Then E (e0) = E (e1) = 0 , E (e20) =
Vy

σ4
y
, E (e21) =

Vx

σ4
x
& E (e0e1) =

Cyx

σ2
y σ2

x
, where

Vy =
1

rm2

m∑
i=1

µy[i]4 +
4

rm2

m∑
i=1

µy[i]3τy[i] +
4

rm2

m∑
i=1

σ2
y[i]τ

2
y[i]+

4

r2m2

m∑
i<l

σ2
y[i]σ

2
y[l] −

m2 (r − 1)− 2

r(r − 1)m4

m∑
i=1

σ4
y[i] (4.2)

V x =
1

rm2

m∑
i=1

µx(i)4 +
4

rm2

m∑
i=1

µx(i)3τx(i) +
4

rm2

m∑
i=1

σ2
x(i)τ

2
x(i)+

4

r2m2

m∑
i<l

σ2
x(i)σ

2
x(l) −

m2 (r − 1)− 2

r(r − 1)m4

m∑
i=1

σ4
x(i) (4.3)

Cyx =
1

rm2

m∑
i=1

µyx[i] +
4

rm2

m∑
i=1

µyx[i]3τyx[i] +
4

rm2

m∑
i=1

σyx[i]τyx[i]+

4

r2m2

m∑
i<l

σyx[i]σyx[l] −
m2 (r − 1)− 2

r(r − 1)m4

m∑
i=1

σyx[i] (4.4)
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µy[i]a=
m∑
i=1

(Y[i] − µy[i])
a, τy[i] = µy[i] − µy ,

µ
x(i)a

=
m∑
i=1

(X(i) − µx(i))
a,

τx(i) = µx(i) − µx, τyx[i] = (µy[i] − µy)(µx(i) − µx) , σyx[i] = cov(Y[i], X(i))

and µyx[i]a=
∑m

i=1 ((Y[i] − µy[i])
(
X(i) − µx(i)

)
)a

The estimator σ̂2
a will be rewritten as follows based on the given definitions.

σ̂2
a = σ2

y ( 1 + e0 ) ( 1 + e1 )a

= σ2
y(1 + e0 + ae1 + ae0e1 +

a (a− 1)

2
e21 + · · · . )

We will discuss the properties of the proposed estimator represented by the derivation of the bias,
and mean square error expressions are considered up to the terms of order n−1 only, are, therefore.

E
(
σ̂2
a

)
= σ2

y[1 + a
Cyx

σ2
y σ2

x

+
a (a− 1)

2

Vx

σ4
x

].

The bias to σ̂2
a is given by the following formula.

Bias
(
σ̂2
a

)
= a

Cyx

σ2
x

+
a (a− 1)

2

Vx σ2
y

σ4
x

. (4.5)

The expression for the mean square error of σ̂2
1 define as follows.

MSE
(
σ̂2
a

)
= E

(
σ̂2
a − σ2

y

)2
= Vy + a2

Vx σ4
y

σ4
x

+ 2a
Cyxσ

2
y

σ2
x

. (4.6)

The best value of a that minimizes the mean square error of σ̂2
a up to the order n−1 of can be

easily proved as

â = −Cyxσ
2
x

Vxσ2
y

. (4.7)

Therefore the minimum MSE for σ̂2
a is

MSEopt

(
σ̂2
â

)
= Vy −

C2
yx

Vx

. (4.8)

While the smallest bias to σ̂2
a is

Biasopt
(
σ̂2
â

)
=

Cyx

2 σ2
x

−
C2

yx

2V x σ2
y

(4.9)

4.2. Some unique characteristics of a

The suggested estimator in equation (4.1) contains a set of population variance estimators that can
be derived by changing the numerical value of a and as follows: when a = −1, it is referred to as the
ratio estimator of σ2

y, and its mathematical formula is

σ̂2
r = σ2

Rss[y]

σ2
x

σ2
Rss(x)

= R̂RSSσ
2
x (4.10)
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The bias and MSE of this estimator up to the order of n−1 are then determined using well-known
formulas, respectively.

Bias
(
σ̂2
r

)
= Bias

(
R̂RSS

)
σ2
x =

(
Vx

σ2
x

− Cyx

σ2
y

)
R (4.11)

MSE
(
σ̂2
r

)
= MSE

(
R̂RSS

)
σ4
x = Vy + VxR

2 − 2Cyx R, (4.12)

where R =
σ2
y

σ2
x

and R̂
RSS

=
σ2
Rss[y]

σ2
Rss(x)

.

If a = 1, the product estimator of σ2
y is called, and its mathematical formula is

σ̂2
p = σ2

Rss[y]

σ2
Rss(x)

σ2
x

=
P̂RSS

σ2
x

(4.13)

And the estimator’s bias, as well as the MSE up to the order of n−1 , are, respectively.

Bias
(
σ̂2
p

)
= Bias

(
P̂RSS

)
/ σ2

x =
Cyx

σ2
x

(4.14)

MSE
(
σ̂2
p

)
= MSE

(
P̂RSS

)
/σ4

x = Vy + Vx R2 + 2Cyx R, (4.15)

where P = σ2
y σ2

x and P̂
RSS

= σ2
Rss[y]σ

2
Rss(x).

If a = 0, it’s the standard per-unit variance estimator σ2
y based on RSS, which is defined in

equation (3.1). If the value of a equals 1 − 2 Cyx

VxR
, however, the bias amount of the estimator σ̂2

a

becomes zero, indicating that it is unbiased and its variance matching the same the mean square
error of the ratio estimator. In which (σ̂2

a) = MSE (σ̂2
r) = Vy + Vx R2 − 2Cyx R . Finally, when the

value of a equals −1−2 Cyx

VxR
, the estimator σ̂2

a is still biased, but it’s mean squared error is the same as

the product estimator’s mean squared error. Which MSE (σ̂2
a) = MSE

(
σ̂2
p

)
= Vy+Vx R2+2Cyx R.

4.3. Comparing Estimators

The proposed estimator is compared to some well-known estimators. The bias and mean square
error will be compared up to the order of n−1. For bias we compare equation (4.9) to equations (4.11)
and (4.14), we can see that the estimator σ̂2

â has a lesser bias than the ratio and product estimators,
as illustrated below, respectively,

∣∣Biasopt
(
σ̂2
â

)∣∣ ≤
∣∣Bias

(
σ̂2
r

)∣∣ if and only if

∣∣∣∣Cyxσ
2
x

Vxσ2
y

∣∣∣∣ ≤ 2

and ∣∣Biasopt
(
σ̂2
â

)∣∣ ≤
∣∣Bias

(
σ̂2
p

)∣∣ if and only if

∣∣∣∣1− Cyxσ
2
x

Vxσ2
y

∣∣∣∣ ≤ 2.

In terms of MSE, we’ll first compare equation (4.6) to equation (4.12), and we’ll see that
MSE (σ̂2

a) ≤ MSE (σ̂2
r) iff (a − 1)(a − 1 + 2 Cyx

VxR
) ≤ 0, this signifies that a lies between the two

values −1 and 1 − 2 Cyx

VxR
. After comparing equation (4.6) to equation (4.15), we note MSE (σ̂2

a) ≤
MSE

(
σ̂2
p

)
iff (a − 1)(a + 1 + 2 Cyx

VxR
) ≤ 0, this also demonstrates that a is located between
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1 and − (1 + 2 Cyx

VxR
). As a result, the MSE of the estimator σ̂2

a remains lower than the variance

estimator σ2
y based on RSS as the value of |a− â | decreases and it is minimum when |a− â | = 0.

In addition, whenever |a− â | is less than
∣∣∣1− Cyx

VxR

∣∣∣, the MSE of the estimator σ̂2
a is less than the

MSE of the ratio estimator and less than the MSE of the product estimator whenever |a − â | is
less than

∣∣∣1 + Cyx

VxR

∣∣∣. To gain a better idea of how the estimator σ̂2
â works, consider the following

basic example. If we suppose Vy = Vx And R = 0.7, and the correlation coefficient between the
main and auxiliary variables is positive; we should use the ratio estimator to compare. And so be
a = −1.4 , The efficiency factor MSE (σ̂2

r) /MSE (σ̂2
1) Is greater than one for a with a value between

(−1 and − 1.85714), equal to one for a with a value in −1 and − 1.85714, and equal to 225 for a
with a value of −1.4. In terms of the amount of bias in the estimators, we can see that the ratio of
the biases (Bias (σ̂2

r) /Bias (σ̂2
1)) will range from (1 to ∞ ) when a is between [−1, −1.85714] and

equal to 15.555 when a = −1.4, and we can also see the ratio of the relative biases when a = −1.4
is 1.037.

5. Generalization in the case of several auxiliary variables

If we have data on more than one auxiliary variable, say P , we may utilize these variables
to estimate the population variance σ2

y by using a linear function of P estimators of the form (4.1),
computed independently for each auxiliary variable. If the P auxiliary variables are X1, X2, · · · , XP

then an RSS-based estimator of the population variance of Y is defined as,

σ̂2
g = σ2

Rss[y] [ (
σ2
Rss[x1]

σ2
x1

)a1 (
σ2
Rss[x2]

σ2
x2

)a2 · · · (
σ2
Rss(xi)

σ2
xi

)ai · · · (
σ2
Rss[xP ]

σ2
xP

)aP ] (5.1)

σ̂2
g are known as multiple ratio estimators for population variance of the variable Y based on RSS

with ranking dependant, on the variable (X i i = 1, · · · , P ). where σ2
Rss[y] denotes the usual

estimator σ2
y of the main variable Y based on RSS, and σ2

Rss[xi]
i = 1, · · · , P are usual estimators

of σ2
xi

i = 1, · · · , P respectively based on RSS , and in a first degree of approximating, it may be
demonstrated that.

Bias
(
σ̂2
g

)
= σ2

y{
P∑
i=1

ai
Cyxi

σ2
xi
σ2
y

+
P∑
i ̸=j

aiaj
Cxixj

σ2
xi
σ2
xj

+
P∑
i=1

ai (ai − 1)

2

Vxi

σ4
xi

} (5.2)

in the same manner

MSE
(
σ̂2
g

)
= σ4

y { Vy

σ4
y

+
P∑
i=1

P∑
j=1

aiaj
Cxixj

σ2
xi
σ2
xj

+ 2
P∑
i=1

ai
Cyxi

σ2
xi
σ2
y

} (5.3)

where Cyxi
& Cxixj

previously defined, and the following variables are used to compute the bias and
mean squared error.

e0 =
σ̂2
Rss[y]

− σ2
y

σ2
y

; e1 =
σ̂2
Rss[x1]

− σ2
x1

σ2
x1

, e2 =
σ̂2
Rss[x2]

− σ2
x2

σ2
x2

, · · · , ei =
σ2
Rss(xi)

− σ2
xi

σ2
xi

, · · · , eP =
σ2
Rss[xP ] − σ2

xP

σ2
xP
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We must now identify the optimal values of ai to minimize the MSE for estimator σ̂2
g . Therefore,

equation (5.3) will be reformulated in another form.

MSE
(
σ̂2
g

)
= σ4

y { Vy

σ4
y

+ áMa+ 2áb } (5.4)

where = a(P×1) = (a1, a2, · · · , aP )́ , M = M(P×P ) = (mij) with mij =
Cxixj

σ2
xi
σ2
xj

; i, j = 1, 2, · · · , P and

b = b(P×1) = (bi) with bi =
Cyxi

σ2
yσ

2
xi

; i = 1, 2, · · · , P

Now, the deriving of the equation (5.4) with respect to a yields the best values of a that minimize
MSE

(
σ̂2
g

)
.And it is given as follows.

aopt = −M−1b (5.5)

Then, given the estimator σ̂2
g , the optimum mean square error and optimum bias are, respectively

MSEopt

(
σ̂2
g

)
= σ4

y { Vy

σ4
y

− b́Mb } (5.6)

Biasopt
(
σ̂2
g

)
= σ2

y {áMa− 2áb } (5.7)

For P = 1, in other words, if you just utilize one auxiliary variable, then σ̂2
g = σ̂2

a, aopt = â,

MSEopt

(
σ̂2
g

)
= MSEopt (σ̂

2
a) and Biasopt

(
σ̂2
g

)
= Biasopt (σ̂

2
a).

If = 2 , to put it another way, if we only utilize two auxiliary variables, such as X1and X2 , the
first auxiliary variable is likely to have a perfect ranking denoted by symbol(X1). then the second
auxiliary variable and the main variable are likely to have for them imperfect ranking denoted by
symbol [X2] and [Y ] respectively, we will be reformulated estimator σ̂2

g as follows.

σ̂2
a1a2

= σ2
Rss[y] [ (

σ2
Rss(x1)

σ2
x1

)a1 (
σ2
Rss[x2]

σ2
x2

)a2 ] (5.8)

We’ll need to define some matrices to achieve the best values for a1and a2, to get best MSE, for the
estimator σ̂2

a1a2
. By using the equation (5.5) and (5.6).

Let’s look at the matrices

M =

[ Cx1x1

σ2
x1

σ2
x1

Cx1x2

σ2
x1

σ2
x2

Cx1x2

σ2
x1

σ2
x2

Cx2x2

σ2
x2

σ2
x2

]
, b =

[
Cyx1

σ2
yσ

2
x1

Cyx2

σ2
yσ

2
x2

]
and a =

[
a1 a2

]
then

a1opt =
(Cyx2

Cx1x2 − Cyx1
V2)σ

2
x1

( V1V2 − C2
x1x2

)σ2
y

, a2opt =
(Cyx1

Cx1x2 − Cyx2
V1)σ

2
x2

( V1V2 − C2
x1x2

)σ2
y

MESopt

(
σ̂2
a1a2

)
= V0 −

(C2
yx1

V2 + C2
yx2

V1 − 2Cyx1
Cyx2

Cx1x2)

( V1V2 − C2
x1x2

)

6. Study of the simulation

A hypothetical population was formed for the study’s main and auxiliary variable based on
the bivariate normal distribution having known parameters (µy = 2, µx = 1, σ2

y = σ2
x = 1, ρ =

±0.95,±0.75, 0.35), and ranked set samples were created consisting of sets of varied sizes (m = 4, 5, 6)
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and a defined number of cycles for each volume equal to(r = 3), We estimated the bias, the mean
square error MSE(.)of the proposed estimator σ̂2

a, the ratio estimatorσ̂2
r , and the product σ̂2

p for
each of the different set sizes, as well as the values of the correlation coefficient for the three cycles,
based on the auxiliary variable X. The relative efficiency criterion eff(.) for the estimators above
was determined with the estimated variance of the main variable σ2

Rss[y] based on RSS to find the

best estimators where eff (σ̂2
i ) =

V ar(σ2
Rss[y]

)

MSE(σ̂2
i )

i = a, r, p .The experiment was repeated 10, 000

times, and the simulation results are shown in the tables (1 and 2). From Tables (1-2) can be seen
the following.

For the various situations ofm and ρ in estimating the population variance concerning estimators,

a gain in efficiency is obtained by employing ̂́o2a.
The efficiency of ̂́o2a increases as the sample size n increases for fixed m and ρ. The efficiency of̂́o2a increases as the sample size n increases for any ρ. When comparing the bias of the generated

estimators for different values of n and ρ, we see that the proposed estimator ̂́o2a has the most neg-
ligible bias. The findings in tables (1-2) show that the suggested estimator works well irrespectively
of whether the value of ρ is positive or negative, unlike the other estimators that are affected by the
value of ρ. For example, the ratio estimator only works when ρ > 0, while the product estimator
only works when ρ < 0.

7. Conclusions

The problem of estimating population variance using a known auxiliary variable in the situation of
ranked set sampling is discussed in this study, and a novel ratio estimator is proposed to estimate
the variance. We have shown that the suggested estimator’s properties become more efficient than
other estimators for the first degree of approximation, and its bias is negligible. The simulation study
showed that the type of relationship between the main and auxiliary variables does not affect the
efficiency of the proposed estimator, unlike other estimators that are affected by this relationship,
and that the estimator works well with any sample size.
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Table 1: The efficiency of σ̂2
i i = a.r.p with respect to σ2

Rss[y] and MSE , as well as the bias values
of the three estimators, for n = 12, 15, 18 and ρ > 0

ρ r m estimator MSE eff Bias

4

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p

1773.09
886.541
1819.99
1820.22

2.00001
0.974229
0.974107

2.85688×10−6

23.502
0.0286036

0.95 3 5

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p

581.478
290.739
537.139
596.892

2.
1.08255
0.974176

8.92416×10−7

7.6871
0.00893454

6

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p

142.953
71.4766
134.916
149.939

1.999
1.05958
0.953411

4.05142×10−7

3.48371
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4

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p
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1.07419
0.966691
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0.75 3 5
σ2
Rss[y] σ̂

2
a

σ̂2
r

σ̂2
p
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957.334
1009.66
1121.89

1.14286
1.08363
0.975226

6.01129×10−7

0.00138835
0.0060139

6
σ2
Rss[y] σ̂

2
a

σ̂2
r

σ̂2
p

815.049
692.791
747.591
830.679

1.17647
1.09023
0.981184

2.76454×10−7

0.000780882
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4

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p
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2732.97

1.63934
1.07687
0.969162

6.1456×10−7

0.00421257
0.0061465

0.35 3 5

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p

1173.87
689.649
1099.69
1221.89

1.70213
1.06746
0.960699

2.35627×10−7

0.00240055
0.0023565

6

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p

838.649
511.576
782.231
869.154

1.63934
1.07213
0.964903

1.10339×10−7

0.001525
0.00110347
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Table 2: The efficiency of σ̂2
i i = a.r.p with respect to σ2

Rss[y] and MSE, as well as the bias values
of the three estimators, for n = 12, 15, 18 and ρ < 0

ρ r m estimator MSE eff Bias

4

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p

1769.12
928.787
1815.81
1725.2

1.90477
0.974287
1.02546

2.35714×10−6

0.0023387
0.0235952

-0.95 3 5

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p

584.149
379.697
601.113
571.098

1.53846
0.971779
1.02285

5.26923×10−7

0.000849134
0.0052725

6

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p
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316.298
431.613
410.042

1.33333
0.977103
1.02851

1.27745×10−7

0.000494353
0.00127778

4

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
p
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1.33333
0.966651
1.01746
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-0.75 3 5

σ2
Rss[y]

σ̂2
a

σ̂2
r

σ̂2
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a
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r
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p
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