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Abstract

This paper deals with the existence of denumerably many positive radial solutions to the iterative
system of Dirichlet problems

div

(
∇zj√

1− |∇zj|2

)
+ gj (zj+1) = 0 in Ω,

zj = 0 on ∂Ω,

where j ∈ {1, 2, · · ·, n}, z1 = zn+1, Ω is a unit ball in RN involving the mean curvature operator
in Minkowski space by applying Krasnoselskii’s fixed point theorem, Avery-Henderson fixed point
theorem and a new (Ren-Ge-Ren) fixed point theorem in cones.
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1. Introduction

The Dirichlet problems involving the mean curvature operator in Minkowski space

MC(z) = div

(
∇z√

1− |∇z|2

)
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arise from the study of spacelike submanifolds of codimension in the flat Minkowski space with
prescribed mean extrinsic curvature [3, 13]. Due to its important background, the existence of radial
solutions for such problems has been studied by many researchers, see [2, 4, 5, 6, 7, 10, 11, 17] and
the references therein. However, most of the results in the above mentioned references are concerned
with nonsingular problems, there are only a few works on singular problems, see [14] for the weakly
singular cases and [15] for the strongly singular cases. Recently, [16] Pei and Wang established the
existence and uniqueness of positive radial solutions are obtained for a mean curvature equation in
Lorentz–Minkowski space of the form

MC(z) + f
(
|x|, z

)
= 0 in Ω,

z = 0 on ∂Ω,

where Ω is a unit ball in RN, f(r, u) may be singular at r = 0 and 1, and strongly singular at z = 0,
by applying the perturbation technique and Schauder fixed point theorem.

Motivated by the results mentioned above, in this paper, we aim to establish the existence de-
numerably many positive radial solutions of the following iterative system of Dirichlet problems
associated with the Minkowski-curvature equations

div

(
∇zj√

1− |∇zj|2

)
+ gj (zj+1) = 0 in Ω,

zj = 0 on ∂Ω,

 (1.1)

where j ∈ {1, 2, · · ·, n}, z1 = zn+1, Ω is a unit ball in RN by applying the Krasnoselskii’s fixed point
theorem, Avery-Hender fixed point theorem and a new(Ren-Ge-Ren) fixed point theorem in cones.

The study of positive radial solutions to (1.1) reduces to the study of positive solutions to the
following boundary value problems:[

rN−1ϕ
(
z′j
)]′

+ rN−1gj(zj+1) = 0, N ≥ 1,

z′j(0) = zj(1) = 0,

}
(1.2)

where j ∈ {1, 2, · · ·, n}, ϕ(τ) = τ/
√
1− τ2, τ ∈ (−1, 1), and z1 = zn+1, by the change of variable

zj(x) = zj(r) with r = |x|.
Throughout this paper, we make the following assumptions:

(H1) gj : (0,+∞) → [0,+∞) is continuous.

(H2) there exists a sequence {rk}∞k=1 such that 0 < rk+1 < rk <
1
2
, k ∈ N,

lim
k→∞

rk = r∗ <
1

2
.

The rest of the paper is organized in the following fashion. In Section 2, we convert the boundary
value problem (1.2) into equivalent integral equation. In Section 3, we establish a criteria for the
existence of denumerably many positive solutions for the boundary value problem (1.2) by applying
Krasnoselskii’s fixed point theorem, Avery-Henderson fixed point theorem and new(Ren-Ge-Ren)
fixed point theorem in cones.
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2. Preliminaries

In this section we provide some lemmas which are useful in the main results of the paper.

Lemma 2.1 ([14]). Let ϕ(τ) =
τ√

1− τ2
. Then ϕ−1(τ) =

τ√
1 + τ2

and

ϕ−1(τ1)ϕ
−1(τ2) ≤ ϕ−1(τ1τ2) ≤ τ1τ2, for all τ1, τ2 ∈ (0,+∞).

Lemma 2.2 ([12]). Let h ∈ C[0, 1]. Then the boundary value problem[
rN−1ϕ

(
z′1
)]′

+ h(t) = 0, r ∈ (0, 1), (2.1)

z′1(0) = z1(1) = 0, (2.2)

has a unique solution

z1(r) =

∫ 1

r

ϕ−1

(
1

tN−1

∫ t

0

τN−1h(τ)dτ

)
dt. (2.3)

From Lemma 2.2, we note that an n-tuple
(
z1, z2, · · ·, zn

)
is a solution of the boundary value

problem (1.2) if and only if

z1(r) =

∫ 1

r

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1.

and

zj(r) =

∫ 1

r

ϕ−1

(
1

tN−1

∫ t

0

τN−1gj(zj+1(τ))dτ

)
dt, j = 2, 3, · · · , n,

zn+1(r) = z1(r), r ∈ (0, 1).

We denote the Banach space C([0, 1],R) by B with the norm ∥z∥ = max
r∈[0,1]

|z(r)|. For δ ∈ (0, 1/2),

the cone Pδ ⊂ B is defined by

Pδ =
{
z ∈ B : z(r) ≥ 0, min

r∈[δ, 1−δ]
z(r) ≥ δ∥z∥

}
,

For any z1 ∈ Pδ, define an operator ℵ : Pδ → B by

(ℵz1)(r) =
∫ 1

r

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1. (2.4)

Lemma 2.3 ([9]). Let z ∈ C
(
[0, 1], [0,+∞)

)
be such that z′(r) is decreasing in [0, 1]. Then, we have

min
r∈[δ, 1−δ]

z(r) ≥ δ∥z∥.
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Lemma 2.4. Assume that (H1) holds. Then, for each δ ∈ (0, 1/2), ℵ(Pδ) ⊂ Pδ and ℵ : Pδ → Pδ is
completely continuous.

Proof . It is easy to see that ℵ(z1(r)) ∈ B with ℵ(z1(1)) = 0. Now, for any z1 ∈ Pδ, we have

(ℵz1)′(r) =− ϕ−1

[
1

rN−1

∫ r

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
≤ 0.

It follows that (ℵz1)(r) is decreasing on [0, 1], i.e.,

(ℵz1)(r) ≥ (ℵz1)(1) = 0 for any r ∈ [0, 1]. (2.5)

Since

rN−1ϕ
(
(ℵz1)′(r)

)
= −

∫ r

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ2

)
dτ1,

is decreasing on [0, 1], it follows from the fact that ϕ is increasing and N ≥ 1 that (ℵz1)′(r) is
decreasing on [0, 1]. Thus, by Lemma 2.3, we have

min
r∈[δ, 1−δ]

ℵz1(r) ≥ δ∥ℵz1∥. (2.6)

From (2.5) and (2.6), we see that ℵ(Pδ) ⊂ Pδ. Finally by standard methods and the Arzela-Ascoli
theorem, the operator ℵ is completely continuous. □

3. Denumerably Many Positive Radial Solutions

For the the existence of denumerably many positive radial solutions for the boundary value
problem (1.2), we utilize the following cone fixed point theorems in a Banach space.

Theorem 3.1. (Krasnoselskii [8]) Let B be Banch space and P be a cone in B. Suppose E and F

are two open sets with 0 ∈ E, E ⊂ F. Let ℵ : P ∩ (F\E) → P be a completely continuous operator such
that

(a) ∥ℵz∥ ≤ ∥z∥, z ∈ P ∩ ∂E, and ∥ℵz∥ ≥ ∥z∥, z ∈ P ∩ ∂F, or

(b) ∥ℵz∥ ≥ ∥z∥, z ∈ P ∩ ∂E, and ∥ℵz∥ ≤ ∥z∥, z ∈ P ∩ ∂F.

Then ℵ has a fixed point in P ∩ (F\E).

Let ψ be a nonnegative continuous functional on a cone P of the real Banach space B. Then for
any two positive real numbers a′ and c′, we define the sets

P(ψ, c′) = {z ∈ P : ψ(z) < c′}

and
Pa′ = {z ∈ P : ∥z∥ < a′}.
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Theorem 3.2. (Avery-Henderson[1]) Let P be a cone in a real Banach space B. Suppose α and γ are
increasing, nonnegative continuous functionals on P and θ is nonnegative continuous functional on
P with θ(0) = 0 such that, for some positive numbers c′ and k, γ(z) ≤ θ(z) ≤ α(z) and ∥z∥ ≤ kγ(z),
for all z ∈ P(γ, c′). Suppose that there exist positive numbers a′ and b′ with a′ < b′ < c′ such that
θ(z) ≤ λθ(z), for all 0 ≤ λ ≤ 1 and z ∈ ∂P(θ, b′). Further, let ℵ : P(γ, c′) → P be a completely
continuous operator such that

(a) γ(ℵz) > c′, for all z ∈ ∂P(γ, c′),

(b) θ(ℵz) < b′, for all z ∈ ∂P(θ, b′),

(c) P(α, a′) ̸= ∅ and α(ℵz) > a′, for all ∂P(α, a′).

Then, ℵ has at least two fixed points 1z, 2z ∈ P(γ, c′) such that a′ < α(1z) with θ(1z) < b′ and
b′ < θ(2z) with γ(2z) < c′.

Theorem 3.3. (Ren-Ge-Ren[18]) Let P be a cone in a Banach space B Let α, β and γ be three
increasing, nonnegative and continuous functionals on P, satisfying for some c′ > 0 and M > 0 such
that γ(z) ≤ β(z) ≤ α(z) and ∥z∥ ≤ Mγ(z), for all z ∈ P(γ, c′). Suppose there exists a completely
continuous operator ℵ : P(γ, c′) → P and 0 < a′ < b′ < c′ such that

(a) γ(ℵz) > c′, for all z ∈ ∂P(γ, c′),

(b) β(ℵz) < b′, for all z ∈ ∂P(β, b′),

(c) P(α, a′) ̸= ∅ and α(ℵz) > a′, for all ∂P(α, a′).

Then, ℵ has at least three fixed points 1z, 2z, 3z ∈ P(γ, c′) such that α(1z) < a′ < α(2z), β(2z) < b′ <
β(3z) and β(3z) < c′.

3.1. Existence of (Atleast One) Denumerably Many Positive Radial Solutions

Theorem 3.4. Assume that (H1)–(H2) hold and let {δk}∞k=1 be a sequence with rk+1 < δk < rk, k ∈
N. Let {Rk}∞k=1 and {Sk}∞k=1 be any two sequences which satisfies the relation

Rk+1 < δkSk < Sk < Rk, βkϕ(δ
−1
k Sk) < ϕ

(
Rk
)
, k ∈ N,

Furthermore for each natural number k, we assume that gj(j = 1, 2, · · ·, n) satisfies

(H3) gj(z(r)) ≤ Nϕ
(
Rk
)
for all 0 ≤ z(r) ≤ Rk, r ∈ [0, 1],

(H4) gj(z(r)) ≥ βkNϕ(δ
−1
k Sk) for all δkSk ≤ z(r) ≤ Sk, r ∈ [δk, 1− δk], where

βk =
(1− δk)N − δNk
(1− δk)N−1

.

The iterative system (1.1) has denumerably many radial solutions {(z[k]1 , z
[k]
2 , · · ·, z[k]n )}∞k=1 such that

z
[k]
j (r) ≥ 0 on (0, 1), j = 1, 2, · · ·, n and k ∈ N.
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Proof . Consider the sequences {Ek}∞k=1 and {Fk}∞k=1 of open subsets of B defined by

Ek = {z ∈ B : ∥z∥ < Rk},

and
Fk = {z ∈ B : ∥z∥ < Sk}.

Let {δk}∞k=1 be as in the hypothesis and note that r∗ < rk+1 < δk < rk < 1/2, for all k ∈ N. For each
k ∈ N, define the cone Pδk by

Pδk =

{
z ∈ B : z(r) ≥ 0 and min

r∈[δk, 1−δk]
z(r) ≥ δk∥z∥

}
.

Let z1 ∈ Pδk ∩ ∂Ek. Then,
z1(τ) ≤ Rk = ∥z1∥

for all τ ∈ [0, 1]. Let 0 < τn−1 < 1. Then by Lemma 2.1 and (H3), we have∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn ≤

∫ 1

0

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

≤
∫ 1

0

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n Nϕ

(
Rk
)
dτn

]
dtn

≤
∫ 1

0

ϕ−1
(
ϕ
(
Rk
)
tn
)
dtn

≤ Rk.

It follows in similar manner for 0 < τn−2 < 1, we have∫ 1

τn−2

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
dτn−1

]
dtn−1

≤
∫ 1

0

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1gn−1

(
Rk
)
dτn−1

]
dtn−1

≤
∫ 1

0

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1Nϕ

(
Rk
)
dτn−1

]
dtn−1

≤
∫ 1

0

ϕ−1
(
ϕ
(
Rk
)
tn−1

)
dtn−1

≤ Rk.

Continuing with this bootstrapping argument, we get

(ℵz1)(r) =
∫ 1

r

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≤ Rk.



Positive radial solutions for the iterative system of MC-equations 3619

Since Rk = ∥z1∥ for z1 ∈ Pδk ∩ ∂Ek, we get

∥ℵz1∥ ≤ ∥z1∥. (3.1)

Let r ∈ [δk, 1− δk]. Then,

Sk = ∥z1∥ ≥ z1(r) ≥ min
r∈[δk,1−δk]

z1(r) ≥ δk∥z1∥ ≥ δkSk.

By (H4) and for τn−1 ∈ [δk, 1− δk], we have∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn ≥

∫ 1

1−δk
ϕ−1

[
1

tN−1
n

∫ 1−δk

δk

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

≥ δkϕ−1

[
1

tN−1
n

∫ 1−δk

δk

τN−1
n gn

(
z1(τn)

)
dτn

]

≥ δkϕ−1

[
1

(1− δk)N−1

∫ 1−δk

δk

τN−1
n βkNϕ

(
Sk

δk

)
dτn

]

≥ δkϕ−1

[
(1− δk)N − δNk
(1− δk)N−1

βkϕ

(
Sk

δk

)]
≥ Sk.

In similar manner (for τn−2 ∈ [δk, 1− δk],) that∫ 1

τn−2

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
dτn−1

]
dtn−1

≥
∫ 1

1−δk
ϕ−1

[
1

tN−1
n−1

∫ 1−δk

δk

τN−1
n−1gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
dτn−1

]
dtn−1

≥
∫ 1

1−δk
ϕ−1

[
1

tN−1
n−1

∫ 1−δk

δk

τN−1
n−1gn−1

(
Sk
)
dτn−1

]
dtn−1

≥ δkϕ−1

[
1

(1− δk)N−1

∫ 1−δk

δk

τN−1
n−1βkNϕ

(
Sk

δk

)
dτn−1

]

≥ δkϕ−1

[
(1− δk)N − δNk
(1− δk)N−1

βkϕ

(
Sk

δk

)]
≥ Sk.

Continuing with bootstrapping argument, we get

(ℵz1)(r) =
∫ 1

r

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≥ Sk.
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Thus, if z1 ∈ Pδk ∩ ∂Fk, then
∥ℵz1∥ ≥ ∥z1∥. (3.2)

It is evident that 0 ∈ Fk ⊂ Fk ⊂ Ek. From (3.1),(3.2), it follows from Theorem 3.1 that the operator

ℵ has a fixed point z
[k]
1 ∈ Pδk ∩

(
Ek\Fk

)
such that z

[k]
1 (t) ≥ 0 on (0, 1), and k ∈ N. Next setting

zj+1 = z1, we obtain denumerably many positive solutions {(z[k]1 , z
[k]
2 , · · ·, z[k]n )}∞k=1 of (1.1) given

iteratively by

zj(r) =

∫ 1

r

ϕ−1

(
1

tN−1

∫ t

0

τN−1gj(zj+1(τ))dτ

)
dt, j = n, n− 1, · · · , 2, 1.

The proof is completed. □

Example 3.5. Consider the following iterative system of Dirichlet problems

MC(zj) + gj(zj+1) = 0 in Ω

zj = 0 on ∂Ω,

}
(3.3)

where j = 1, 2, N = 1 and z1 = z3. Let

rk =
31

64
−

k∑
s=1

1

4(s+ 1)4
, δk =

1

2
(rk + rk+1), k = 1, 2, 3, · · · ,

then

δ1 =
15

32
− 1

648
<

15

32

and

rk+1 < δk < rk, δk >
1

5
.

It is easy to see

r1 =
15

32
<

1

2
, rk − rk+1 =

1

4(k + 2)4
, k = 1, 2, 3, · · · .

Since
∞∑
k=1

1

k4
=

π4

90
and

∞∑
k=1

1

k2
=

π2

6
, it follows that

r∗ = lim
k→∞

rk =
31

64
−

∞∑
j=1

1

4(j + 1)4

=
47

64
− π4

360
>

1

5
.

In addition if we take
Rk = 10−4k, Sk = 10−(4k+2),

then

Rk+1 = 10−(4k+4) <
1

5
× 10−(4k+2) < δkSk

< Sk = 10−(4k+2) < Rk = 10−4k,

ϕ(Rk) =
1√

108k − 1
, ϕ(Sk) =

1√
108k+4 − 1

, and ϕ

(
Sk

δk

)
=

1√
108k+4 × δ2k − 1

.
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Since ϕ is increasing and δ−1
k Sk ≤ 5Sk ≤ Rk, it follows that

βkNϕ

(
Sk

δk

)
≤ Nϕ(Rk), βk = 1− 2δk < 1.

Let M1 and M2 be two positive numbers such that

βkNϕ

(
Sk

δk

)
≤ M1 × 10−8k ≤ M2 × 108k ≤ Nϕ(Rk),

and

g1(z) = g2(z) =



M2 × 10−4, z ∈ (10−4,+∞),

M1×10−(4k+2)−M2×10−4k

10−(4k+2)−10−4k (z− 10−4k) + M2 × 10−4k,

z ∈
[
10−(4k+2), 10−4k

]
,

M1 × 10−(4k+2), z ∈
(

1
5 × 10−(4k+2), 10−(4k+2)

)
,

M1×10−(4k+2)−M2×10−(4k+4)

1
5×10−(4k+2)−10−(4k+4) (z− 10−(4k+4)) + M2 × 10−(4k+4),

z ∈
(
10−(4k+4), 15 × 10−(4k+2)

]
,

0, z = 0.

Then, g1 and g2 satisfies the following growth conditions:

g1(z) = g2(z) ≤ Nϕ(Rk), z ∈
[
0, 10−4k

]
,

g1(z) = g2(z) ≥βkNϕ

(
Sk

δk

)
, z ∈

[
1

5
× 10−(4k+2), 10−(4k+2)

]
.

All the conditions of Theorem 3.4 are satisfied. Therefore, by Theorem 3.4, the boundary value
problem (3.3) has denumerably many positive radial solutions {(z[k]1 , z

[k]
2 )}∞k=1 such that 10−(4k+2) ≤

∥z[k]j ∥ ≤ 10−4k for each k = 1, 2, 3, · · · , j = 1, 2.

3.2. Existence of Atleast Two Denumerably Many Families of Positive Radial Solutions

In order to use Theorem 3.2, let δk < rk < 1− δk and δk of Theorem 3.1, we define the nonnegative,
increasing, continuous functional γk,βk, and αk by

γ(z) = min
r∈[rk,1−δk]

z(r) = z(rk),

θ(z) = max
r∈[δk,rk]

z(r) = z(rk),

α(z) = max
r∈[δk,1−δk]

z(r) = z(1− δk).
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It is obvious that for each z ∈ P,
γk(z) = θk(z) ≤ αk(z).

In addition, by Lemma 2.3, for each z ∈ P,

γ(z) = z(rk) ≥ δk∥z∥.

Thus
∥z∥ ≤ δ−1

k γ(z), for all z ∈ P.

Finally, we also note that
θ(λz) = λθ(z), 0 ≤ λ ≤ 1 and z ∈ P.

Theorem 3.6. Assume that (H1)–(H2) hold and let {δk}∞k=1 be a sequence with rk+1 < δk < rk, k ∈
N. Let {Rk}∞k=1, {Qk}∞k=1 and {Sk}∞k=1 be three sequences which satisfies the relation

Rk+1 < Qk < δkSk < Sk < Rk, βkϕ(δ
−1
k Sk) < ϕ(Rk), k ∈ N.

Furthermore for each natural number k, we assume that gj(j = 1, 2, · · ·, n) satisfies
(H5) gj(z) > βkNϕ(δ

−1
k Sk), for all Sk ≤ z(r) ≤ δ−1

k Sk,

(H6) gj(z) < Nϕ(Rk), for all 0 ≤ z(r) ≤ δ−1
k Rk,

(H7) gj(z) > βkNϕ(δ
−1
k Qk), for all 0 ≤ z(r) ≤ Qk.

Then the boundary value problem (1.1) has two denumerably many families of radial solutions

{(1z[k]1 , 1z
[k]
2 , · · ·, 1z[k]n )}∞k=1 and {(2z[k]1 , 2z

[k]
2 , · · ·, 2z[k]n )}∞k=1 satisfying

Qk < αk

(
1z

[k]
j

)
with θk

(
1z

[k]
j

)
< Sk, j = 1, 2, · · ·, n, k ∈ N

and
Sk < θk

(
2z

[k]
j

)
with γk

(
2z

[k]
j

)
< Rk, j = 1, 2, · · ·, n, k ∈ N.

Proof . We begin by defining the completely continuous operator ℵ by (2.4). So it is easy to check
that ℵ : P(γ, Sk) → P, for k ∈ N. Firstly, we shall verify that condition (a) of Theorem 3.2 is satisfied.
So, let us choose z1 ∈ ∂P(γ, Sk). Then γ(z1) = minr∈[rk,1−δk] z1(r) = z1(rk) = Sk this implies that
Sk ≤ z1(r) for r ∈ [rk, 1]. Since ∥z1∥ ≤ δ−1

k γ(z1) = δ
−1
k Sk. So we have

Sk ≤ z1(r) ≤ δ−1
k Sk, r ∈ [rk, 1− δk].

Let τn−1 ∈ [rk, 1− δk]. Then by (H5), we have∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn ≥

∫ 1

1−δk
ϕ−1

[
1

tN−1
n

∫ 1−δk

δk

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

≥ δkϕ−1

[
1

tN−1
n

∫ 1−δk

δk

τN−1
n gn

(
z1(τn)

)
dτn

]

≥ δkϕ−1

[
1

(1− δk)N−1

∫ 1−δk

δk

τN−1
n βkNϕ

(
Sk

δk

)
dτn

]

≥ δkϕ−1

[
(1− δk)N − δNk
(1− δk)N−1

βkϕ

(
Sk

δk

)]
≥ Sk.
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In similar manner (for τn−2 ∈∈ [rk, 1− δk],) that∫ 1

τn−2

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
dτn−1

]
dtn−1

≥
∫ 1

1−δk
ϕ−1

[
1

tN−1
n−1

∫ 1−δk

δk

τN−1
n−1gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
dτn−1

]
dtn−1

≥
∫ 1

1−δk
ϕ−1

[
1

tN−1
n−1

∫ 1−δk

δk

τN−1
n−1gn−1

(
Sk
)
dτn−1

]
dtn−1

≥ δkϕ−1

[
1

(1− δk)N−1

∫ 1−δk

δk

τN−1
n−1βkNϕ

(
Sk

δk

)
dτn−1

]

≥ δkϕ−1

[
(1− δk)N − δNk
(1− δk)N−1

βkϕ

(
Sk

δk

)]
≥ Sk.

Continuing with bootstrapping argument, we get

γ(ℵz1) = min
r∈[rk,1−δk]

(ℵz1)(r) = (ℵz1)(rk)

=

∫ 1

rk

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≥
∫ 1

1−δk
ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≥ Sk.

This proves (i) of Theorem 3.2. We next address (ii) of Theorem 3.2. So, we choose z1 ∈ ∂P(θ, Rk).
Then θ(z1) = maxr∈[δk,rk] z1(r) = z1(rk) = Rk this implies that 0 ≤ z1(r) ≤ Rk for r ∈ [0, rk]. Since
∥z1∥ ≤ δ−1

k γ(z1) = δ
−1
k θ(z1) = δ

−1
k Rk. So we have

0 ≤ z1(r) ≤ δ−1
k Rk, r ∈ [0, 1].

Let 0 < τn−1 < 1. Then by (H6), we have∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn ≤

∫ 1

0

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

≤
∫ 1

0

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n Nϕ

(
Rk
)
dτn

]
dtn

≤
∫ 1

0

ϕ−1
(
ϕ
(
Rk
)
tn
)
dtn

≤ Rk.
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It follows in similar manner for 0 < τn−2 < 1, we have∫ 1

τn−2

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
dτn−1

]
dtn−1

≤
∫ 1

0

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1gn−1

(
Sk
)
dτn−1

]
dtn−1

≤
∫ 1

0

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1Nϕ

(
Rk
)
dτn−1

]
dtn−1

≤
∫ 1

0

ϕ−1
(
ϕ
(
Rk
)
tn−1

)
dtn−1

≤ Rk.

Continuing with this bootstrapping argument, we get

θk(ℵz1) = max
r∈[δk,rk]

(ℵz1)(r) = (ℵz1)(rk)

=

∫ 1

rk

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≤
∫ 1

0

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≤ Rk.

Hence condition (c) is satisfied. Finally we verify that (c) of Theorem 3.2 is also satisfied. We
note that z1(r) = Qk/4, r ∈ [0, 1] is a member of P(αk, Qk) and Qk/4 < Qk. So P(αk, Qk) ̸= ∅. Now
let z1 ∈ P(αk, Qk). Then αk(z1) = maxr∈[δk,1−δk] z1(r) = z1(1 − δk) = Qk, i.e., 0 ≤ z1(r) ≤ Qk, for
r ∈ [δk, 1− δk]. Let 0 < τn−1 < 1. Then by (H7), we have∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn ≥

∫ 1

1−δk
ϕ−1

[
1

tN−1
n

∫ 1−δk

δk

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

≥ δkϕ−1

[
1

tN−1
n

∫ 1−δk

δk

τN−1
n gn

(
z1(τn)

)
dτn

]

≥ δkϕ−1

[
1

(1− δk)N−1

∫ 1−δk

δk

τN−1
n βkNϕ

(
Qk

δk

)
dτn

]

≥ δkϕ−1

[
(1− δk)N − δNk
(1− δk)N−1

βkϕ

(
Qk

δk

)]
≥ Qk.



Positive radial solutions for the iterative system of MC-equations 3625

Continuing with this bootstrapping argument, we get

αk(ℵz1) = max
r∈[δk,1−δk]

(ℵz1)(r) = (ℵz1)(1− δk)

=

∫ 1

1−δk
ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≥ Qk.

Thus condition (c) of Theorem 3.2 is satisfied. Since all hypotheses of Theorem 3.2 are satisfied, the
assertion follows. □

Example 3.7. Consider the following iterative system of Dirichlet problems

MC(zj) + gj(zj+1) = 0 in Ω

zj = 0 on ∂Ω,

}
(3.4)

where j = 1, 2, N = 1 and z1 = z3. Let rk, δk be the same as of Example 3.5. In addition if we take

Rk = 10−4k, Qk = 10−(4k+3) and Sk = 10−(4k+2),

then

Rk+1 = 10−(4k+4) < Qk = 10−(4k+3) <
1

5
× 10−(4k+2) < δkSk

< Sk = 10−(4k+2) < Rk = 10−4k,

ϕ(Rk) =
1√

108k − 1
, ϕ(Qk) =

1√
108k+6 − 1

, ϕ(Sk) =
1√

108k+4 − 1
,

ϕ(δ−1
k Rk) =

1√
108k × δ2k − 1

and ϕ(δ−1
k Qk) =

1√
108k+6 × δ2k − 1

.

Since ϕ is increasing and δ−1
k Sk ≤ 5Sk ≤ Rk, it follows that

βkNϕ(δ
−1
k Sk) ≤ Nϕ(Rk), βk = 1− 2δk < 1.

Let N1 and N2 be two positive numbers such that

N1 × 10−8k ≤ N2 × 10−8k ≤ βkNϕ(δ
−1
k Qk) ≤ βkNϕ(δ

−1
k Sk) ≤ N2 × 108k ≤ Nϕ(Rk),
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and

g1(z) = g2(z) =



N2 × 10−6, z ∈ (5× 10−4,+∞),

N2 × 10−(4k+2), z ∈
(
10−(4k+2), 5× 10−4k

]
,

N2×10−(4k+3)−N2×10−(4k+2)

5×10−(4k+3)−10−(4k+2) (z− 10−(4k+2)) + N2 × 10−(4k+2),

z ∈
[
5× 10−(4k+3), 10−(4k+2)

]
,

N2 × 10−(4k+3), z ∈
(
10−(4k+3), 5× 10−(4k+3)

)
,

N1×10−(4k+4)−N2×10−(4k+3)

10−(4k+4)−10−(4k+3) (z− 10−(4k+3)) + N2 × 10−(4k+3),

z ∈
(
10−(4k+4), 10−(4k+3)

]
,

0, z = 0.

Then, g1 and g2 satisfies the following growth conditions:

g1(z) = g2(z) ≥βkNϕ(δ
−1
k Sk), z ∈

[
10−(4k+2), 5× 10−(4k+2)

]
,

g1(z) = g2(z) ≤ Nϕ(Rk), z ∈
[
0, 5× 10−4k

]
,

g1(z) = g2(z) ≥βkNϕ(δ
−1
k Qk), z ∈

[
0, 10−(4k+3)

]
.

All the conditions of Theorem 3.6 are satisfied. Therefore, by Theorem 3.6, the boundary value prob-
lem (3.4) has two denumerably many families of radial solutions {(1z[k]1 , 1z

[k]
2 )}∞k=1 and {(2z[k]1 , 2z

[k]
2 )}∞k=1

satisfying

10−(4k+3) < max
r∈[δk,1−δk]

1z
[k]
j (r) with max

r∈[δk,rk]
1z

[k]
j (r) < 10−(4k+2), j = 1, 2, k ∈ N

and
10−(4k+2) < max

r∈[δk,rk]
2z

[k]
j (r) with min

r∈[rk,1−δk]
2z

[k]
j (r) < 10−4k, j = 1, 2, k ∈ N.

3.3. Existence of Atleast Three Denumerably Many Families of Positive Radial Solutions

In order to use Theorem 3.3, let δk < rk < 1− δk and δk of Theorem 3.1, we define the nonnegative,
increasing, continuous functional γk,βk, and αk by

γ(z) = max
r∈[δk,rk]

z(r) = z(rk),

β(z) = min
r∈[rk,1−δk]

z(r) = z(rk),

α(z) = max
r∈[δk,1−δk]

z(r) = z(1− δk).
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It is obvious that for each z ∈ P,
γk(z) ≤ βk(z) ≤ αk(z).

In addition, by Lemma 2.3, for each z ∈ P,

γ(z) = z(rk) ≥ δk∥z∥.

Thus
∥z∥ ≤ δ−1

k γ(z), for all z ∈ P.

Theorem 3.8. Assume that (H1)–(H2) hold and let {δk}∞k=1 be a sequence with rk+1 < δk < rk, k ∈
N. Let {Rk}∞k=1, {Qk}∞k=1 and {Sk}∞k=1 be three sequences which satisfies the relation

Rk+1 < Qk < δkSk < Sk < Rk, βkϕ(δ
−1
k Sk) < ϕ(Rk), k ∈ N.

Furthermore for each natural number k, we assume that gj(j = 1, 2, · · ·, n) satisfies

(H8) gj(z) < Nϕ(Rk), for all 0 ≤ z(r) ≤ δ−1
k Rk,

(H9) gj(z) > βkNϕ(δ
−1
k Sk), for all Sk ≤ z(r) ≤ δ−1

k Sk,

(H10) gj(z) < Nϕ(Qk), for all 0 ≤ z(r) ≤ δ−1
k Qk.

Then the boundary value problem (1.1) has three denumerably many families of radial solutions

{(1z[k]1 , 1z
[k]
2 , · · ·, 1z[k]n )}∞k=1, {(2z

[k]
1 , 2z

[k]
2 , · · ·, 2z[k]n )}∞k=1 and {(3z[k]1 , 3z

[k]
2 , · · ·, 3z[k]n )}∞k=1 satisfying

0 ≤ αk

(
1z

[k]
j

)
< Qk < αk

(
2z

[k]
j

)
, j = 1, 2, · · ·, n, k ∈ N,

βk

(
2z

[k]
j

)
< Sk < βk

(
3z

[k]
j

)
, j = 1, 2, · · ·, n, k ∈ N,

and
γk

(
3z

[k]
j

)
< Rk, j = 1, 2, · · ·, n, k ∈ N.

Proof . We define the completely continuous operator ℵ by (2.4). So it is easy to check that
ℵ : P(γ, Rk) → P, for k ∈ N. In order to prove that all the conditions of Theorem 3.3 are satisfied, we
choose z1 ∈ ∂P(γ, Rk). Then γ(z1) = maxr∈[δk,rk] z1(r) = z1(rk) = Rk this implies that 0 ≤ z1(r) ≤ Rk
for r ∈ [0, rk]. Since ∥z1∥ ≤ δ−1

k γ(z1) = δ
−1
k Rk. So we have

0 ≤ z1(r) ≤ δ−1
k Rk, r ∈ [0, 1].

Let 0 < τn−1 < 1. Then by Lemma 2.1 and (H8), we have∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn ≤

∫ 1

0

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

≤
∫ 1

0

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n Nϕ

(
Rk
)
dτn

]
dtn

≤
∫ 1

0

ϕ−1
(
ϕ
(
Rk
)
tn
)
dtn

≤ Rk.
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It follows in similar manner for 0 < τn−2 < 1, we have∫ 1

τn−2

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
dτn−1

]
dtn−1

≤
∫ 1

0

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1gn−1

(
Rk
)
dτn−1

]
dtn−1

≤
∫ 1

0

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1Nϕ

(
Rk
)
dτn−1

]
dtn−1

≤
∫ 1

0

ϕ−1
(
ϕ
(
Rk
)
tn−1

)
dtn−1

≤ Rk.

Continuing with this bootstrapping argument, we get

γk(ℵz1) = max
r∈[δk,rk]

(ℵz1)(r) = (ℵz1)(rk)

=

∫ 1

rk

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≤
∫ 1

0

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≤ Rk.

Hence condition (a) is satisfied. Secondly, we show that (b) of Theorem 3.3 is fulled. For this we select
z1 ∈ ∂P(β, Sk). Then β(z1) = minr∈[rk,1−δk] z1(r) = z1(rk) = Sk, i.e. z1(r) ≥ Sk, for r ∈ [rk, 1 − δk].
So we have ∥z1∥ ≥ Sk, for r ∈ [rk, 1− δk]. Noticing that ∥z1∥ ≤ δ−1

k γk(z1) ≤ δ−1
k βk(z1) = δ

−1
k Sk. we

have
Sk ≤ z1(r) ≤ δ−1

k Sk, for r ∈ [rk, 1− δk].
Let 0 < τn−1 < 1. The by (H9), we have∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn ≥

∫ 1

1−δk
ϕ−1

[
1

tN−1
n

∫ 1−δk

δk

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

≥ δkϕ−1

[
1

tN−1
n

∫ 1−δk

δk

τN−1
n gn

(
z1(τn)

)
dτn

]

≥ δ1ϕ−1

[
1

(1− δk)N−1

∫ 1−δk

δk

τN−1
n βkNϕ

(
Sk

δ1

)
dτn

]

≥ δ1ϕ−1

[
(1− δk)N − δNk
(1− δk)N−1

βkϕ

(
Sk

δ1

)]
≥ Sk.
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In similar manner (for τn−2 ∈ [δk, 1− δk],) that∫ 1

τn−2

ϕ−1

[
1

tN−1
n−1

∫ tn−1

0

τN−1
n−1gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
dτn−1

]
dtn−1

≥
∫ 1

1−δk
ϕ−1

[
1

tN−1
n−1

∫ 1−δk

δk

τN−1
n−1gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
dτn−1

]
dtn−1

≥
∫ 1

1−δk
ϕ−1

[
1

tN−1
n−1

∫ 1−δk

δk

τN−1
n−1gn−1

(
Sk
)
dτn−1

]
dtn−1

≥ δkϕ−1

[
1

(1− δk)N−1

∫ 1−δk

δk

τN−1
n−1βkNϕ

(
Sk

δ1

)
dτn−1

]

≥ δ1ϕ−1

[
(1− δk)N − δNk
(1− δk)N−1

βkϕ

(
Sk

δ1

)]
≥ Sk.

Continuing with this bootstrapping argument, we get

βk(ℵz1) = min
r∈[rk,1−δk]

(ℵz1)(r) = (ℵz1)(rk)

=

∫ 1

rk

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≥
∫ 1

1−δk
ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≥ Sk.

Hence condition (b) is satisfied. Finally we verify that (c) of Theorem 3.3 is also satisfied. Since 0 ∈ P

and Qk > 0, it follows that P(αk, Qk) ̸= ∅. Now let z1 ∈ P(αk, Qk). Then αk(z1) = maxr∈[δk,1−δk] z1(r) =
z1(1−δk) = Qk, i.e., 0 ≤ z1(r) ≤ Qk, for r ∈ [δk, 1−δk]. Also, ∥z1∥ ≤ δ−1

k γk(z1) ≤ δ−1
k αk(z1) = δ

−1
k Qk.

Then we get
0 ≤ z1(r) ≤ δ−1

k Qk, for r ∈ [0, 1].

Let 0 < τn−1 < 1. Then by (H10), we have∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn ≤

∫ 1

0

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

≤
∫ 1

0

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n Nϕ

(
Qk
)
dτn

]
dtn

≤
∫ 1

0

ϕ−1
(
ϕ
(
Qk
)
tn
)
dtn

≤ Qk.
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Continuing with this bootstrapping argument, we get

αk(ℵz1) = max
r∈[δk,1−δk]

(ℵz1)(r)

= (ℵz1)(1− δk)

=

∫ 1

1−δk
ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≤
∫ 1

0

ϕ−1

[
1

tN−1
1

∫ t1

0

τN−1
1 g1

(∫ 1

τ1

ϕ−1

[
1

tN−1
2

∫ t2

0

τN−1
2 g2

(∫ 1

τ2

ϕ−1

[
· ··

gn−1

(∫ 1

τn−1

ϕ−1

[
1

tN−1
n

∫ tn

0

τN−1
n gn

(
z1(τn)

)
dτn

]
dtn

)
· · · dτ1

]
dt1

≤ Qk.

Thus condition (c) of Theorem 3.3 is satisfied. Since all hypotheses of Theorem 3.3 are satisfied, the
assertion follows. □

Example 3.9. Consider the following iterative system of Dirichlet problems

MC(zj) + gj(zj+1) = 0 in Ω

zj = 0 on ∂Ω,

}
(3.5)

where j = 1, 2, N = 1 and z1 = z3. Let Let rk, δk be the same as of Example 3.5. In addition if we
take

Rk = 10−4k, Qk = 10−(4k+3) and Sk = 10−(4k+2),

then

Rk+1 = 10−(4k+4) < Qk = 10−(4k+3) <
1

5
× 10−(4k+2) < δkSk

< Sk = 10−(4k+2) < Rk = 10−4k,

ϕ(Rk) =
1√

108k − 1
, ϕ(Qk) =

1√
108k+6 − 1

, ϕ(Sk) =
1√

108k+4 − 1
,

ϕ(δ−1
k Rk) =

1√
108k × δ2k − 1

, ϕ(δ−1
k Qk) =

1√
108k+6 × δ2k − 1

and ϕ(δ−1
k Sk) =

1√
108k+4 × δ2k − 1

.

Since ϕ is increasing and δ−1
k Sk ≤ 5Sk ≤ Rk, it follows that

βkNϕ(δ
−1
k Sk) ≤ Nϕ(Rk), βk = 1− 2δk < 1.

Let N2 be a positive number such that

N2 × 10−8k ≤ βkNϕ(δ
−1
k Sk) ≤ N2 × 108k ≤ Nϕ(Qk) ≤ Nϕ(Rk),
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and

g1(z) = g2(z) =



N2 × 10−6, z ∈ (5× 10−4,+∞),

N2 × 10−(4k+2), z ∈
(
10−(4k+2), 5× 10−4k

]
,

N2×10−(4k+3)−N2×10−(4k+2)

5×10−(4k+3)−10−(4k+2) (z− 10−(4k+2)) + N2 × 10−(4k+2),

z ∈
[
5× 10−(4k+3), 10−(4k+2)

]
,

N2 × 10−(4k+3), z ∈
(
10−(4k+3), 5× 10−(4k+3)

)
,

0, z = 0.

Then, g1 and g2 satisfies the following growth conditions:

g1(z) = g2(z) ≤ Nϕ(Rk), z ∈
[
0, 5× 10−4k

]
,

g1(z) = g2(z) ≥βkNϕ(δ
−1
k Sk), z ∈

[
10−(4k+2), 5× 10−(4k+2)

]
,

g1(z) = g2(z) ≤ Nϕ(Qk), z ∈
[
0, 5× 10−(4k+3)

]
.

All the conditions of Theorem 3.8 are satisfied. Therefore, by Theorem 3.8, the boundary value prob-
lem (3.5) has three denumerably many families of radial solutions {(1z[k]1 , 1z

[k]
2 )}∞k=1, {(2z

[k]
1 , 2z

[k]
2 )}∞k=1

and {(3z[k]1 , 3z
[k]
2 )}∞k=1 satisfying

0 ≤ max
r∈[δk,1−δk]

1z
[k]
j < 10−(4k+3) < max

r∈[δk,1−δk]
2z

[k]
j , j = 1, 2, k ∈ N,

min
r∈[rk,1−δk]

2z
[k]
j < 10−(4k+2) < min

r∈[rk,1−δk]
3z

[k]
j , j = 1, 2, k ∈ N,

and
max

r∈[δk,rk]
3z

[k]
j < 10−4k, j = 1, 2, k ∈ N.
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