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Abstract

Cloud computing (CC) has facilitated the use, access, and storage of resources via sharing them
with customers of different organizations. To shorten the completion time and execution time, we
introduced the fuzzy k-means (FKM) clustering method, which is based on the new fuzzy entropy.
This method was combined with Greedy_SMPIA, Max-Min SMPIA, Min-Min_ SMPIA, GA_SMPIA
and PSO_SMPIA to make virtual machines (VMs) smarter. The FKM clustering method was im-
plemented for both Non-SMPIA and SMPIA. The simulation results in MATLAB showed that the
improvement of completion time of tasks with GA_SMPIA was up to 88.43% more than other studied
methods. Execution time was improved also further improved to 55.37% compared to the other meth-
ods studied. The fuzzy smart MPI approach (FSMPIA) performs better than Non-FSMPIA. Also,
a comparison of both methods shows that the FSMPIA performance is 32.49% and 11.26% higher
than that of the SMPIA in terms of competition time and resource utilization (RU), respectively.

Keywords: Cloud computing, completion time, execution time, resource utilization, SMPIA, fuzzy
k-mean

1. Introduction

Task scheduling and resource allocation (TSRA) are key axes in cloud management [1I, 2]. Cloud
computing (CC) provides the users with computing resources such as software and hardware as a
network service. Given the scale of modern data centers (DCs) and their dynamic resources, efficient
scheduling techniques are needed to manage these resources [Il, 2] 3, [4]. The smart message passing
interface approach (SMPIA) can be used as a new idea and scheduling technique in cloud computing
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that has not yet been proposed in the research literature [II, 2]. Using SMPI in the cloud computing
structure, the task scheduling process can be performed efficiently. MPI is a key component of high-
performance computing (HPC) applications and is essential for improving the performance of HPC
applications in the cloud [I], 2 [5, [6]. The performance of communication networks is a challenge and
MPI communication methods with low latency are required for it [II, 2, [7]. Based on the findings [8],
there are several future guidelines for consideration, which in case of lack of sufficient resources to fully
review a request, it is not possible to do make. Also, they inteded to add performance evaluation of
loads based on geographical distance to the data center. In addition, they scheduled different virtual
networks (VNs) to review different resource allocation policies and to compare service performance
for different client groups. Foundations of machine learning (FOML) is compared with the Min-Min,
Max-Min, sufferage and enhancement heterogeneous earliest finish time (HEFT) algorithms [9]. The
simulation results show that the Max-Min scheduling improved algorithm (MMSIA) is best with a
large numbers of tasks and machines [10].
The main contributions of this paper are as follows:

(1) Its main difference is in the number of samples employed, i.e. |U]. Dividing the membership
degrees by the number of samples cannot be very effective because the states are unclear and
the number of states are determined using the fuzzy method. Where instead of dividing by
|U|, it is divided by the sum of the membership degrees of all the values of the fitness function
in all the samples.

(2) Combining smart message passing interface approach (SMPIA) [1] with extended of fuzzy k-
means (FKM) based on fuzzy entropy. With the fuzzy smart MPI (FSMPIA), performance
and maximum service execution time have been improved in this work. The motivation for this
research is the implementation of workflow on the telecommunications transaction application
in order to achieve proper processing time and manage cloud system. It also aims to improve
the performance of algorithms, increase the quality of service (QoS) in MPI communications
of the desired VNs and improved being premature convergence.

The need for this research is to delay MPI communication in the virtual MPI bus (VMPIB) [1].
Using FSMPIA on a telecommunications transaction application increases its efficiency.

The remainder of this paper is organized as follows: related work is presented in Section [2j FKM
method in Section 3 FSMPIA performance evaluation in Section [4} Simulation results with FSMPIA
in Section [5} Comparison analysis of FSMPIA and SMPIA in Section [0} conclusions and future work
in Section [7l

2. Related Work

In [I1], the results showed that the MMSIA has the shortest completion time among all virtual
machines (VMs) compared to three algorithms such as Max-Min, Min-Min and round robin (RR).
In [12], the proposed approach called optimal process placement found the best placement scheme
compared to all mass communications in all message sizes. In [I3], the multi-purpose workflow
optimization strategy (MOWOS) uses the task division mechanism to divide large tasks into sub-
tasks to reduce their scheduling time. The simulation results showed that MOWOS had better
execution cost and completion time and also used better resources than the HSLJF [14] algorithms.
In [1I5], a combination of the shortest tasks and RR is one of the most useful and powerful hybrids
for solving starvation, in which we will used the performance of SJF in reducing turnover and RR in
[1] reducing work expectation, but the quantum value of the task always prevents having a hybrid
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optimal. In [I9], a genetic algorithm-particle swarm optimization (GA-PSO) hybrid algorithm was
proposed for assigning tasks to resources aimed at reducing costs, make span (MS), and load balancing
tasks in cloud computing. The results showed that this algorithm decreased the total execution time
(TET) of workflow tasks scheduling compared to GA, PSO, hybrid heuristic scheduling genetic
algorithm (HSGA), workflow scheduling genetic algorithm (WSGA) algorithms and Min-Min based
time and cost-trade-off (MTCT). In [20], the Min-Min and Max-Min algorithms were combined with
the GA. Thus, with improved GA, MS has been minimized and utilization of resources has improved
in comparison with the GA. In [21I], a cuckoo PSO (CPSO) hybrid algorithm was proposed aims
reduced MS, cost and deadline violation rate. In [22], the standard PSO easily got trapped into
the local optimum solution, which results in improved being premature convergence. In this way,
the improved PSO with a reduction in the linearly inertia weight, was able to have a strong public
search in its initial repeats and, in subsequent reps, has got a strong local search too. In [23],
the comparison of the improved PSO algorithm (in crossover and mutation) with PSO showed that
improved PSO was not only converged faster, but also it was executed in a large scale faster than
the other two algorithms. In addition, it caused reduced MS and better use of resources. In [24], an
online incremental learning approach was provided by monitoring CPU, memory, and I/O resources,
via which the workflow execution time was predicted and error rate was 29.89% of advanced methods.
With the emergence of workflow as a service (WaaS) in the cloud, it is more challenging to predict
workflow scheduling and estimate the runtime of tasks. Processing a large volume of data needs to
predict real-time changes for the resource performance.

In [25], the authors present a time and energy-aware two-phase scheduling algorithm called best
heuristic scheduling (BHS) for directed acyclic graph (DAG) scheduling on cloud data center proces-
Sors.

In [26], the authors proposed a two-phase energy-aware load balancing (EALB) scheduling algo-
rithm using the virtual machine migration through the Particle Swarm Optimization (PSO) algorithm
to be applicable to dynamic voltage frequency scaling-enabled cloud data centers.

Dynamic voltage and frequency scaling (DVFS) has been proven to be a feasible solution to
reduce processor power consumption in cloud data centers [27, 28]. By lowering processor clock
frequency and supply voltage during some time slots, for example, idle or communication phases,
large reductions in power consumption can be achieved with only modest performance losses.

In [29], the authors proposed an efficient method for ranking cloud services while accounting for
uncertain user requirements. For this purpose, a requirement interval is defined to fulfill uncertain
user requirements. Since there are a large number of cloud services, the services falling outside the
requirement interval are filtered out.

3. FKM Method

To shorten the completion time and execution time, we introduced the k-means clustering method,
which is based on the new fuzzy entropy. This method was combined with Greedy_ SMPIA, Max-
Min_SMPIA, Min-Min_SMPIA, GA_SMPIA and PSO_SMPIA [I] to make VMs smarter. The FKM
clustering method was implemented for both Non-SMPIA and SMPIA. First, we implemented the
FKM clustering method as follows. In the FKM, the data set of cloud management system con-
figuration is employed, which is presented in Table [I} In total, 200 record are implemented as the
training data in the fuzzy decision tree (FDT) method in the simulation. Several data records with
the same training data format are used for testing. The training data are employed as the input
to the training section in an Excel file called ”Dataset.xlsx” for the simulation. In the fuzzy smart
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MPI approach (FSMPIA), we first read the database data from an Excel file and, then, cluster the
training data by the k-means clustering algorithm.

Table 1: Index attributes
Row Attribute

DC ID
Server ID
CPU (Number)
CPU Freq (HZ)
Memory (MB)
Bandwidth (Mb/S)
VMs Count
Capacity

OOl | | UY = W DN —

Each attribute contains sampes marked with and stored in the database. Table [2[ (metadata)
shows the attributes, samples, samples and integers used in the simulation of the proposed method-
ology. K-means is the most popular and the simplest partitional algorithm used for clustering [16].

Table 2: Metadata (mapping table)

Row Attributes Samples | Value

DC 1 1

DC 2 2

DC 3 3

DC 4 4

DC 5 )
6
7
8

DC 6
1 DC ID DC 7
DC 8
DC 9 9
DC 10 10
DC 11 11
DC 12 12
DC 13 13
Server 1
Server 2
Server 3
Server 4
Server 5
Server 6
Server 7
Server 8
Server 9
Server 10
CPU 1
CPU 2

2 Server ID

OO0 | O O = W DN —

—
e}

3 | CPU (Number)

DO —
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Continue of table

64

128

4 CPU Freq (HZ) 256
512
1024
512
1024

Less than 20

More than 20
512
1024

5 | Bandwidth (Mb/S)

6 VMs Count

7 Memory

N RN RN | O i W N —

In this algorithm, the number of clusters (groups) must already be specified. Data clustering is
performed in the regions where the server is located. In the FSMPIA, We determining the number
of clusters based on the areas, in which a specific number is used. Despite its simplicity, this is a
basic method for many clustering methods. There are several forms for this algorithm, but they
have iterative routines, and the following are estimated for a fixed number of clusters: (1) Obtaining
points as the centers of the clusters; these points are in fact the mean points of each cluster. (2)
Every data sample is assigned to the cluster, from the center of which has minimum distance.

In this method, a number of points are randomly selected in proportion to the required clusters.
Then, the data are assigned to one of these clusters based on the extended of proximity (similarity).
So, new clusters are calculated for them new clusters will be achieved by repeating the same procedure
and averaging the data. Again, the data are assigned to new clusters. This process continues until
there is no changed in the data. FI is considered as the fitness function in Eqution . Algorithm
1 (Table |3) is considered as the basic algorithm for the k-means algorithm.

z P
FI=Y ") llaj — el (3.1)

o=1 h=1
||| is the measure of distance the points, eo is the center of the o cluster, p is the sample number

and z is the number of clusters, ah is a sample instance.

Table 3: The basic algorithm for the k-means

01 | Start

02 | z=10 centres are randomly selected. // Based on the number of servers

03 | Repeat

04 | Each sample is assigned to the closest center.

05 | The centres are updated according to the clusters.

06 | Until (there are not great changes in the clusters or the numbers are determined in advance.)

07 | End
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After clustering the training data, it is the time to train the program using the FDT. Data
clustering is performed in the regions where the server is located. Learning condition in the FDT
algorithm is that the data should be widespread. This step is performed by the k-means algorithm.
The data are then stored in the matrix and sent to the FDT for training. Tree classification is done
in the k-means algorithm; it is a two-step process as follows:

(1) Modeling: The training data set refers to a database containing the cloud configuration data
with 10 active servers on the cloud which are stored in a matrix after discretization. The class

tags associated with these samples are specified and every class is determined with the attribute
in Table 2, which is called ”class tag”.

(2) Model usage: The class tag of each sample p of the database is predicted via function y = f(p).
This function is in the form of classification rules, decision trees or mathematical formulas.

In the FSMPIA, predictable data or testing data are inserted into the program by an Excel file
with the same training data format. After being discretized by the k-means algorithm, they turn to
classified rules by a function and are compared with the training data for decision making (providing
predicted results). After the machine training phase, training data infer a pattern from this machine
using the fuzzy algorithm. The testing data provide the predicted results after comparing with
this pattern. In the FSMPIA, testing data include some tested attributes (server name, DC name,
CPU number, CPU power, memory, bandwidth allocation, VM count). The capacity attribute (as
the response attribute) is the result of the FDT adjustment which can be observed in the program
output. According to the implementation, we stored the above data in the “Dataset.slsx” file. This
file contains 200 records and 8 columns and, in accordance with the training data format, enters
the simulation as input data by the “Create_Dictunary.m” file. Contents of the Excel file are stored
in a matrix called “Train_Data”. Each column of this matrix is inserted in the array to discretize
the values for the training data. Next, a "For loop” will rotate as many times as of the number
of the rows in this file and the values are discretized. Finally, the data are inserted in a matrix
called “Train_Data” to be loaded by the “Main.m” file for learning the program. After executing
“Create_Dictunary.m”, the “Main.m” file should be executed. This file first loads “Train_Data”,
then inserts columns 1 to 7 in the “Train_Patterns” array, and the last column (answer column) is
placed in the “Train_Targets” array. The response is tested or predicted using the “Test_Data.xlsx”
file. Then, the data are inserted in the “Main.m” file in the program as the testing data, which is
compared to the previous data (learning data), and the result is displayed as the output. Testing
data containing 7 columns are also discretized. The response is unclear in this data, only the 7
columns with which the program learns how to predict the response are considered as inputs to the
testing data. The data predict the response by FDT method and display it as the output. The
“Test_Fuzzy” function is located in the “Test_Fuzzy.m” file and learns the response prediction based
on the training data via the FDT method. An extended FDT is an ordinal decision tree (ODT),
which uses fuzzy rules for classification. For this reason, in addition to the training data, it requires
a precise definition of fuzzy sets for each attribute. But, its overall performance and what it does are
similar to what an ODT does. One of the works that is done in a FDT, such as an ODT, is entropy
calculation and information efficiency. However, their calculation formula is different and fuzzy. The
entropy calculation is normally expressed in Equation ((3.2).

Entropy(U) = = _ pnlogy pi (3.2)
h=1
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Where U is the set of samples, r is the number of values that the fitness function can accept and
pr is a fraction of samples, in which the fitness function has a value of h. What is needed in this
algorithm is the fuzzy entropy calculation. Equation (3.3|) is employed to represent fuzzy entropy:

Entropyf(U) = =Y > (pno/|U[)10gy > o/ |U]) (3.3)

h=1 o=1

In Equation (3.3), |U| is the number of members in the set U, p is the number of samples and r
is the tag of fitness function classes. Equation is an extended form of Equation ; but,
instead of putting a value of 0 or 1 for membership degree, we put a value between 0 and 1. The
equation used to calculate the entropy in our algorithm is slightly different from the one mentioned
above. Its main difference is in the number of samples employed, i.e. |U|. Dividing the membership
degrees by the number of samples cannot be very effective because the states are unclear and the
number of states are determined using the fuzzy method. For this reason, it is divided by the sum

of membership degrees in all the samples. Accordingly, the extended entropy equation is presented
as Equation (3.4)).

(@)U = {ay,a9,--- ,a,} is a set of samples.
(b)G = {by,ba,--- , b} is a set of class tags.
(C>:uho S [07 1]

(d) Z;:l Hho = 1
(€)0 <3201 fho < p
(f)A = Zlo):l /LhO/ 212921 22:1 Kbz

—> " Alog} (3.4)
h=1

Where instead of dividing by |U], it is divided by the sum of the membership degrees of all the values
of the fitness function in all the samples. After training the data in the “Main.m” file of “Test_Fuzzy”,
we compared the trained data with the testing data and make predictions. The predicted data are
used by the “Mainprogram.m” function. Also, the methodology of the PSO_FSMPIA is shown in
Figure [3] According to Figure 3], in the second stage of FSMPIA, the appropriate alternative virtual
machines (AVMs) for the next flows was selected according to the calculation of the completion time
formula for all available AVMs.

SMPIA simulations were performed with real data from a homogeneous environment. 201535
Record of Iran Telecommunication transactions and tenders has been collected from 2011 to 2017.
Simulations were performed in MATLAB. The program runs on a system with the following features:
1.83 GHz CPU, Core i7 4 GB RAM. The simulation parameters and their details are shown in Table
4l and Table Bl
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Figure 1: The SMPIA flowchart in FKM based on fuzzy entropy

4. FSMPIA Performance Evaluation

For evaluating the Non-FSMPIA and FSMPIA in the distributed system, Greedy _FSMPIA, Max-
Min_FSMPIA, Min-Min_FSMPIA, GA_FSMPIA and PSO_FSMPIA were employed. For calculating
the performance parameters, Equations — [1, 2] were employed for MS, TET, RU, and
average RU, respectively. First, the Non-FSMPIA was implemented to each of the algorithms. To
evaluate the performance of the FSMPIA, two approaches were executed in parallel using MPICH-
3.0.4, and FSMPIA was applied to each algorithm. Any kinds of changes in the state of successor
flows in successor VMs (changes in load, capacity, etc.) affected the next flows of the subsequent
AVMs. The tests were conducted on the actual data in a homogenous environment including 13 DCs,
10 servers, 132 VMs, 132 flows, and 324 telecommunication equipment. Note that both parameters
of the number of records and number of VMs were assumed to be constant. In the following,
programs were executed at least 50 times in a system with identical specifications to compute the
average of parameters. Ultimately, the mean values were recorded as well. To do so, 201535 records
were collected on transactions (including deals and tenders) of the telephone company from 2011 to
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Table 4: The simulation parameters [2]

Data Server CPU CPU Freq | Memory | BandWidth | VM ID | Flow 1D
Center ID | ID | (Number) (HZ) (MB) (Mb/S)
1 1 4 1000 2000 100 12 12
1 2 2 2000 2000 50 9 9
1 3 1 1000 4000 100 9 9
1 4 4 1200 1000 100 3 3
1 5 2 1000 1000 100 9 9
1 6 1 1000 2000 100 6 6
1 7 4 1200 2000 100 6 6
2 8 2 1800 2000 50 9 9
2 9 2 2000 1000 50 3 3
2 10 2 1800 4000 20 6 6
2 11 2 1000 1000 50 6 6
2 12 1 1000 1000 100 3 3
2 13 1 1000 1000 100 3 3
2 14 1 1200 1000 100 9 9
3 15 4 1800 1000 50 3 3
3 16 4 1800 2000 20 6 6
3 17 1 1200 1000 20 3 3
3 18 1 1000 1000 20 6 6
4 19 2 1000 1000 20 6 6
4 20 1 1200 2000 100 6 6
4 21 1 1800 4000 50 3 3
4 22 2 1200 1000 100 6 6
Table 5: The details of simulation parameters [5]
Variable Amount
Exec Speeds 63%132
Flow Count Some of the VMs have shared flow 63
Product 324*3 Cell
Server Count 22
DC 4
Transaction 201535*%16 Cell
Trans Count 201535
VMs 132*4 Duble
VMs Count 132

3715

2017. The simulation and implementation were performed in MATLAB. The experiments were done
on a system with the following features: Windows 7, CPU 1.83 GHz, Core i7 4GB RAM. In this
research, data sets of telecommunication transactions applications (deals and tenders) in ministry of
communication and information technology of iran (MCITI) and workflows are used for simulation
and clustering [1, 2].
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5. Simulation Results with FSMPIA

5.1. Calculate the Total Fxecution Time

We have used Equation to calculate the TET. As shown in Figure and Table |§| and
Table[7], the TET decreases at 132 cloud workloas with FSMPIA. The maximum percentage of TET
improvement is 55.37% at 132 cloud workloads in FSMPIA performs better than the Non-FSMPIA.
Other details are provided in Table [6] and Table [7]

TET — The value of calculation load ~ Lepy

= 5.1
CPU execution speed EScpu 5:1)

ENon-FSMPIA EFSMPIA

40000
35000
30000
23000
20000
15000
10000
5000
0
13,

2 cloud workloads

Total Execution Time (Sec)

Figure 2: Effect of 132 cloud workloads on total execution time with Non-FSMPIA and FSMPIA

5.2. Calculate the maximum completion time

We have used Equation to calculate of completion time. As shown in Figure and Table
[6] and Table[7] the completion time decreases at 132 cloud workloads with FSMPIA. The maximum
recovery rate of fuzzy GA is 88.43% in 132 working times in FSMPIA, so that FSMPIA performs
better than Non-FSMPIA. Other details are provided in Table [6] and Table [7]

" - ((CO),
ComplitionTime/M S = max (Z ((ES)Z) X Sijk) (5.2)
i=1 j=1 k=1 ‘

Sijk 1s time spent by execution flowk of transactionj on V' M;, otherwise, it is zero. CC; is the
parameter determining the CC of flowk on V M;. ES; is the parameter determining the ES of flowk
on VM;.

5.3. Cualculate resource utilization

We have used Equation and 8 to caculate resource utilization (RU) and average RU, respec-
tively. As shown in Figure and Table [6] and Table [7], the RU increases at 132 cloud workloads
with FSMPIA. The maximum RU progress rate at 132 cloud workloads in the fuzzy GA algorithm
is 3%, but FSMPIA performs better than Non-FSMPIA. Other details are provided in Table [f] and
Table [

CF; MC; — MCU;

e o VTs) (5:3)
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Figure 3: Effect of 132 cloud workloads on completion time with Non-FSMPIA and FSMPTA

" RU;
AveRU = 2z U * 100 (5.4)
m
C'P; is the capacity processed in V M;, T PC; refers to the total processing capacity of VM, MC;
denotes the memory capacity of V M;, MCU; means the memory capacity used in V' M;.

ENon-FSMPIA
HEFSMPIA

Greedy Max-Min Min-Min
132 cloud workloads

=t bt b b2 L W
= tn = tn = wm

Resource Utilization (%)

tn

Figure 4: Effect of 132 cloud workloads on resource utilization with Non-FSMPIA and FSMPIA

5.4. The effect of total execution time on resource utilization

In Figure[5.4] at 23.47% involvement level and RU, the TET in Non-FSMPIA was 45.58% greater
than in FSMPIA. However, at 30.38 involvement levels and RU, TET in FSMPIA was 45.58% smaller
than the Non-FSMPIA. As a result, the performance of the FSMPIA was better than that of the
Non-FSMPIA. Other details are provided in Table [6] and Table [7]

5.5. The effect of completion time on resource utilization

In Figure |5.5| at 23.47% involvement level and RU, completion time in Non-FSMPIA was 60.45%
greater than the FSMPIA. However, at 30.38% involvement levels aof RU, completion time in
FSMPIA was 60.45% smaller than the Non-FSMPIA. As a result, the performance of the FSMPIA
was better than that of the Non-FSMPIA. Other details are provided in Tables [6] and [7]

6. Comparison Analysis of FSMPIA and SMPIA

Predictive models should be used to obtain effective forecasting results. One of the prediction
techniques is machine learning based on k-means clustering. Execution time, completion time and
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Figure 5: The effect of total execution time on resource utilization with FSMPIA and Non-FSMPIA
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Figure 6: Effect of completion time on resource utilization with FSMPIA and Non-FSMPIA
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RU are considered as three criteria of service efficiency and quality assurance [I7]. Machine learning
techniques are able to accurately predict results. They consider many parameters and learn the
behavior of programs from the training of educational data sets [18]. In [I8][I7], researchers separately
number of requests, number of VMs, number of physical memory, RU, service level agreement (SLA)
parameters, future resource demand, number of users, performance forecast, power consumption,
execution time, response time, data, costs and data issues are considered.

A comparison of the results of the two methods in Table [6] and Table [7] shows that FSMPIA per-
forms better than SMPIA. The use of SMPIA in both tables improved the performance parameters.
By FSMPIA in Table[7], execution time improved by 55.37%, while by SMPIA in Table[6] execution
time improved by 55.80%. Using FSMPIA in Table |7, the completion time improved to 88.43%,
while with SMPTA in Table [6], the completion time improved to 55.94%.

In addition, RU improved by up to 3% by FSMPIA in Table [7, while RU by up to 14.26%
improved by SMPIA in Table[6] To calculate RU using FSMPIA, prediction parameters were used
as input through clustering, while to calculate RU using SMPIA, end-time parameters were used
as input. Also, the performance parameters in SMPIA were calculated based on the average values
obtained after 50 times of program execution. RU parameter shows the amount of RU and the
degree of involvement of hardware resources in the cloud in percent. High and low percentages in
this study do not indicate high or low quality. In the proposed method, resources became faster.
Resource allocation was done with a maximum involvement rate and RU of less than 9%. This study
is consistent with the results [17, [I§], and prevents SLA violations and QoS decline.

Table 6: Comparison of performance parameters with Non-SMPITA and SMPITA

PSO GA | Min-Min | Max-Min | Greedy Algorithms
143896 | 153665 | 143517 143172 | 155445 | TET

17563 | 20378 18921 17976 19668 | MS Non-SMPTA
76.79 | 75.76% | 76.87% | 75.72% | 74.72% | RU

63897 | 145544 | 63430 76008 75523 | TET

8587 9000 8884 7919 12027 | MS SMPIA
91.05 | 89.73% | 88.73% | 87.52% 87% RU
55.59% | 5.28% 55.80 46.91 51.10 | TET
51.10% | 55.83% | 53.04 55.94 38.84 | MS | Improvement (%)
14.26 | 13.97% | 11.86% 11.80% | 12.28% | RU

Table 7: Comparison of performance parameters with Non-FSMPIA and FSMPIA

PSO GA | Min-Min | Max-Min | Greedy Algorithms

36338 | 36716 36157 36051 39035 | TET

16383 | 16043 15819 22624 17967 | MS Non-FSMPIA
27.56 | 26.39% | 25.45% | 24.43% | 23.47% | RU

16217 | 32317 16240 16187 19739 | TET

7105 | 1855 7398 6913 9003 MS FSMPIA
30.38 | 29.39% | 28.40% | 27.35% | 26.37% | RU

55.37 | 11.98 55.08 55.09 4943 | TET

56.63 | 88.43 53.23 69.44 49.89 | MS | Improvement (%)
2.82 3% 2.95% 2.92% 29% | RU
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7. Conclusion

In this work, a new predictive fuzzy method was combined with SMPIA to improve completion
time and execution time.

With the new fuzzy entropy method, the completion time with GA_SMPIA algorithm was further
improved than other algorithms. On the other hand, the execution time with PSO_SMPIA algorithm
was more improved than other algorithms.

The results show that PSO_SMPIA is better than other methods studied in this study and is more
suitable for scheduling and allocating telecommunication resources. FSMPIA performs better than
Non-FSMPIA. The extended FKM algorithm was used to cluster the data set. Discrete matrices
store the training and testing data. By training the machine via the fuzzy method, a pattern is
inferred from this machine. In the fuzzy entropy, the membership degree is divided by the sum of
membership degrees of all fitness function values in all the samples. “Test_Fuzzy” function learns
the prediction of the response based on the training data using the FDT method. By matching
the testing matrix with the obtained pattern, the predicted result is displayed. The FSMPIA was
evaluated by simulation in the MATLAB environment. The best mode was PSO_FSMPIA, in which
with FSMPIA, TET and MS were improved by 55.37% and 56.63%, respectively, and RU increased
from 27.56% to 30.38% (2.82%). Due to the relative reduction of RU in this study, we propose the
SMPIA optimization method using the O_EDF-VD algorithm for future work.
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