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Abstract

This study presents the differential transform method and its modification proposes a combina-
tion of the differential transform method, Tarig transformation and the Padé approximation. This
combination may be used as a beneficial strategy to expand the domain of convergence of the approx-
imation solutions. Moreover, the modified differential transform method will be used to solve linear
and nonlinear delay differential equations, and this technique will be applied to models of delayed
vector-borne diseases and delayed protein degradation.

Keywords: Delay differential equations differential transform method, Modified differential
transform method, Tarig transformation, The Padé approximation, TPDTM, Vector-Borne
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1. Introduction

The differential transform method (DTM) was first applied in the engineering domain [4], which
was successfully used by Zhou (1986) to solve linear and nonlinear initial value problems in elec-
tric circuit analysis. In recent years, the DTM has been used to solve a one-dimensional planer
Bratu problem, differential-in-difference equation, delay differential equations, differential-algebraic
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equation and systems of integro-differential equations (Abdel-Halim, 2007; Arikoglu, 2006; Arikoglu,
2008; Arikoglu, 2006; Ayaz, 2004; Karakoc, 2009; Kurnaz, 2005; Osmanoglu, 1986), [1].

The DTM is a transformation technique based on Taylor’s series expansion and is a beneficial tool
to obtain analytical solutions of the differential equations. DTM differs from the high-order Taylor
series method because the latter requires several symbolic computations and is thus expensive for
large orders [2]. An improved DTM that uses the Laplace transformation and Padé approximation
can increase the rate of convergence of the approximation solution to the accurate solution [10]. In
this study, we will extend the DTM to solve the nth order differential equations with multiple delays
of the form:

y(n) (x) = f (x, y (x) , y (x− r1) , y (x− r2) , . . . , y (x− rm)) , m ∈ N (1.1)

where y : I −→ R, f is continuously differentiable real valued function I ⊂ R and ri > 0, for
i = 1, 2, . . . , m.

2. An Overview of DTM

We denote f function as an analytic in a certain domain D and let t = x0 represent any point in
D. The function f is then represented by a power series whose centre is located at x0. As a definition
which is given sequentially, the differential transformation of the function f is given by Eq. (2.1).

F (k) =
1

k!

(
dkf(x)

dtk

)
x=x0

(2.1)

where f is the original function and F is the transformed function. The inverse transformation is
defined as [2], [3]:

f (x) =
∞∑
k=0

(x− x0)
kF (k). (2.2)

Substitution of Eq.(2.1) in Eq. (2.2) gives:

f (x) =


∑∞

k=0
(x−x0)

k

k!

(
dkf(x)
dxk

)
x=x0

, x0 ̸= 0∑∞
k=0

tk

k!

(
dkf(x)
dxk

)
x=0

, x0 = 0
(2.3)

Notably, Eq. (2.3) signifies that the notion of the DTM originates from Taylor’s series expansion.
The approximation of the DTM consists of some recursive computations, as summarised in the
following steps [4]:

1. The differential transformation of each term in the DDE is computed;

2. The differential transformations of Y (0) , Y (1) , Y (2) , . . . are calculated by the recurrence
Eq. (2.1), with a given initial condition;

3. Finally, these values are substituted back into Eq. (2.2).

Amongst the basic properties of the DTM and those given below (for details, see [5, 6, 10]).
1. If y (x) = c1f (x)± c2g (x), then Y (k) = c1F (k)± c2G (k), where c1, c2 ∈ R, k ∈ N.
2. If y (x) = g (x)h (x), then Y (k) =

∑k
k1=0G (k1)H(k − k1), k ∈ N.
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3. If y (x) = g (x+ a) , a ≥ 1, then:

Y (k) =
N∑

h1=k

(
h1

k

)
ah1−kG (h1) , for N −→ ∞ a ≥ 1

where (
h1

k

)
stead for the combination of h1 taken k.

4. If y (x) = g (x− a) , a > 0, then:

Y (k) =
N∑

h1=k

(−1)h1−k

(
h1

k

)
ah1−kG (h1) , for N −→ ∞

where a may be treated as a constant delay
5. If y (x) = g1 (x− a1) g2 (x− a2), provided that a1, a2 > 0, then:

Y (k) =
k∑

h1=k

N∑
h2=k−k1

(−1)h1+h2−k

(
h1

k

) (
h1

k1

)(
h2

k − k1

)
a1

h1−k

a2
h2−k+k1 G1 (h1)G2 (h2)

for N −→ ∞, where also a1 and a2are treated as constant delays. It is remarkable that when a1 = 0
and a2 = 0, then property (5) is special case of property(2).

6. If y (x) = g1

(
1
a1

)
g2

(
1
a2

)
, where a1, a2 ≥ 1, then for N → ∞:

Y (k) =
k∑

k1=0

N∑
h1=k1

N∑
h2=k−k1

(−1)h1+h2−k (a1 − 1)h1−k1

a1h1

(a2 − 1)h2−k+k1

a2h2
,

× xh1+h2−k
0

(
h1

k1

)(
h2

k − k1

)
G1 (h1)G2 (h2) .

Also, if a1 = 1 and a2 = 1, then property (7) reduces to property (2)
7. If y (x) = xn, then Y (k) = δ (k − n), where:

δ (k − n) =

{
1 k = n
0 k ̸= n

and δ is the Kronecker delta function.
8. If y (x) = eλx, then (k) = λk

k!
.

9. If y (x) = dnf(x)
dxn , then Y (k) = (k+n)!

k!
G (k + n) , n ∈ N.

10. Suppose that y (x) and g (x) are differentiable functions whose differential transformations are
Y (x) and G (x) respectively and p ∈ (0, 1) is the proportional delay parameter, then Y (k) = pkG (k)
if y (x) = g(px), where Y (k) [x0] is the kth-component of the differential transform of y (x) at x0.

11. Generalization of property (11) starts by assume by that Y , G1and G2, to be the differ-
ential transforms of the functions y, g1 and g2, respectively and p1, p2 ∈ (0, 1) , and if y (x) =
g1 (p1x) g2 (p2x), then:

Y (k) =
k∑

k1=0

pk11 pk−k1
2 G1 (k1)G2 (k − k1)
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12.(a) If y (x) = cosx , then:

C (k) =

{
(−1)

k
2 1
k!

if k = 2n, n ∈ N
0 if k = 2n+ 1, n ∈ N

(b) If y (x) = sinx, then:

S (k) =

{
(−1)

k−1
2 1

k!
if k = 2n+ 1, n ∈ N

0 if k = 2n, n ∈ N

Other properties concerning the differential transforms may be found in literatures (see for ex-
ample, [4]).

3. Padé Approximation

The best approximation of a function with a specific order is abbreviated as the Padé approx-
imation. Under this technique, the approximation power series corresponds to the power series
approximation of the function [10]. The Padé approximation is also the expansion of Taylor poly-
nomial approximation to a rational function. To illustrate this approximation, we suppose that r is
a rational function of two polynomials p and q of degrees n and m, respectively, without a common
factor, and the degree of r is N = n+m+ 1 (symbol of orders n and m is denoted by [n,m]) of the
form:

r (x) =
p(x)

q(x)
=

p0 + p1x+ · · ·+ pnx
n

q0 + q1x+ · · ·+ qmxm
, (3.1)

which is applied to approximation a function f over a closed interval I contain the origin. To define
r at zero, q0 should not be equal to 0. In fact, we may assume that q0 = 1; otherwise, we simply
divide r by q0. Consequently, N + 1 parameters q1, q2, . . . , qm, p0, p1, . . . , pn are available for the
approximation of f by r. The N + 1 parameters were chosen so that fk (0) = rk (0) , for each
k = 0, 1, . . . , N. When n = N and m = 0, the Padé approximation is simply the N th-Maclaurin
polynomial.

Consider the difference:

f (x)− r (x) = f (x)− p (x)

q (x)

=
f (x) q (x)− p(x)

q(x)

=
f(x)

∑m
i=0 qix

i −
∑m

i=0 pix
i

q(x)

and suppose that f has the Maclaurin series expansion f (x) =
∑∞

i=0 aix
i. Then

f (x)− r (x) =

∑∞
i=0 aix

i
∑m

i=0 qix
i −
∑m

i=0 pix
i

q(x)
. (3.2)

The objective is to choose the constants q1, q2, . . . , qm and p0, p1, . . . , pn so that f
k (0)−rk (0) = 0,

for all k = 0, 1, . . . , N . This case is equivalent to f − r having a zero of multiplicity N + 1 at x = 0.
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As a result, we select q1, q2, . . . , qm and p0, p1, . . . , pn so that the numerator on the right hand side
of Eq. (3.2) which is:

(a0 + a1x+ . . . ) (1 + q1x+ · · ·+ qmx
m)− (p0 + p1x+ · · ·+ pnx

n) (3.3)

has no terms of degree less than or equal to N . For simplified notations, we define pn+1 = pn+2 =
· · · = pN = 0 and qm+1 = qm+2 = · · · = qN = 0. Then, the coefficient of xk may be expressed

more compactly as
(∑k

i=0 aiqk−i

)
− pk by Eq. (3.3). The rational function for Padé approximation

will be obtained from the solution of N + 1 linear equations with N + 1 unknown q1, q2, . . . , qm and
p0, p1, . . . , pn, which is given by [11]:

k∑
i=0

aiqk−i = pk.

The Padé approximation of Eq. (3.1) to f of order [n,m] can be denoted as
[
n
m

]
f
. Furthermore,

the numerator and denominator have no common factors; those in Eq. (3.1) are constructed so that
f and [n/m]f and their derivatives agree at x = 0 up to n+m. That is:

f (x)−
[ n
m

]
f
(x) = O(xn+m+1) (3.4)

We first calculate all the coefficients qi, i = 1, 2, . . . ,m and then coefficients pi, i = 1, 2, . . . , n.
Notably, for a constant value of n+m+1, the error function given by Equation (3.4) is the smallest
degree when the numerator and denominator of Eq. (3.1) have the same degree or when the numerator
is a degree higher than the denominator [12]. The advantage of Padé approximation is that it
predominatingly gives approximation a preferable than from the truncated series solution from the
Taylor series. The reason is that some function may sometimes not have Taylor series expansion
and the Padé approximation has the potency to extended the domain of convergence of solutions or
comprise finding accurate solutions [10].

4. Tarig Transformation

Given the several interesting approaches applied to solve differential and integral equations, which
make visualisation easier, we introduced a new integral transformation method, that is, Tarig trans-
formation. This method is applied to solve differential equations subsequently [7]. The Tarig trans-
formation method is very effective for solve differential and integral equations and subsequently a
linear system of differential and integral equations. The Tarig transformation method is based on
the Fourier transform, which was introduced by Tarig M. Elzaki (2010), [8]. As defined for functions
of exponential order, the Tarig transformation method is defined by the following integral equations:

T [f(x)] = F (u) =
1

u

∫ ∞

0

f (x) e
−x

u2 dx, x ≥ 0, u ̸= 0

The variable u in this transformation is used as the transformation variable. This transformation has
a deeper connection with the Laplace transformation [7]. The sufficient conditions for the existence
of Tarig transformation are that f be piecewise continuous and of exponential order, indicating that
Tarig transformation may or may not exist.

Tarig transformation can certainly treat all problems that are usually treated by the well-known
and extensively used Laplace transformation [9]. To connect Tarig and Laplace transformations,
some of the most important properties that connect them may be recalled as in Theorems 1-7 given
in [7, 9].
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Theorem 4.1. If T [f(x)] = F (u), then:

1. T [f ′(x)] = F (u)
u2 − 1

u
f(0).

2. T [f ′′(x)] = F (u)
u4 − 1

u3f(0)− 1
u
f ′(0).

3. T [fn(x)] = F (u)
u2n −

∑n
i=1 u

2(i−n)−1f (i−1) (0).

Theorem 4.2. If T [f(x)] = F (u), then T
[∫ t

0
f (w) dw

]
= u2F (u).

Theorem 4.3. If T [f(x)] = F (u), then:

1. T [xf(x)] = 1
2

[
u3 d

du
F (u) + u2F (u)

]
.

2. T [xf ′(x)] = u3

2
d
du

[
F (u)
u2 − 1

u
f(0)

]
+ u2

2

[
F (u)
u2 − 1

u
f (0)

]
.

3. T [xf ′′ (x)] = u3

2
d
du

[
F (u)
u4 − 1

u3f (0)− 1
u
f ′ (0)

]
+ u2

2

[
F (u)
u4 − 1

u3f (0)− 1
u
f

′(0)
]
.

Properties (iii) given in Theorem (4.3) may be generalized using mathematical induction to be
written as follows

T
[
xf (n) (x)

]
=

u3

2

d

du

[
F (u)

u2(n)
−

n∑
i=1

u2(i−n)−1f (i−1) (0)

]
+

u2

2

[
F (u)

u2n
−

n∑
i=1

u2(i−n)−1f (i−1) (0)

]
.

Theorem 4.4 (Convolution). Let f (x) and g (x) having Laplace transforms F (s) and G(s) and
Tarig transform M(u) and N(u), respectively, then:

T [(f ∗ g)(x)] = uM (u) N(u)

where ∗ is the convolution operation.

The most important property that relates between Tarig and Laplace transformations is given in the
next theorem:

Theorem 4.5 (Relation between Laplace and Tarig Transformation). If T [f(x)] = G (u)
and L [f(x)] = F (s), then :

G (u) =
F
(

1
u2

)
u

.

Additional properties concerning Tarig transformation are given in the next theorems.

Theorem 4.6. If T [f(x)] = F (u), then T [f(ax)] = 1
a
F (au).

Theorem 4.7. If a, b ∈ R, and f, g are two functions of exponential order, then:

T [a f (x) + b f (x)] = a T (f(x)) + a T (g(x))
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5. Modified Differential Transformation Method

Further studies can use some results that are stated and proven to solve delay differential equations
through the proposed approach, that is, the modified DTM (MDTM).

Theorem 5.1. If y (x) = g (x− a) dn

dxn [h (x)], then:

Y (k) =
(k + n)!

k!

k∑
k1=0

N∑
h1=k1

(−1)h1−k1

(
h1

k1

)
ah1−k1G (h1) H(k − k1 + n)

Proof . Let the differential transform of g (x− a) and dn

dxn [h (x)] at x = x0 be G(k) and H(k),
respectively. By using Properties (2), we have the differential transform of y (x) is as follows:

Y (k) =
k∑

k1=0

G (k1)H(k − k1). (5.1)

By Properties (4), we get:

G (k) =
N∑

h1=k

(−1)h1−k

(
h1

k

)
ah1−kG (h1) , N → ∞

and also from Properties(9), we get

H (k) =
(k + n)!

k!
H (k + n)

Substituting these values into Eq.(5.1), implies to:

Y (k) =
(k + n)!

k!

k∑
k1=0

N∑
h1=k1

(−1)h1−k1

(
h1

k1

)
ah1−k1G (h1) H(k − k1 + n)

for N → ∞. □

Theorem 5.2. If y (x) = (g (x− a))2, then:

Y (k) =
k∑

k1=0

N∑
h1=k1

(−1)h1−k

(
h1

k1

)
ah1−k1G (h1) G2(k − k1)

Proof: Let the differential transform of g (x− a) and at x = x0 be G(k). By using Properties (2),
we have the differential transform of y (x) as:

Y (k) =
k∑

k1=0

G1 (k1)G2(k − k1)

Accordingly, from Properties (4), we get:

G1 (k) =
N∑

h1=k

(−1)h1−k

(
h1

k

)
ah1−kG1 (h1) , N → ∞

Substituting last equation into the differential transform Y (k), implies to:

Y (k) =
k∑

k1=0

N∑
h1=k1

(−1)h1−k1

(
h1

k1

)
ah1−k1G1 (h1) G2(k − k1)■
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Theorem 5.3. If y (x) = g (x− a)h (x), then:

Y (k) =
k∑

k1=0

N∑
h1=k1

(−1)h1−k1

(
h1

k1

)
ah1−k1G (h1) H(k − k1)

Proof . Let the differential transform of g (x− a) and h (x) at x = x0 be G(k) and H(k),
respectively. By using Properties(2) and (2.3), we get:

Y (k) =
k∑

k1=0

N∑
h1=k1

(−1)h1−k1

(
h1

k1

)
ah1−k1G (h1) H (k − k1)

for N → ∞. □
Now, the MDTM will be presented as a hybrid approach to improve the DTM’s convergence

by using Tarig transformation and Padé approximation. The solution series obtained by the DTM,
although they contain numerous terms, may converge in a limited area. Therefore, the domain of
convergence of the truncated power series expands the Tarig-Padé DTM (TPDTM) and predomi-
nantly result to the accurate solution. To improvement the solution of convergent series which was
get through the DTM, we initially apply Tarig transformation and then evaluate its Padé approxi-
mation, transforming converted series into a meromorphic function. Finally, we take inverse Tarig
transformation for the function obtained using Padé approximation to get the analytical solution.
Therefore, based on the aforementioned method, we may obtain an accurate solution for the linear
and nonlinear delay differential equations.

The TPDTM algorithm may be summarised as follows:
Step 1: Apply the DTM to the initial conditions and the system of differential equations to get
a repetition system for the unknown Y (0) , Y (1) , Y (2) , . . . ; use the transformed initial conditions
and replace the system calculations to determine the unknown Y (0) , Y (1) , Y (2) , . . . .
Step 2: Use the differential inverse transform formula in Eq. (2.2) to get an approximate solution
for the initial value problem.
Step 3: Apply Tarig transform with respect to x for the power series obtained in Step (2).
Step 4: Calculate the Padé approximation

[
n
m

]
f
for the transformed series; n and m are arbitrarily

chosen, but they should be smaller than the order of the power series. In this step, the Padé
approximation extends the domain of the truncated series solution to obtain a higher accuracy while
ignoring convergence.
Step 5: Eventually, applied the inverse Tarig transformation in Step (4), we get the accurate or
approximate solution of the problem under consideration.

6. Illustrative Examples

As an illustration of the above approach, some examples are considered.

Example 6.1. Consider the delay differential equation given in [10]:

y′ (x) = −y (x) +
1

10
y
(x
5

)
− 1

10
e−

x
5 , 0 ≤ x ≤ 1 (6.1)

subject to the initial condition:

y (0) = 0 (6.2)
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To solve this problem by using properties for DTM transformation, the following recurrence relations
is used first:

(k + 1)

k!
Y (k) = −Y (k) +

1

10

(
1

5

)k

Y (k)− 1

10

(
−1

5

)k
k!

(6.3)

and form the initial condition Eq.(6.2), we get Y (0) = 1
Substituting Y (0) in Eq.(6.3) recursively, the following transforms is obtained:

Y (1) = −1, Y (2) = −1

2
, Y (3) = − 1

3!
, y (4) =

1

4!
, . . . (6.4)

Therefore, according Eq.(2.2), it is obtained that:

y (x) =
∞∑
k=0

Y (k)xk = 1− x− 1

2!
x2 − 1

3!
x3 +

1

4!
x4 + . . . ... (6.5)

Now, applying the TPDTM for the third-order approximate solution

y3 (x) =
3∑

k=0

Y (k)xk = 1− x− 1

2!
x2 − 1

3!
x3 (6.6)

Applying the Tarig transformation with respect to y (x) yields to:

T [y (u)] = u− u3 +
1

2!
2!u5 − 1

3!
3!u7

= u− u3 + u5 − u7 (6.7)

For n ≥ 1,m ≥ 1 and m+ n ≤ 7, all
[
n
m

]
y
(u)-Padé approximants of Eq.(6.7) with n = 4, m = 3, is

given by:

T (u)− r (u) = T (u)− p(u)

q(u)

= T (u) q (u)− p (u)

=
(
u− u3 + u5 − u7

) (
1 + q1u+ q2u

2 + q3u
3
)
−
(
p0 + p1u+ p2u

2 + p3u
3 + p4u

4
)

Expanding and equating the like coefficients of the same power of u produces:

u0 : 0 = p0 ;u1 : 1 = p1;u
2 : −q1 = p2 ;u3 : q2 − 1 = p3 ;

u4 : q3 − q1 = p4 ;u5 = 1− q2 = 0 ;u6 : q1 − q6 = 0 ;u7 : q2 − 1 = 0

Solving the last system of algebraic equations numerically will give:

p0 = 0, p1 = 1, p2 = 0, p3 = 0, p4 = 0, q1 = 0, q2 = 1, q3 = 0

Then, substituting pi’s and q′is, gives:

p (u) = u, q (u) = 1 + u2

So the Padé approximant is: [ n
m

]
(u) =

p(u)

q(u)
=

u

1 + u2
(6.8)
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Eventually, applying the inverse Tarig transform for the last Padé approximation, we reaches at the
improved solution that is corresponding to the accurate solution y (x) = e−x; which is also the exact
solution of the delay differential equation [10].

The next example is given in [10], which will be solved here using the Laplace-Padé differential
transform method. We found that the method of solution followed by [10] consist so many wrong
step. We give the solution using the modified method proposed in this work.

Example 6.2. Consider the next one nonlinear delay differential equation:

y
′′′
(x
2

)
− 2y

′′
(x
2

)
y′
(x
2

)
+

1

4
y (t) =

1

4
cosh

(x
2

)
, 0 ≤ t ≤ 1 (6.9)

subject to the initial conditions:

y (0) = 0, y′ (0) = 2, y
′′
(0) = 0 (6.10)

The solution approach starts by using the differential transform DTM results to get next one repetition
relations:(
1

2

)k+3
(k + 1) (k + 2) (k + 3)

k!
Y (k + 3)

− 2
k∑

r=0

(
1

2

)k+2(
1

2

)k−r+1
(r + 2)! (k − r + 1)!

r! (k − r)!
Y (r + 2)Y (k − r + 1)+

1

4
Y (k) =

1

4

1

2

((
1
2

)k
+
(
−1

2

)k
k!

)

(
1

2

)k+3
(k + 1) (k + 2) (k + 3)

k!
Y (k + 3) (6.11)

−
(
1

2

)2k+2 k∑
r=0

2r (r + 2) (k − r + 1)Y (r + 2)Y (k − r + 1) +
1

4
Y (k) =

1

8

((
1
2

)k
+
(
−1

2

)k
k!

)
While the differential transform of the initial conditions, are

Y (0) = 0, Y (1) = 2, Y (2) = 0 (6.12)

Hence, substituting Eq.(6.11) in Eq.(6.12) recursively, we get the following results for the solution of
the differential equation transform:
For k = 0 : Y (0)

4
+ 3 Y (3)

4
− Y (1) Y (2)

2
− 1

4
, Y (3) = 1

3

For k = 1 : Y (1)
4

+ 3 Y (4)
2

− Y (2)2

4
− 3 Y (1)Y (3)

4
, Y (4) = 0

For k = 2 : Y (2)
4

+ 15Y (5)
16

− 3 Y (1)Y (4)
4

− 15Y (2)Y (3)
32

− 1
32
, Y (5) = 1

30

For k = 3 : Y (5)
4

+ 5 Y (6)
16

− 9 Y (3)2

64
− 5 Y (1)Y (5)

8
− 13 Y (2)Y (4)

32
, Y (6) = − 1

12

Therefore, according to Eq.(2.2), we have:

y (x) =
∞∑
k=0

Y (k)xk = 2x+
1

3
x3 +

1

30
x5 − 1

12
x6 + . . . (6.13)

Now, using five-order TPDTM approximate solution:

y5 (x) =
5∑

k=0

Y (k)xk = 2x+
1

3
x3 +

1

30
x5 (6.14)
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Applying the Tarig transformation with respect to x for y (x) yields to:

T [y (t)] = 2u3 +
1

3
3!u7 +

5!

30
x11

= 2u3 + 2 u7 +
5!

30
x11 (6.15)

For n ≥ 1, m ≥ 1 and n + m ≤ 11, ∀
[
n
m

]
y
(u)-Padé approximants of Eq.(6.16), such that n =

6, m = 5, implies to:

T (u)− r (u) = T (u)− p(u)

q(u)

=T (u) q (u)− p (u)

=

(
2u3 + 2 u7 +

5!

30
x11

)(
1 + q1u+ q2u

2 + q3u
3 + q4u

4 + q5u
5
)

−
(
p0 + p1u+ p2u

2 + p3u
3 + p4u

4 + p5u
5 + p6u

6
)

Carrying out some simplifications and calculations of the last equation and solving the resulting
system obtained by equating the like power of u, to get:

p0 = 0, p1 = 0, p2 = 0, p3 = 2, p4 = 0, p5 = 0, p6 = 0

q1 = 0, q2 = 0, q3 = 0, q4 = −1, q5 = 0

Hence:
p (u) = 2u3, q (u) = 1− u4

So the Padé approximant is: [ n
m

]
y
(u) =

p(u)

q(u)
=

2u3

1− u4
(6.16)

Eventually, applying the inverse Tarig transform of the Padé approximant Eq.(6.16), we reaches to
the improved solution, which agree to the approximate solution:

y (x) = 2sinh (x) = 2

(
ex − e−x

2

)
= ex − e−x

which is the same solution obtained in [10] as the exact solution.

7. Application of TPDTM for Solving Vector-Borne Diseases with Delays

In this section, the diseases biological problem of the vector-borne diseases with time delay will
be solved. The governing equation for the proportion of humans diseases is reduced in [13] to:

ẋ (t) =
pa2qme−ατe−µτx(t− τ)

pae−µτx (t− τ) + µ
(1− x(t− τ))− α x(t) (7.1)

with premasters P = pae−µτ = 13.9498, Q = Ppaqme−ατ = 225.816, τ = 1, α = 2.74768, µ = 12
and the initial conditions x1 (0) = 0.73
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To solve this equations, start from Eq.(7.1), to get:

(ẋ (t) + α x(t)) (Px (t− τ) + µ) = Qx(t− τ) (1− x(t− τ))Pẋ (t) x (t− τ)

+ αP x (t) x (t− τ) + µẋ (t) + αµ x (t)−Qx (t− τ) +Q(x (t− τ))2 = 0 (7.2)

Apply properties and theorems of DTM, to get:

P
(k + 1)!

k!

k∑
k1=0

N∑
h1=k1

(−1)h1−k1

(
h1

k1

)
ah1−k1X (h1) X (k − k1 + 1)+

αP

k∑
k1=0

N∑
h1=k1

(−1)h1−k1

(
h1

k1

)
ah1−k1X (h1) X (k − k1) + µ

(k + 1)!

k!
X (k + 1)+

αµX (K)−Q

N∑
h1=k

(−1)h1−k

(
h1

k

)
ah1−kX (h1) +

Q

k∑
k1=0

N∑
h1=k1

(−1)h1−k1

(
h1

k1

)
ah1−k1X (h1) X(k − k1) (7.3)

Consider now the differential transform of y(x) at x0 = 0, with the transformed initial condition
X (0) = 0.73, substituting in Eq.(7.3) recursively we arrive at the following results:

X (1) = −4.576× 10−5, X (2) = 3.464× 10−5, Y (3) = −5.053× 10−5, y (4) = 6.592× 10−4, . . .
(7.4)

Therefore, according to Eq.(2.2):

y (x) =
∞∑
k=0

Y (k)xk = 0.73− 4.576× 10−5x+ 3.464× 10−5x2 − 5.053× 10−5x3 + 6.592× 10−4x4

(7.5)

while using the TPDTM for the second-order approximate solution

y2 (x) =
2∑

k=0

Y (k)xk = 0.73− 4.576× 10−5x+ 3.464× 10−5x2 (7.6)

Applying Tarig transform with respect to for y (x) productivity to:

T [y (u)] = 0.73u− 4.576× 10−5u3 + 2!3.464× 10−5u
5

(7.7)

For n ≥ 1,m ≥ 1 and m+n ≤ 5, ∀
[
n
m

]
y
(u)-Padé approximants of Eq.(7.7) such take n = 3, m = 2,

give:

T (u)− r (u) = T (u)− p(u)

q(u)
= T (u) q (u)− p (u)

=
(
0.73u− 4.576× 10−5u3 + 2!3.464× 10−5u

5
) (

1 + q1u+ q2u
2
)
−
(
p0 + p1u+ p2u

2 + p3u
3
)
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Expanding and collecting the like terms of u produces:

u0 : 0 = p0 ;u1 : 0.73 = p1;u
2 : 0.73 q1 = p2 ;u3 : 0.73q2 − 0.00004576 = p3 ;

u4 : −0.00004576q1 = 0;u5 = 0.00006928− 0.00004576 q2 = 0 ;u6 : 0.00006928q1 = 0

The last resulted system may be solved numerically to get:

p0 = 0, p1 =
73

100
, p2 = 0, p3 =

2932

2653
, q1 = 0, q2 =

433

286

Hence:

p (u) =
73

100
u+

2932

2653
u3, q (u) = 1 +

433

286
u2

So the Padé approximation is:[ n
m

]
(u) =

p (u)

q (u)
=

73
100

u+ 2932
2653

u3

1 + 433
286

u2
=

838552 u

1148749
− 497211 u

57437450 (433u2 + 286)

=
838552

1148749
u− 497211 u

57437450× 286
(
433
286

u2 + 1
)

=
838552

1148749
u− 1

33038

u(
1 + 433

286
u2
) (7.8)

Eventually, applying the inverse Tarig transform of the Padé approximant Eq.(7.8),we reaches to the
improved solution which agree to the accurate solution:

y (x) =
838552

1148749
− 1

33038
e−

433
286

x

Table 1 presents the some discrete results and the residue error, while Figures 1 and 2 present
the solutions and the residue errors, respectively.

Table 1: Solution of the vector-borne diseases problem and its residue error using the DTM and the
TPDTM

x y (x) using
TPDTM

Residue error for
(TPDTM)

y (x) using DTM
Residue error for

(DTM)

0 0.729939 0.037397 0.73 0.090488

10 0.72997 0.018604 7.274476 6.413069×103

20 0.72997 0.018604 105.810701 2.041504×106

30 0.72997 0.018604 533.347493 5.888445×107

40 0.72997 0.018604 1.685102e3 6.25302×108

50 0.72997 0.018604 4.114498e3 3.86746×109

60 0.72997 0.018604 8.533169e3 1.704497×1010
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Figure 1: The solution of the vector-borne diseases problem using the DTM and the TPDTM.

Figure 2: The residue error of the vector-borne diseases problem using the DTM and the TPDTM.

8. Conclusions

In this paper, we present Differential Transformation Method (DTM) and proved some new the-
orems using to solve linear and nonlinear DDEs. Also we present the Modified Differential Transfor-
mation Method (MDTM) as a hybrid approach to improve the DTM’s convergence by combine form
of the differential transform method with Tarig transformation, and Padé approximation (TPDTM).
The main advantage for TPDTM method is its ability to collect the two strongest method to finding
a fast convergent series solution of DDEs and This technique is faster than Laplace- Padé differential
transform method (LPDTM), we can found solution by this method followed by [10] consist many
wrong step which is solve using the Laplace-Padé differential transform method, we saw this modified
is effectively used to find accurate solution of linear and nonlinear of delay differential transform.
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