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Abstract

Cointegration analysis is one of the most active areas in the econometrics and time series where
different methods are introduced for identifying and estimating cointegration vectors in fractionally
integrated time series. In this paper, we estimate the fractional cointegration vector by fully mod-
ified narrow band least squares method (FMNBLS) and a proposed method, depending on a linear
regression model and wavelet theory, and assuming the errors of the model following ARFIMA
model, also estimate the fractional parameter (long memory parameter) for each variable depending
on the Wavelet Whittle method. These methods were applied on simulated multivariate data for
functional magnetic resonance imaging (fMRI) using the R program and programming the proposed
method by MATLAB program.

Keywords: fractional integration, fractional cointegration vector, VARFIMA, wavelet
transformation, linear regression model, fMRI Data.

1. Introduction

Tim series with long memory can be observed in many areas of application which has attracted
lots of interest in statistics and many applications.

Practically the multiple time series can be said to be cointegrated (one or more linear combination)
if there a linear combination between variables. For multivariate time series which have fractional
integration (d) where d is the parameter of long memory, then get fractional cointegration that
become an important and relevant topic in empirical analysis.
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In 2003 Willa W. Chen and Clifford M. Hurvich introduced semiparametric estimation of mul-
tivariate fractional cointegration process of cointegration rank (r > 0). They estimate the cointe-
gration relationship by the eigenvectors corresponding to the r smallest eigenvalue of an averaged
periodogram matrix of tapered, differenced observations.

In 2009 Bent Jesper Christensen and Morten Ørregaard Nielsen consider semiparametric fre-
quency domain analysis of cointegration between long memory processes, i.e. fractional cointegra-
tion, allowing derivation of useful long-run relations even among stationary processes. They form a
narrow-band frequency domain least squares (FDLS) estimator of the cointegrating relation.

The aim of our research is to study the estimate cointegration vector in fractionally integrated
time series. We proposed new method to estimate cointegration vector and compare with method
Fully Modified Narrow Band Least Squares method (FMNBLS), based on criteria Mse.

2. Fractional integration (long memory)

Sowell and Mellon write a general differencing operator as (1− L)d, for d =
[
−1

2
, 1
2

]
the fractional

differencing operator (1− L)d is defined by its Maclaurin series (binomial theorem) to be

(1− L)d =
∞∑
j=0

(
d

j

)
(−1)j Lj (2.1)

where
(

d
j

)
(−1)j = Γ(d+1)(−1)j

Γ(d−j+1)Γ(j+1)
= Γ(−d+1)

Γ(−d)Γ(j+1)

Because 1
Γ(a)

is bounded and has roots at the nonpositive integers the sum defining (1− L)d has

finite number of nonzero terms for d =
[
−1

2
, 1
2

]
and d ̸= 0. [15]

3. Multivariate long memory test

Philipp Sibbertsen and others, 2018, suggested a consistent multivariate test for the null hypoth-
esis of true long memory against the alternative of spurious long memory. [18]

H0 : f (λj) ∼ Λj (d)GΛ
∗
j (d) (True long memory) vs.

H1 : f (λj) ≁ Λj (d)GΛ
∗
j (d) (Spurious long memory)

The test statistic is based on the weighted sum of the partial derivatives of the multivariate local
Whittle likelihood function which is given by:

MLWS =
1

2
sup
r∈[ε,1]

∥∥∥∥∥∥ 2√∑m
j=1 v

2
j

q∑
a=1

ηa

[mr]∑
j=1

vj

(
aG−1

(
d̂
)
Re

[
Λj

(
d̂
)−1

I (λj) Λ
∗
j

(
d̂
)−1

]
a

− 1

)
+

1√∑m
j=1 v

2
j

q∑
a=1

ηa

(
aG−1

(
d̂
)) [mr]∑

j=1

λj − π

2
Im

[
Λj

(
d̂
)−1

I (λj) Λ
∗
j

(
d̂
)−1

]
a

∥∥∥∥∥∥
(3.1)
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4. Fractional cointegration

The concept of fractional cointegration is attracting increasing attention from both theoretical
and empirical researchers in economics and finance.

Using the definition for fractional cointegration integration (FCI) introduced by Robinson and
Marinucci (1987) (FCI) for (k × 1) vector zt , t = 1, . . . , n whose ith element zt ≡ I (di) , di > 0, i =
1, . . . , k and zt ≡ FCI (d1, . . . , dk, de) if there exists a (k × 1) vector α ̸= 0 (usually unknown) such
that α

′
zt = et ≡ I (de) where 0 ≤ de ≤ min1≤i≤k di.

Robinson and Marinucci (2001) partition zt as zt =
(
x

′
t, yt

)′
where yt is a scalar and xt =

(x1,t, . . . , xk−1,t)
′
then it can say that zt fractionally cointegrated of order (d1, . . . , dk−1, dy; de) and

written zt ∈ FCI (d1, . . . , dk; de) if xi,t is I (di) , i = 1, . . . , k− 1, and yt is I (dy) and if there exists a
certain linear combination of zt (k − 1)×1 vector α such that et = yt−α

′
xt is I (de) with de < min (di)

or de < dy and this definition entails di = dy > de for at least one i. [9]

5. Fractional cointegration test

Morten Ørregaard Nielsen proposed a nonparametric variance ratio testing approach for testing
fractional cointegration without prior knowledge of the integration order of the data, the strength of
the cointegrating relations, or the cointegration vector. [11]

The vector time series (Zt) with components are integrated of different orders, then (Zt ∈ I (d))
where (d) is the highest order of integration of the components of (Zt), then the time series may have
cointegration. The test statistic does not depend on the integration order of the observed variables,
(d) which is given as: [11]

Λn,r (d1) = T 2d1

n−r∑
j=1

λj , r = 0, 1, . . . , n− 1 (5.1)

where λj are eigenvalues.
The large values of Λn,r0 (d1) are associated with rejection of hypothesis:

H0 : r = r0 (no fractional cointegration ) vs.

H1 : r > r0 (fractional cointegration )

When Λn,r0 (d1) > CVζ,n−r0 (d, d1) the test rejects the null hypothesis H0 and has asymptotic size ζ
and it is consistent against H1, where CVζ,n−r0 (d, d1) critical value is calculated from:

P (Un−r0 (d, d1) > CVζ,n−r0 (d, d1)) = ζ (5.2)

6. ARFIMA model

The best model for representing data having long memory properties is ARFIMA model (Auto
Regressive Fractionally Integrated Moving Average) so it can be modeling a multivariate time series
zt having fractional integration by VARFIMA (Vector of Auto Regressive Fractionally Integrated
Moving Average).
In 1980, Granger and Joyeux introduced ARFIMA model which is written as: [8]

ϕ (L) (1− L)dYt = θ (L) et

{
|d| < 1

2

eti.i.d ∼ N(0, σ2
e)

(6.1)
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where L : Backshift operator.
ϕ (L) : Auto regressive polynomial of order (p).
θ (L) : Moving average polynomial of order (q).
et : White noise.

The multivariate generalization VARFIMA model would be zt (a k × 1) vector time series such that:

φ (L)D (L)V zt = ϑ (L) εt (6.2)

where φ (L) = (φ0 − φ1L− φ2L
2 − . . .− φpL

p) and ϑ (L) = (ϑ0 + ϑ1L+ ϑ2L
2 + . . .+ ϑqL

q).
φ (L) and θ (L) are k× k matrix polynomials in the lag operator L. It will be assumed that D (L) =

diag
[
(1− L)d1 , (1− L)d2 , . . . , (1− L)dk

]
, φ (L) is of order p, θ (L) is of order q, φ (0) = θ (0) = Ik,

the roots of |φ (a)| and |θ (a)| are outside the unit circle and εt ∼ IIDNk (0,Σ). [3, 7, 13].
The constant k × k matrix V is nonsingular. The simple form of the differencing matrix D (L)
means that the characteristics of the fractional zt vector series stated below can be obtained by the
univariate proofs applied by element, in particular: [5], [6]

1) zt is stationary if di <
1
2
for i = 1, 2, . . . , k.

2) zt possess an invertible moving average representation if di > −1
2
.

3) If the spectral density of zt is denoted fz (λ) then as λ → 0, fz (λ) ∼
[
κijλ

−(di+dj)
]
where each

κij is constant and is independent of di and dj.

4) If the autocovariances of zt are denoted γz (s) = E
[
xtx

′
t−s

]
then as s→ ∞, γz (s) ∼

[
hijs

di+dj−1
]

where each hij is constant and is depend on di and dj.

7. Wavelet theory

Wavelet analysis is a new development in the area of applied mathematics. The use of wavelets
as a tool for time series analysis and signal processing has increased in recent years due to their
potential for solving a number of practical problems; Daubechies (1992) provides an extensive look
at the mathematical properties of wavelets. Chui (1992), and Strang and Nguyen (1996) are good
introductions to wavelets.

The text by Gen , Cay et al. (2002) gives a good discussion on how wavelets can be applied in
economics and finance. Ramsey (1999, 2002) and Schleicher (2002) also give some additional insights
on how wavelet analysis can be adopted in economics and finance.

Wavelets are mathematical functions that cut up data into different frequency components, and
then study each component with a resolution matched to its scale.

From many papers the wavelet can be defined as (They are small waves with a value (amplitude)
starting from zero and a specific time period with zero mean).

The wavelet transform is defined by many authors as a mathematical technique in which a par-
ticular signal is analysed in both the time domain and frequency domain by applying dilations and
translations (or shifted) of the mother function (detailed or wavelet function) ψ (.) and father function
(Approximation or scaling function) φ (.).
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For a given resolution j ≥ 0 and p∈ Z, the dilated and translated mother and father functions
(function for the next stage of transformation) can be defined as: [1]

ψa,b (t) =
1√
a
ψ

(
t− b

a

)
(7.1)

φa,b (t) =
1√
a
φ

(
t− b

a

)
(7.2)

where a ∈ R+ : scaling parameter and b ∈ R : Translation parameter.
The wavelet coefficients can be got by multi resolution analysis process (MRA) then these coef-

ficients arranged as linear combination to represent the original signal as:

fw (t) =
2j−1∑
i=0

aiφ (t− i) +
2j−1∑
i=0

J−1∑
j=0

djiψ
(
2jt− i

)
(7.3)

where ai : Approximate coefficient and dj,i : Detail coefficients
The wavelet transformation for data can be processed by multiplying the data by wavelet trans-

formation matrix (W). There are different types of wavelet function such as Daubechies order 1
(Haar) which is the simplest one, Daubechies order 4, 8, Symmlet order 3, 7, Coiflet order 1, 5 etc.
where the basic function used in the wavelet transformation must fit as closely as possible to the
signal to be transformed.

8. Wavelet Whittle estimation of (d)

[2] introduced a semiparametric estimation of multivariate long-range dependent processes based
on wavelet theory and Whittle estimation which estimate the vector of fractional parameter (d).

The wavelet Whittle likelihood function is defined as:

L (G (d) , d) =
1

n

j1∑
j=j0

[
nj log det (Λj (d)G (d) Λj (d)) +

nj∑
k=0

W T
j,k (Λj (d)G (d) Λj (d))

−1Wj,k

]
(8.1)

where j1 ≥ j0 ≥ 1 The maximal and minimal resolution level.
Wj,k : Wavelet coefficients.
Λj (d) = diag

(
2jd

)
G (d) : Matrix of (l,m)th element is Gl,m (d) = Ωl,mK (dl + dm) cos

(
π (dl+dm)

2

)
Then they estimate vector of fractional integration (d) as:

d̂ = argmindR (d) (8.2)

whereR (d) = log det
(

1
n

∑j1
j=j0

(
Λj (d)

−1 (∑nj

k=0Wj,kW
T
j,k

)
Λj (d)

−1))+2 log2

(
1
n

∑j1
j=j0

jnj

)
(
∑p

l=1 dl).

9. Estimating fractional cointegration vector

[12] introduced a fully modified narrow-band least squares (FMNBLS) estimation of the fractional
cointegrating vector as given:

β̂m (γ) = F̂−1
xx (γ, 1,m) F̂xy (γ, 1, m) (9.1)

where F̂qr (γ, k, l) =
2π
T

∑l
j=k Re

[
1

2πT

∑T
t=1

∑T
s=1 (∆

γqt) (∆
γrs)

′
e−i(t−s)λj

]
, 0 ≤ k ≤ l ≤ T − 1.

∆γqt , ∆
γrs cross-periodogram matrix between the observed vectors.

λj =
2πj
T

, 1
m
+ m

T
→ 0 as T → ∞.
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10. Proposed method for estimating fractional cointegration vector

After estimating the fractional parameter for each variable (di), and according to [9] partition zt
as mentioned in (section 3), it can be written the multivariate variable as linear regression model by
taking (Y) is the variable has the smallest fractional parameter and X is a matrix for the remaining
variables of order (k-1Ö1) as:

Y = Xβ + u (10.1)

where β is the regression coefficient estimation (parameters vector) of the model that needed to
estimate which is represent the fractional cointegration vector of the multivariate time series and u
is the residual vector.

The process of written the variable as linear regression model caused auto correlation between
errors u which mean they have short or long memory. Therefore, this situation must be taken into
account in the estimation process, because if they are ignored, they will lead to inaccurate results.

The autocorrelation of errors will be eliminated by using the wavelet transform on the variables to
convert the linear regression model to wavelet domain and applying the maximum likelihood function
on the new model.

By assuming the multivariate data zt following VARFIMA model and by applying partition to
zt where Y is a univariate ARFIMA then directly the errors u of the linear regression model in the
equation (9.1) take the form of a stable process with long-memory property and follow the ARFIMA
model and have a spectral density function, written as:

f (λ) =
∣∣1− eiλ

∣∣−2d
f0 (λ) (10.2)

where f0 (λ) piecewise positive symmetric continues function, λ ∈ (−π, π] and
(
0 < d < 1

2

)
.

Rewrite model in equation (9.1) in wavelet domain as:

YW = XWβ + uW (10.3)

where Yw = W.Y, Xw = W.X and uw = W.u (uw ∼ N (0,Σuw) , Σuw = σ2Σw).
According to Fadili and Bullmore (2002), the variance and covariance matrix is diagonal and its

elements represent the variances of the scaling and approximation coefficients as: [4]

Σuw =



Saj

Sdj

. . . Sd2

. . .

Sd2

 Sd1

. . .

Sd1




(10.4)

where SaJ Scaling coefficient variance given by:

SaJ =
2j

2π

∫ ∞

−∞

σ2Cγ

wγ

∣∣φ(2jw)∣∣2 dw (10.5)



Wavelet estimation of fractional cointegration vector for multivariate time series 3689

and Sdj Wavelet coefficients variance given by:

Sdj =
2j

2π

∫ ∞

−∞

σ2Cγ

wγ

∣∣ψ(2jw)∣∣2 dw (10.6)

φ : Fourier transformation for scaling function.
ψ : Fourier transformation for wavelet function.
Cγ : Constant in term of (γ).
Equations (10.5) and (10.6) can be simplified when the wavelet function converges to an ideal

band-pass filter and the scaling function converges to an ideal low-pass filter given by:

SaJ ≈ 2J+1

(2π)γ

∫ 2−(J+1)

0

σ2Cγ

fγ
df (10.7)

Sdj ≈
2j+1

(2π)γ

∫ 2−j

2−(j+1)

σ2Cγ

fγ
df , j ∈ {1, . . . , J} (10.8)

By integration got:

SaJ ≈ σ2Cγ (2
j+1)

γ

(2π)γ [1− γ]
= σ2SaJ (γ) (10.9)

Sdj ≈
σ2Cγ (2

j)
γ

(2π)γ [1− γ]
[2− 2γ] = σ2Sdj(γ) (10.10)

It is noted from the previous equations that they depends on the correlation parameter (γ) that
defines on the domain (−1 < γ < 1) that must be estimated for the purpose of writing the variance-
covariance matrix in eq. (16), but there is a mechanism depending on the field for (γ) that can Write
(γ = 2d) where (d) is a parameter of fractional differences, then got:

SaJ ≈ σ2Cd

[1− 2d]
π−2d22jd (10.11)

Sdj ≈
σ2Cd

[1− 2d]
π−2d22jd

[
21−2d − 1

]
, j = 1, 2, . . . , J (10.12)

where Cd : Constant in term of (d).
The maximum likelihood function for model in eq. (10.3) given by:

L (θ) =

∣∣Σ−1
uw

∣∣
(2π)

n
2

e−
1
2
(Yw−Xwβ)

′
Σ−1

uw (Yw−Xwβ) (10.13)

where Σ−1
uw

variance covariance inverse matrix in wavelet domain and (θt = βt, d, σ2).

From formula (10.13) (Yw −Xwβ)
′
Σ−1

uw
(Yw −Xwβ) can be simplified by performing some alge-

braic operations, so got:

(Yw −Xwβ)
′
Σ−1

uw
(Yw −Xwβ) =

(
Yw −Xwβ̂

)′

Σ−1
uw

(
Yw −Xwβ̂

)
+
(
β − β̂

)′

X
′

wΣ
−1
uw
Xw

(
β − β̂

)
(10.14)
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By taking the logarithm for formula (10.13) got:

logL (θ) =− 1

2

[
n log

(
2πσ2

)
+ log (SaJ ) +

∑
j

n (j) log
(
Sdj

)]
−

1

2σ2


(
YJ,0 −

∑P
s=1X

s
J,0βs

)2

SaJ

+
∑
j,l

(
Yj,l −

∑P
s=1X

s
j,0βs

)2

Sdj

 (10.15)

where n (j) = n
2j
.

Then the estimation of coefficients vector β given as:

β̂ =
(
X

′

wΣ̂
−1
uw
Xw

)−1

X
′

wΣ̂
−1
uw
Yw (10.16)

and variance-covariance matrix for β̂ given as:

v − cov (b) =
(
X

′

wΣ
−1
uw
X

w

)−1

= σ2
u

(
X

′

wΣ
−1
w Xw

)−1

(10.17)

and the estimation of (σ2) given by:

σ̂2
ML =

1

n

[
a2J,0
SaJ

+
∑
j,l

d2j,l
Sdj

]
(10.18)

In this paper, researcher has derived and simplified the equation (16) for Σuw as given:

Σuw = σ2



Saj(γ)
Sdj(γ)

. . . Sd2(γ)
. . .

Sd2(γ)

 Sd1(γ)
. . .

Sd1(γ)




(10.19)

which can be written as:
Σuw = σ2Σw (10.20)

The main diameter elements can be written in terms of the parameter (d) (long memory parameter)
as given:

SaJ (γ) =
Cd

[1− 2d]
π−2d22Jd = SaJ (d) (10.21)

Sdj (γ) =
Cd

[1− 2d]
π−2d22jd

[
21−2d − 1

]
= Sdj (d) (10.22)
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where Cd

[1−2d]
π−2d2−2d22dj

(
2− 22d

)
= Cd

[1−2d]
π−2d22dj

(
21−2d − 1

)
. then

|Σuw | = σ2

SaJ (d)

n

2j∏
j=1

Sdj (d)

 (10.23)

Σuw =



1
Saj(d)

1
Sdj(d)

. . . 
1

Sd2(d)

. . .
1

Sd2(d)




1
Sd1(d)

. . .
1

Sd1(d)




(10.24)

From equation (10.23) the likelihood function can be written as:

L (θ) = (2π)−
n
2
(
σ2
)−n

2 |Σw|−
1
2 e

[
− 1

2σ2 (Yw−Xwβ)
′
Σ−1

w (Yw−Xwβ)
]

(10.25)

by taking the logarithm got:

logL (θ) = −n
2
log 2π − n

2
log σ2 − 1

2

[
logSaJ (d) +

∑
j

( n
2j

)
logSdj (d)

]
−

1

2σ2

[
(Yw −Xwβ)

′
Σ−1

w (Yw −Xwβ)
]

(10.26)

where (Yw −Xwβ)
′
Σ−1

w (Y −Xwβ) =
[
yw

′
Σ−1

w yw − Y Σ−1
w Xwβ − β

′
Xw

′
Σ−1

w Yw + β
′
Xw

′
Σ−1

w Xwβ
]
=[

yw
′
Σ−1

w yw − 2β
′
Xw

′
Σ−1

w yw + β
′
Xw

′
Σ−1

w Xwβ
]
.

By derived equation (10.25) according to (β):

∂ logL (θ)

∂β ′ = − 1

2σ2

[
0− 2Xw

′
Σ−1

w Yw + 2Xw
′
Σ−1

w Xwβ
]

(10.27)

and let ∂ logL(θ)

∂β′ = 0, then

β̂ =
(
Xw

′
Σ−1

w Xw

)−1

Xw
′
Σ−1

w yw (10.28)

For estimating (σ2) derived equation (10.25) according to (σ2):

∂ logL (θ)

∂σ2
= −0− 1

2σ2
− 0 +

1

2σ4


(
YJ,0 −

∑P
s=1X

s
J,0βs

)2

SaJ

+
∑
j,l

(
Yj,l −

∑P
s=1X

s
j,0βs

)2

Sdj

 (10.29)
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where
(
YJ,0 −

∑P
s=1X

s
J,0βs

)2

= a2J,0 and
(
Yj,l −

∑P
s=1X

s
j,0βs

)2

= d2j,l.

and let

∂ logL

∂σ2
= 0 ⇒ − n

2σ̂2
+

[
a2J,0
SaJ

+
∑

j

d2j,l
Sdj

]
2σ̂4

= 0

σ̂2 =
1

n

[
a2J,0
SaJ

+
∑
j,l

d2j,l
Sdj

] (10.30)

11. Simulation

The fMRI is one of the most advanced neuroimaging techniques which uses the standard magnetic
resonance imaging (MRI) to examine the brain functions. It measures the changes in the blood oxygen
level-dependent (BOLD) signal which is related to the neuronal activity[16].
R program and MATLAB program will be used for programming the method. With R program a
time series for each region of interest in the brain will be simulated as a real fMRI. A data frame
with 1200 observations on the following 89 variables will be simulated [19].
The fractional parameter will be estimated for some simulated variables of fMRI using multivariate
wavelet Whittle estimation for the long-memory parameter vector (d), by arranged the d’s values,
the variable of smallest (d) represent the Y vector and the other variables represent the X matrix
of linear regression model. The parameter of model will be estimated by (OLS), then calculate the
residual of model (u), and then estimate (du) for residual by the same method above.
The fractional cointegration vector will be estimated by Fully Modified Narrow Band Least Squares
method (FMNBLS). Exporting data to excel file to use in MATLAB and determine the size of data
to (1024) because the size of data in wavelet transformation using multi resolution analysis process
must be N = 2j where j is the maximum number of transformation stage (levels) then wavelet
transformation will be applied on Y and X using simplest type Haar wavelet (db1).
A comparison between the two methods of estimating fractional cointegration vector will be made
using. The flowchart below summaries the proposed method.
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The fMRI simulated data, the six variables that chosen is given below:

The result of testing long memory and fractional cointegration shown in Table (1):

The result of ordered estimating fractional parameter (di) for variables and the fractional parameter
for residual (du) with multivariate wavelet Whittle estimation method shown in table (2) where used
Daubechies wavelet db(1) or Haar wavelet:

From table (2) after ordering (di), chosen variable (2) as (Y) because it has the smallest (d) and
remaining variable represent (X), also the value of estimated (du) is always small than (di).
The estimation of fractional cointegration vector is shown in table (3):

From table (4) notice that the MSe for proposed method is smaller than the MSe for FMNBL which
mean the proposed method is better for estimate the fractional cointegration vector.
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12. Conclusion

1. From multivariate long memory test, Accept H0 it is means true long memory.

2. From fractional cointegration test, reject H0 it is means there is a cointegration between vari-
ables.

3. Estimating fractional parameter (di) by Daubechies wavelet db(1) and chosen variable (2) as
(Y) because it has the smallest (d) and remaining variable represent (X).

4. The value of estimated (du) is always small than (di).

5. Estimation of fractional cointegration vector using (FMNBLS) method and the proposed method.

6. The Mse for proposed method is smaller than the MSe for FMNBL which mean the proposed
method is better.
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