Int. J. Nonlinear Anal. Appl. 13 (2022) 1, 3765-3772 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.6158

On some topological concepts via grill

Saad S. Suliman^{a,*}, R. B. Esmaeel^a

^aDepartment of Mathematics College of Education for Pure Science, Ibn Al-Haitham University of Baghdad, Iraq

(Communicated by Ali Jabbari)

Abstract

In this work, the new grill concepts are studied using grill topological spaces and by using some defined sets where the set α -open sets are defined. Properties of this set and some relationships were presented, in addition to studying a set of functions, including open, closed and continuous functions, finding the relationship between them and giving examples and properties that belong to this set, which will be a starting point for studying many topological properties using this set.

Keywords: Grill, α -open sets, α -closed sets, $\mathfrak{C}^*\alpha$ -open function, $\mathfrak{C}^*\alpha$ -c function.

1. Introduction

Choquet [1] developed the concept of a grill on a topological space, and it has proven to be a useful tool for exploring several topological problems. A grill on \mathbf{Q} is a family of non-empty subsets of a topological space (\mathbf{Q}, τ) . If (i) $\mathcal{A} \in \mathfrak{C}$ and $\mathcal{A} \subseteq \mathcal{B}$ so $\mathcal{B} \in \mathfrak{C}$, and (ii) $\mathcal{A}, \mathcal{B} \subseteq \mathbf{Q}$ and $\mathcal{A} \cup \mathcal{B} \in \mathfrak{C}$, then $\mathcal{A} \in \mathfrak{C}$ or $\mathcal{B} \in \mathfrak{C}$. A triple $(\mathbf{Q}, \tau, \mathfrak{C})$ is said to be a grill topological space.

Roy and Mukherjee [6] used a grill to define a unique topology and researched topological ideas. For any topological space point x, (\mathbf{Q}, τ) , $\tau(\mathbf{q})$ represents a compilation of x's open neighborhoods. A mapping $\phi: P(\mathbf{Q}) \to P(\mathbf{Q})$ is defined as $\phi(\mathcal{A}) = \{\mathbf{q} \in \mathbf{Q} : \mathcal{A} \cap \mathbf{s} \in \mathbf{C} \text{ for all } \mathbf{s} \in \tau(\mathbf{q})\}$ for each $\mathcal{A} \in P(\mathbf{Q})$. A mapping $\Psi: P(\mathbf{Q}) \to P(\mathbf{Q})$ is defined as $\Psi(\mathcal{A}) = \mathcal{A} \cup \phi(\mathcal{A})$ for all $\mathcal{A} \in P(\mathbf{Q})$. The map Ψ satisfies Kuratowski closure axioms:

- i. $\Psi(\phi) = \phi$,
- ii. If $\mathcal{A} \subseteq \mathcal{B}$ so $\Psi(\mathcal{A}) \subseteq \Psi$,
- iii. If $\mathcal{A} \subseteq X$, so $\Psi(\Psi(\mathcal{A})) = \Psi(\mathcal{A})$,

*Corresponding author

Email address: saadsadeq05@gmail.com (Saad S. Suliman)

iv. If $\mathcal{A}, \mathcal{B} \subseteq X$, so $\Psi(\mathcal{A} \cup \mathcal{B}) = \Psi(\mathcal{A}) \cup (\mathcal{B})$.

There are some types of a grill topological space as like a cofinite topology and discrete topology [6]. In the shape of a grill \mathfrak{C} on a topological space (\mathfrak{Q}, τ) , there is a one kind of a topology. $\tau_{\mathfrak{C}}$ on \mathfrak{Q} a gift $\tau_{\mathfrak{C}} = \{ \mathfrak{s} \subseteq \mathfrak{Q} \colon \Psi (\mathfrak{Q} - \mathfrak{s}) = \mathfrak{Q} - \mathfrak{s} \}$, for any reason $\mathcal{A} \subseteq \mathfrak{Q}, \Psi(\mathcal{A}) = \mathcal{A} \cup \phi(\mathcal{A}) = \tau_{\mathfrak{C}} - \operatorname{cl}(\mathcal{A})$ and $\tau \subseteq \tau_{\mathfrak{C}}$. We can find $\tau_{\mathfrak{C}}$ by used the base as following $\beta(\tau_{\mathfrak{C}}, \mathfrak{Q}) = \{V - \mathcal{A}; V \in \tau, \mathcal{A} \notin \}$ [6].

In any topological space (\mathbf{Q}, τ) , there is a grill $\tau \subseteq \beta(\mathbf{C}, \tau) \subseteq \tau_{\mathbf{C}}$, where $\beta(\mathbf{C}, \tau) = \{V - \mathcal{A} : V \in \tau, \mathcal{A} \notin \tau, \mathcal{A} \notin \mathbf{C}\}$ is open base for $\tau_{\mathbf{C}}$.

As an example, let (\mathbf{Q}, τ) be a topological space, if $\mathbf{\mathfrak{C}} = \mathbb{P} \{\phi\}$, then, $\tau_{\mathbf{\mathfrak{C}}} = \tau$, because for any $\tau_{\mathbf{\mathfrak{C}}}$ basic open set $V = \mathbf{Q} - \mathcal{A}$ with $u \in \tau$ and $\mathcal{A} \notin \tau_{\mathbf{\mathfrak{C}}}$. We have $\mathcal{A} = \phi$, in order for $V = \mathfrak{s} \in \tau$, so we have this case $\tau = \beta(\mathbf{\mathfrak{C}}, \tau) = \tau_{\mathbf{\mathfrak{C}}}$. A subset \mathcal{A} of a topological space \mathbf{Q} is alleged to be: α -open [2] if $\mathcal{A} \subseteq \operatorname{Int}(\operatorname{cl}(\operatorname{Int}(\mathcal{A})))$. The family of all α - open set denoted by τ_{α} .

There are many researchers who have used these combinations to obtain new generalizations [3, 4]. In this research used the symbol $Int(\mathcal{A})$ to interior of the set \mathcal{A} and the symbol $cl(\mathcal{A})$ is the closure of \mathcal{A} .

2. On α -open sets in topological spaces

Definition 2.1. The set \mathcal{A} is said to be grill α -open if there exists $\varsigma \in \tau$ such that $\varsigma \mathcal{A} \notin \mathcal{C}$ and $\mathcal{A} - \operatorname{Int}_{\varsigma} l_{\mathcal{C}}(\varsigma) \notin \mathcal{C}$, and as indicated by $\mathcal{C}^* \alpha$ -open the complement $\mathcal{C}^* \alpha$ -open is $\mathcal{C}^* \alpha$ -closed. The set of all $\mathcal{C}^* \alpha$ -open symbolized by $\mathcal{C}^* \alpha$ o(q) and the ensemble first and foremost $\mathcal{C}^* \alpha$ -closed shortly $\mathcal{C}^* \alpha$ c(q).

Example 2.2. Let $(\mathbf{Q}, \tau, \mathbf{C})$ be a grill topological space, and let $\mathbf{Q} = \{ q_1, q_2, q_3 \}, \tau = \{ \mathbf{Q}, \phi, \{ q_1 \}, \{ q_1, q_2 \} \}, \mathcal{F} = \{ \mathbf{Q}, \phi, \{ q_3 \}, \{ q_2, q_3 \} \}, \mathcal{C} = \{ s \subseteq \mathbf{Q}; q_2 \in s \}, \phi: P(\mathbf{Q}) \to P(\mathbf{Q}), \phi(\mathcal{A}) = \{ q \in \mathbf{Q}; \forall s \in \tau_x ; s \cap \mathcal{A} \in \mathbf{C} \}, \Psi(\mathcal{A}) = \mathcal{A} \cup \phi, \tau_{\mathbf{C}} = \{ \mathbf{Q}, \phi, \{ q_2, q_1 \}, \{ q_3, q_2 \}, \{ q_2 \} \}, \mathcal{F}_{\mathbf{C}} = \{ \mathbf{Q}, \phi, \{ q_3 \}, \{ q_1 \}, \{ q_2, q_3 \} \}, \text{ then } \mathcal{C}^* \alpha \text{ o} (q) = \{ \mathbf{Q}, \phi, \{ q_3 \}, \{ q_2 \}, \{ q_1 \}, \{ q_2, q_3 \}, \{ q_1, q_2 \}, \{ q_3, q_1 \} \}.$

Remark 2.3.

- (i) Every set that is open is $\boldsymbol{C}^* \alpha$ -open set.
- (ii) Every set that is closed is $\mathcal{C}^*\alpha$ -closed set.

Proof. (i) Let $\mathcal{A} \in \tau$, then there exists $\mathfrak{s} \in \mathcal{A}$ such that $u \subseteq Int \ cl_{\mathfrak{C}}(\mathfrak{s})$, but $\mathfrak{s} = \mathcal{A} \in \tau$, so $\mathfrak{s} - \mathcal{A} = \phi \notin \mathfrak{C} \land \mathcal{A}$ - Int $cl_{\mathfrak{C}}(\mathcal{A}) = \phi \notin \mathfrak{C}$.

(ii) Let \mathcal{A} be a closed set. Then $\mathcal{A}^c \in \tau, \mathcal{A}^c$ is $\mathcal{C}^* \alpha o(q)$ so, \mathcal{A} is $\mathcal{C}^* \alpha c(q)$. \Box

The converse of Remark 2.3 is not true, see Example 2.4.

Example 2.4. Let $\mathbf{Q} = \{ q_1, q_2, q_3, q_4 \}, \tau = \{ \mathbf{Q}, \phi, \{ q_3 \}, \{ q_3, q_2 \}, \{ q_2 \} \}, \mathbf{\mathcal{C}} = P(\mathbf{Q}) \setminus \{ \varnothing \}$. It's clear that $\{ q_4, q_2 \} \in \mathbf{\mathcal{C}}^* \alpha \ o(\mathbf{K}), but \{ q_4, q_2 \} \notin \tau$. And $\{ \{ q_1, q_3 \} \} \in \mathbf{\mathcal{C}}^* \alpha \ c(\mathbf{K}) but \{ q_1, q_3 \}$ it is not a closed set.

Theorem 2.5. Every $\mathcal{C}^*\alpha$ -open set is a $\mathcal{C}\alpha$ -open.

Proof. Let $\S - \mathcal{A} \notin \mathcal{C}$, so, $\operatorname{Int}_{\varsigma}l_{\mathcal{C}}(\varsigma) \subseteq \operatorname{Int}_{\varsigma}l(\varsigma)$ and $\mathcal{A} - \operatorname{Int}_{\varsigma}l(\varsigma) \subseteq \mathcal{A} - \operatorname{Int}_{\varsigma}l_{\mathcal{C}}(\varsigma) \notin \mathcal{C}$. Let $\mathcal{A} - \operatorname{Int}_{\varsigma}l(\varsigma) \in \mathcal{C}$, thus by the definition of a grill we will have $\mathcal{A} - \operatorname{Int}_{\varsigma}l_{\mathcal{C}}(\varsigma) \in \mathcal{C}$, a contradiction, so $\mathcal{A} - \operatorname{Int}_{\varsigma}l_{\mathcal{C}}(\varsigma) \notin \mathcal{C}$. \Box

Proposition 2.6. For any grill topology ($\mathbf{Q}, \tau, \mathbf{C}$), \mathcal{A} is a $\mathbf{C}\alpha$ -open set if and only if \mathcal{A} is a $\mathbf{C}^*\alpha$ -open set whenever $\mathbf{C} = p(\mathbf{Q}) \setminus \{\varnothing\}$.

Proof. Let \mathcal{C} be an α -open set, then there exists $\varsigma \in \tau$ such that $\varsigma \subseteq \mathcal{A} \subseteq \operatorname{Int}\varsigma l$ (ς), so $\varsigma - \mathcal{A} = \emptyset \notin \mathcal{C}$ and $\mathcal{A} - \operatorname{Int}\varsigma l(\varsigma) = \emptyset \notin \mathcal{C}$. Now since $\tau = \tau_{\mathcal{C}}$, we have $\mathcal{A} - \operatorname{Int}\varsigma l_{\mathcal{C}}(\varsigma) \notin \mathcal{C}$.

Conversely, $\S - \mathcal{A} = \emptyset \land \mathcal{A} - \operatorname{Int}_{\varsigma}l(\$) \notin \mathcal{C}(\tau) = \tau_{\mathcal{C}}$. Since $\mathcal{C} = p(\mathcal{Q}) \setminus \{\emptyset\}$, $u \subseteq \mathcal{A}$ and $\mathcal{A} \subseteq \operatorname{Int}_{\varsigma}l(\$)$. (§). So $\$ \subseteq \mathcal{A} \subseteq \operatorname{Int}_{\varsigma}l(\$)$. \Box

Proposition 2.7. Let \mathcal{A} be a $\mathcal{C}^*\alpha$ -open set and $\mathcal{B} \subseteq \mathcal{Q}$ such that $\mathcal{A} \subseteq \mathcal{B} \subseteq \text{Int}_{\varsigma}l_{\mathcal{C}}(\mathcal{A})$, then \mathcal{B} is a $\mathcal{C}^*\alpha$ -open set.

Proof. Suppose that ς is an open set, as a result $\varsigma - \mathcal{A} \notin \mathcal{C} \land \mathcal{A} - \operatorname{Int}\varsigma l_{\mathcal{C}}(\varsigma) \notin \mathcal{C}$, $(\mathcal{A} \text{ is } \mathcal{C}^* \alpha \text{ open set})$. Since $\mathcal{A} \subseteq \mathcal{B} \subseteq \operatorname{Int}\varsigma l_{\mathcal{C}}(\mathcal{A})$, $\varsigma \operatorname{Int}\varsigma l_{\mathcal{C}}(\mathcal{A}) \notin \mathcal{C} \subseteq \varsigma - \mathcal{B} \notin \mathcal{C} \subseteq \varsigma - \mathcal{A} \notin \mathcal{C}$. Then there exists $\varsigma \in \tau$ such that $\varsigma - \mathcal{B} \notin \mathcal{C}$, and since $\mathcal{A} \subseteq \mathcal{B}$, $\operatorname{Int}\varsigma l_{\mathcal{C}}(\mathcal{A}) \subseteq \operatorname{Int}\varsigma l_{\mathcal{C}}(\mathcal{B})$. So $\varsigma \operatorname{-Int}\varsigma l_{\mathcal{C}}(\mathcal{B}) \notin \mathcal{C}$, hence $\mathcal{B} \in \mathcal{C}^* \alpha \text{ open set}$. \Box

Remark 2.8. The two concepts $\mathcal{C}^* \alpha$ – open set and α – open set are independent. See Examples 2.9 and 2.10.

Example 2.9. Let $(\mathbf{Q}, \tau, \mathbf{C})$ be any grill topology and $\mathbf{Q} = \{q_1, q_2, q_3\}, \tau = \{\mathbf{Q}, \phi, \{q_1\}\}, \mathbf{C} = \{s; q_1 \in s\}, \mathbf{C}^* \alpha o(\mathbf{Q}) = P(\mathbf{Q}), and \alpha o(\mathbf{Q}) = \{\mathbf{Q}, \phi, \{q_1\}\} \cup \phi, hence it is clear that <math>\{q_2\} \in \mathbf{C}^* \alpha o(\mathbf{Q})$ but $\{q_2\} \notin \alpha o(\mathbf{Q})$.

Example 2.10. Let (N,τ) be any grill topology and $\tau = \{N,\phi, \{q_1\}\}, \mathcal{C} = \{\varsigma \subseteq N ; \varsigma \text{ is an infinite set }\}$, it is clear that O (odd number) is an α - open set, but it is not a $\mathcal{C}^* \alpha$ open set.

Corollary 2.11. Suppose that $(\mathbf{Q}, \tau, \mathbf{C})$ is a grill topological space and \mathcal{A} subset of \mathbf{Q} . If $\mathbf{C} = p(q) \setminus \{\emptyset\}$. Then \mathcal{A} is $\mathbf{C}^* \alpha$ -open set only if and only if \mathcal{A} is α -open set.

Proof. Let \mathcal{A} be \mathcal{C}^* , so there exists $\varsigma \in \tau$; $\varsigma \cdot \mathcal{A} \notin \mathcal{C}$ and \mathcal{A} - Int $\varsigma l_{\mathcal{C}}(\varsigma) \notin \mathcal{C}$, so $\varsigma \cdot \mathcal{A} = \emptyset \notin \mathcal{C}$ $\land \mathcal{A}$ -Int $\varsigma l_{\mathcal{C}}(\varsigma) = \emptyset$, $\varsigma \subseteq \mathcal{A}$ and $\mathcal{A} \subseteq \operatorname{Int}\varsigma l_{\mathcal{C}}(\varsigma)$, so $\varsigma \subseteq \mathcal{A}$ and $\mathcal{A} \subseteq \operatorname{Int}\varsigma l(\varsigma)$.

Conversely, it is clear that $\mathcal{A} \subseteq \mathcal{B} \subseteq \operatorname{Int}_{\mathfrak{C}}(cs)$, so $u - \mathcal{A} \notin \mathfrak{C}$ and $\mathcal{A} - \operatorname{Int}_{\mathfrak{C}}(s) = \emptyset \notin \mathfrak{C}$. Then $s - \mathcal{A} \notin \mathfrak{C}$ and $\mathcal{A} - \operatorname{Int}_{\mathfrak{C}}(s) = \emptyset \notin \mathfrak{C}$. \Box

Definition 2.12. Let $(\mathbf{Q}, \tau, \mathbf{G})$ be a grill topological space. A subset \mathcal{A} in \mathbf{Q} is called $\mathbf{G}^* \alpha$ -open if $\mathcal{A} \subseteq \Psi(\operatorname{Int}(\mathcal{A}))$.

Proposition 2.13. Every $\Psi \alpha$ --open is a $\mathcal{C}^* \alpha$ -open. **Proof**. Let \mathcal{A} be $\Psi \alpha$ -open, so there exists $\mathfrak{s} \in \tau$ such that $\mathfrak{s} \subseteq \mathcal{A} \subseteq \Psi$ (\mathfrak{s}), so \mathfrak{s} - $\mathcal{A} = \emptyset \land \mathcal{A} - \Psi(\mathfrak{s})$ $= \emptyset$ and \mathfrak{s} - $\mathcal{A} \notin \mathcal{C} \land \mathcal{A} - \Psi$ (\mathfrak{s}) $\notin \mathcal{C}$, so \mathfrak{s} - $\mathcal{A} \notin \mathcal{C} \land \mathcal{A} - \operatorname{Int}_{\varsigma} \mathcal{L}_{\mathcal{C}}(\mathfrak{s}) \notin \mathcal{C}$. \Box

Proposition 2.14. Every $\Psi \alpha$ -open is an α -open.

Proof. Since $\Psi\alpha$ -open, there exists $\mathfrak{s} \in \tau$ such that $\mathfrak{s} \subseteq \mathcal{A} \subseteq \operatorname{Int}_{\varsigma}l_{\mathfrak{C}}(\mathfrak{s}) \subseteq \operatorname{Int}_{\varsigma}l(\mathfrak{s})$. Thus, $\operatorname{Int}_{\varsigma}l_{\mathfrak{C}}(\mathfrak{s}) \subseteq \operatorname{Int}_{\varsigma}l(\mathfrak{s})$ and $\mathfrak{s} \subseteq \mathcal{A} \subseteq \operatorname{Int}_{\varsigma}l_{\mathfrak{C}}(\mathfrak{s})$, so $\mathfrak{s} \subseteq \mathcal{A} \subseteq \operatorname{Int}_{\varsigma}l(\mathfrak{s})$. \Box

Theorem 2.15. A subset \mathcal{A} of a grill (\mathbf{Q}, τ, G) is a $\mathbf{G}^* \alpha$ -open set if and only if there exists $s \in \tau$ in order for $s \subseteq \mathcal{A} \subseteq \Psi$ (s).

Proof. If \mathcal{A} is a $\mathfrak{C}^* \alpha$ -open set, so $\mathcal{A} \subseteq \Psi(\operatorname{Int}(\mathcal{A}))$. Conversely, let $\S \subseteq \mathcal{A} \subseteq \Psi(\S)$ for $\S \in \tau$, therefore $\subseteq \mathcal{A}$. So $\S \subseteq Int(\mathcal{A})$ as well as $\Psi(\S) \subseteq \Psi(\operatorname{Int}(\mathcal{A}))$, as a result, $\mathcal{A} \subseteq \Psi(\operatorname{Int}(\mathcal{A}))$. \Box

Lemma 2.16. $\bigcup_{i \in \Lambda} \operatorname{Int}(\varsigma l_{\mathscr{C}}(\mathcal{A}_i)) \subseteq \operatorname{Int}(\varsigma l_{\mathscr{C}}(\bigcup_{i \in \Lambda} \mathcal{A}_i)).$

Proof. We have $\mathcal{A}_i \subseteq \bigcup_{i \in \Lambda} \mathcal{A}_i$. Then $\varsigma l_{\mathfrak{C}}(\mathcal{A}_i) \subseteq \varsigma l_{\mathfrak{C}}(\bigcup_{i \in \Lambda} \mathcal{A}_i)$, $\operatorname{Int}(\varsigma l_{\mathfrak{C}}(\mathcal{A}_i)) \subseteq \operatorname{Int}(\varsigma l_{\mathfrak{C}}(\bigcup_{i \in \Lambda} \mathcal{A}_i))$. Thus,

$$\bigcup_{\in \Lambda} Int(\varsigma l_{\mathfrak{C}}(\mathcal{A}_i)) \subseteq Int(\varsigma l_{\mathfrak{C}}(\bigcup_{i \in \Lambda} \mathcal{A}_i).$$

Theorem 2.17. The union of any family of \mathcal{C}^* - α open sets is a \mathcal{C}^* - α open set.

Proof. For any $\mathcal{A}_i \in \mathfrak{C}^*$ - α open set, we show that $\bigcup_{i \in} \mathcal{A}_i \in is a \mathfrak{C}^*$ - α open set. Since, $\mathcal{A}_i \in \mathfrak{C}^*$ - α is a open set, there exists $\S_i \in \tau$ such that $(\S_i \cdot \mathcal{A}_i) \notin \mathfrak{C}$ and $\operatorname{Int}(\varsigma l_{\mathfrak{C}}(\bigcup_{i \in \S_i}) \notin \mathfrak{C}) \notin \mathfrak{C}$ and since $\bigcup_{i \in \S_i} \cdot \mathcal{A} \subseteq (\bigcup_{i \in \S_i} \cdot \bigcup_{i \in A}) \notin \mathfrak{C}$ (by Lemma 2.16). But $(\S_i \cdot \mathcal{A}_i) \subseteq \bigcup_{i \in \S_i} \cdot \mathcal{A}_i) \notin \mathfrak{C} \supset (\bigcup_{i \in \S_i} \cdot \bigcup_{i \in A}) \notin \mathfrak{C}$. So there exists an open set $w = \bigcup_{i \in \S_i} \operatorname{such} \operatorname{that} (w \cdot \bigcup_{i \in A}) \notin \mathfrak{C}$. Now we prove $(\bigcup_{i \in A_i} - \operatorname{Int}(\varsigma l_{\mathfrak{C}}(\bigcup_{i \in \S_i}) \notin \mathfrak{C}) \oplus \mathfrak{C}) \oplus \mathfrak{C}$ is a that $(w \cdot \bigcup_{i \in A}) \notin \mathfrak{C}$. Now we prove $(\bigcup_{i \in A_i} - \operatorname{Int}(\varsigma l_{\mathfrak{C}}(\bigcup_{i \in \S_i}) \oplus \mathfrak{C}) \oplus \mathfrak{C}) \oplus \mathfrak{C} \oplus \mathfrak{C}) \oplus \mathfrak{C}$. So $(\bigcup_{i \in A_i} - \bigcup_{i \in Int}(\varsigma l_{\mathfrak{C}}(\mathbb{S}_i)) \oplus \mathfrak{C}) \oplus \mathfrak{C}) \oplus \mathfrak{C} \oplus \mathfrak{C}) \oplus \mathfrak{C} \oplus \mathfrak{C}) \oplus \mathfrak{C} \oplus \mathfrak{C} \oplus \mathfrak{C}$. So $(\bigcup_{i \in A_i} - \bigcup_{i \in Int}(\varsigma l_{\mathfrak{C}}(\mathbb{S}_i)) \oplus \mathfrak{C}) \oplus \mathfrak{C}) \oplus \mathfrak{C}) \oplus \mathfrak{C} \oplus \mathfrak{C}) \oplus \mathfrak{C} \oplus \mathfrak{C} \oplus \mathfrak{C}) \oplus \mathfrak{C} \oplus \mathfrak{C$

Remark 2.18. The collection of all $\mathscr{C}^*\alpha$ -open sets is represented supra topology.

3. Several sorts of open functions

Definition 3.1. A function $f:(\mathbf{Q},\tau,\mathbf{G}) \to (Y,\tau',\mathbf{G})$ is said to be:

- (1) $\mathbf{C}^*\alpha$ -open function, symbolize by " $\mathbf{C}^*\alpha$ -o function" if $f(s) \in \mathbf{C}^*\alpha$ o(y), whenever $s \in \mathbf{C}^*\alpha$ o(q).
- (2) $\mathbf{G}^{**}\alpha o$ function, symbolize by " $\mathbf{G}^{**}\alpha o$ function" if $f(s) \in \mathbf{G}^*\alpha o(y)$, whenever $s \in \tau$.
- (3) $\boldsymbol{\mathcal{C}}^{***}\alpha o$ function, symbolize by " $\boldsymbol{\mathcal{C}}^{***}\alpha o$ function" if $f(s) \in \tau'$, when $s \in \boldsymbol{\mathcal{C}}^*\alpha$ o(q).

Proposition 3.2. let $f:(\boldsymbol{Q},\tau,\boldsymbol{\mathcal{C}}) \to (Y,\tau',\boldsymbol{\mathcal{C}})$ be a function

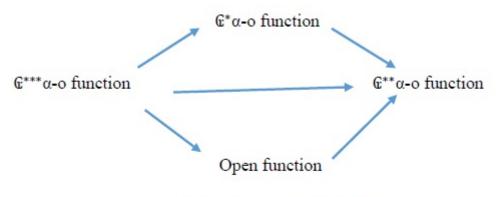
- (i) If f is a $\mathbf{C}^{***}\alpha o$ function, so f is an open function.
- (ii) If f is a $\mathcal{C}^{***}\alpha o$ function so f is $\mathcal{C}^*\alpha o$ function.
- (iii) If f is a $\mathcal{C}^* \alpha o$ function so f is $\mathcal{C}^{**} \alpha o$ function.
- (iv) If f is an open function so f is $\mathbf{C}^{**}\alpha$ o function.

Proof. (i) Let $s \in \tau$. By Remark 2.3(i), $s \in \mathcal{C}^* \alpha - o(q)$. Since f is a $\mathcal{C}^{**} \alpha - open$, f(s) is open in (Y, τ') . Therefore, f is an open function.

(ii) If $s \in \mathbf{G}^* \alpha - o(q)$. Since f is a $\mathbf{G}^{**} \alpha - o$ function, $f(s) \in \tau'$. By Remark 2.3(i), $f(s) \in \mathbf{G}^* \alpha o(y)$. So f is a $\mathbf{G}^{**} \alpha^{**} \alpha^{**} - o$ function.

(iii) Let $s \in \tau$. By Remark 2.3(i), $s \in \mathbf{G}^* \alpha - o(q)$. because f is a $\mathbf{G}^* \alpha - o$ function, so $f(s) \in \mathbf{G}^* \alpha o(y)$. So f is a $\mathbf{G}^{**} \alpha o$ function.

(iv) Suppose that $s \in \tau$. Since f is an open function, $f(s) \in \tau'$. By Remark 2.3(i), $s \in \mathcal{C}^* \alpha o(y)$. So f is a $\mathcal{C}^{**} \alpha o$ function. \Box The following diagram, created to explain the connections that exist between numerous nations were presented in Definition 3.1.



functions via €*α-o function

Diagram 1

Example 3.3. Let $\mathbf{Q} = \{ q_1, q_2, q_3 \}, \tau = \{ \mathbf{Q}, \phi, \{ q_1 \} \}, \ \mathbf{C} = P(\mathbf{Q}) \setminus \{\phi\}, f: (\mathbf{Q}, \tau, \mathbf{C}) \to (\mathbf{Q}, \tau, \mathbf{C}), f(q) = q, It is clear that f is an open function, <math>\mathbf{C}^* \alpha o(\mathbf{Q}) = \{ s \subseteq \mathbf{Q} : q_1 \in s \} \cup \{\phi\}.$ So there exists $\{ q_1, q_2 \} \in \mathbf{C}^* \alpha o(\mathbf{Q})$ such that $f(\{q_1, q_2\}) \notin \tau$. Then we observe that f is not $\mathbf{C}^{***} \alpha o$ function.

Example 3.4. Let $\mathbf{Q} = \{q_1, q_2, q_3\}, \tau = \{\mathbf{Q}, \phi, \{q_1\}, \{q_1, q_2\}\}, \mathbf{C} = \{s \subseteq \mathbf{Q}; q_3 \in s\}, \tau_{\mathbf{C}} = P(\mathbf{Q}), \mathbf{C}^* \alpha o(\mathbf{Q}) = P(\mathbf{Q}), f: (\mathbf{Q}, \tau, \mathbf{C}) \to (\mathbf{Q}, \tau, \mathbf{C}), f(q_1) = \{q_2\}, f(q_2) = \{q_1\}, f(q_3) = \{q_3\}, we observe that the function is a \mathbf{C}^{**} \alpha - o function and \mathbf{C}^* \alpha - o function but is not open and \mathbf{C}^{***} \alpha - o function, because f(q_1) = \{q_2\} \notin \tau.$

Example 3.5. Let $\mathbf{Q} = \{q_1, q_2, q_3\}, \tau = \{\mathbf{Q}, \phi, \{q_1, q_2\}\}, \mathbf{C} = P(\mathbf{Q}) \setminus \{\phi\} \cup \{q_1\}.$ Define $f:(\mathbf{Q}, \tau, \mathbf{C}) \to (\mathbf{Q}, \tau, \mathbf{C})$ such that $f(q_1) = \{q_2\}, f(q_2) = \{q_3\}, f(q_3) = \{q_1\}.$ Then $\tau_{\mathbf{C}} = \{\mathbf{Q}, \phi, \{q_2, q_1\}, \{q_3, q_2\}, \{q_2\}\},$ therefore $\mathbf{C}^* \alpha o \ (q) = \{\mathbf{Q}, \phi, \{q_2\}, \{q_3, q_2\}, \{q_2, q_1, \{q_1\}\}.$ So, f is a $\mathbf{C}^{**} \alpha - o$ function, but f is not a $\mathbf{C}^{**} \alpha - o$ function, because there exist $\{q_3, q_2\} \in \mathbf{C}^{**} \alpha - o(q),$ but $f(\{q_3, q_2\}) = \{q_1, q_3\} \notin \mathbf{C}^{**} \alpha - o(\mathbf{Q}).$

Definition 3.6. The function $f:(\mathbf{Q},\tau,\mathbf{C}) \to (Y,\tau',\mathbf{C})$ is called

- (i) $\mathbf{C}^*\alpha$ -closed function, symbolize by " $\mathbf{C}^*\alpha$ -c function" if $f(s) \in \mathbf{C}^*\alpha$ c(y), whenever $s \in \mathbf{C}^*\alpha c$.
- (ii) $\mathcal{C}^{**}\alpha$ -closed, symbolize by " $\mathcal{C}^{*}\alpha$ -c function" if $f(s) \in \mathcal{C}^{*}\alpha$ c(y), whenever s is a closed set in (\mathbf{Q},τ) .
- (iii) $\boldsymbol{\mathcal{C}}^{***}\alpha$ -closed function, symbolize by " $\boldsymbol{\mathcal{C}}^{***}\alpha$ -c" if $f(\boldsymbol{\varsigma})$ is closed set in $(Y,\tau',)$ whenever $\boldsymbol{\varsigma} \in \boldsymbol{\mathcal{C}}^*\alpha c(q)$.

Proposition 3.7. Let $f:(\boldsymbol{Q},\tau,\boldsymbol{\mathcal{C}}) \to (Y,\tau',\boldsymbol{\mathcal{C}})$ be a function, then

- (i) f is an closed function, when f is a $\mathbf{C}^{***}_{\alpha} c$ function.
- (ii) f is $\boldsymbol{\mathcal{C}}^* \alpha c$ function, when f is a $\boldsymbol{\mathcal{C}}^{***} \alpha c$ function.
- (iii) f is $\mathbf{\mathcal{C}}^{***}_{\alpha} c$ function when f is a $\mathbf{\mathcal{C}}^* \alpha c$ function.

(iv) f is $\mathbf{\mathcal{C}}^{**}\alpha - c$ function when f is a closed function.

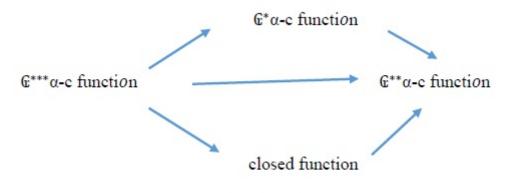
Proof. By Remark 2.3(i) and Definition 3.6 the prove holds. \Box The inverse of Proposition 3.7 is not true. See Examples 3.3 and 3.4.

Remark 3.8. When f is onto so:

- (i) $\boldsymbol{\mathcal{C}}^* \alpha$ -open and $\boldsymbol{\mathcal{C}}^* \alpha$ -closed functions are identical.
- (ii) $\boldsymbol{\ell}^* \alpha$ -open and $\boldsymbol{\ell}^{**} \alpha$ -closed functions are identical.
- (iii) $\boldsymbol{C}^{***}\alpha$ -open and $\boldsymbol{C}^{***}\alpha$ -closed functions are identical.

Proof. Considering that f is an onto function together with Definitions 3.1 3.6) prove the above statements. \Box

The following diagram explain the ties that bind these two types of closed functions



closed functions via €*α-c function

4. Some types of continuous functions

In the following, new type of continuous functions will present their definitions and the relationships between those functions will explain.

Definition 4.1. The function $f : (\mathbf{Q}, \tau, \mathbf{C}) \to (\mathbf{Q}, \tau, \mathbf{C})$ is called

- (1) $\mathbf{C}^*\alpha$ -continues function, shortly " $\mathbf{C}^*\alpha$ -continues function, if $f^{-1}(s) \in \mathbf{C}^*\alpha o(\mathbf{Q})$, for all $s \in \tau$.
- (2) strongly $\mathbf{\mathcal{C}}^* \alpha$ -continues function shortly strongly $\mathbf{\mathcal{C}}^* \alpha$ -continuous function, if $f^{-1}(s) \in \tau$, for every $s \in \mathbf{\mathcal{C}}^* \alpha o(Y)$.
- (3) $\mathbf{C}^* \alpha$ -irresolute function, shortly $\mathbf{C}^* \alpha$ -irresolute function, if $f^{-1}(\underline{s}) \in \mathbf{C}^* \alpha o(\mathbf{Q})$, for every $\underline{s} \in \mathbf{C}^* \alpha o(Y)$.

Proposition 4.2. Let $f : (\mathbf{Q}, \tau, \mathbf{C}) \to (\mathbf{Q}, \tau, \mathbf{C})$ be a function. Then

- (1) $f \alpha$ is $\alpha \mathcal{C}^*(\mathcal{Q})\alpha$ -irresolute function, when f is strongly- $\mathcal{C}^*(\mathcal{Q})\alpha$ -continuous function.
- (2) f is continuous function, when f is strongly- $\mathcal{C}^*(\mathcal{Q})\alpha$ -continuous function.

- (3) f is $\mathcal{C}^*(\mathcal{Q})\alpha$ -continuous function, when f is continuous function.
- (4) if f is a $\mathcal{C}^*(\mathbf{Q})\alpha$ -irresolute function, then f is $\mathcal{C}^*(\mathbf{Q})\alpha$ -continuous function.

Proof. (1) Let $\varsigma \in \mathfrak{C}^* \alpha o(Y)$, since f is a strongly $\mathfrak{C}^*(\mathfrak{Q}) \alpha$ -continuous function, $f^{-1}(\varsigma) \in \tau$. By Remark 3.8, $f^{-1}(\varsigma) \in \mathfrak{C}^* \alpha o(\mathfrak{Q})$, this implies that f is $\mathfrak{C}^*(\mathfrak{Q}) \alpha$ -irresolute function.

(2) Let $s \in \tau$. By Remark 2.3(i), $s \in \mathcal{C}^* \alpha o(Y)$. Since f is strongly- $\mathcal{C}^*(\mathcal{Q})\alpha$ -continuous function, $f^{-1}(s)$ is an open set in (\mathcal{Q}, τ) . This implies that f is a continues function.

(3) Let $s \in \tau$. Since f is a continues function, $f^{-1}(s)$ is an open set in (\mathbf{Q}, τ) . By Remark 2.3(i) $f^{-1}(s) \in \mathbf{C}^* \alpha o(\mathbf{Q})$, so, f ia $\mathbf{C}^*(\mathbf{Q}) \alpha$ -continuous function.

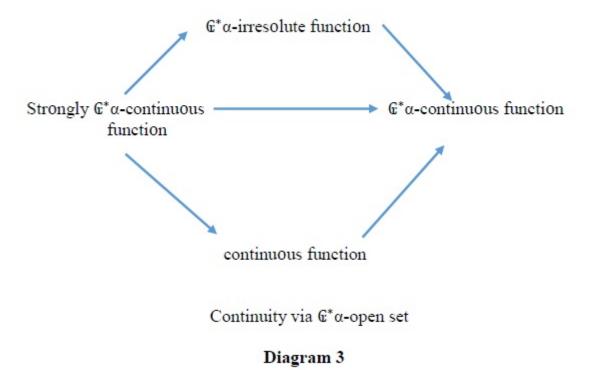
(4) Let $s \in \tau$. By Remark 2.3(i), $s \in \mathbf{C}^* \alpha o(Y)$. Since f is $\mathbf{C}^* \alpha$ -irresolute function, $f^{-1}(s) \in \mathbf{C}^* \alpha o(\mathbf{Q})$, $\alpha o f$ ia $\mathbf{C}^*(\mathbf{Q}) \alpha$ --continuous function. \Box

The inverse of Proposition 4.2 is not true in general.

Example 4.3. The function $f:(\mathbf{Q},\tau,\mathbf{C}) \to (\mathbf{Q},\tau,\mathbf{C}^{"})$ such that f(q) = q, for each $q \in \mathbf{Q}$, where $\mathbf{Q} = \{q_1,q_2,q_3\}, \tau = \{\mathbf{Q},\phi,\{q_1\}\}, \mathbf{C} = p(\mathbf{Q}) \setminus \{\phi\}, \mathbf{C}^{"} = \{s;q_1 \in s\}, \mathbf{C}^* \alpha O(\mathbf{Q}) = \{s: q_1 \in s\} \cup \{\phi\}, \mathbf{C}^{"*} \alpha O(\mathbf{Q}) = p(\mathbf{Q}), \text{ so that, } f \text{ is } \mathbf{C}^* \alpha O(\mathbf{Q}) \text{ continuous function and continuous function but it is not irresolute and not strongly because, there exists <math>\{q_2,q_3\} \in \mathbf{C}^{"*} \alpha O(\mathbf{Q}), f^{-1}\{q_2,q_3\} = \{q_2,q_3\} \notin \mathbf{C}^{"}$.

Example 4.4. Consider the function $f :(\mathbf{q},\tau,\mathbf{\mathcal{C}}) \to (\mathbf{q},\tau,\mathbf{\mathcal{C}}^{"})$ such that $f(\{q_1\}) = \{q_2\} f(\{q_2\}) = \{q_1\}, f(\{q_3\}) = \{q_3\}, \text{ where } \mathbf{q} = \{q_3,q_2,q_1\}, \tau = \{\mathbf{q},\phi,\{q_1\}\}, \mathbf{\mathcal{C}}^{"} = P(\mathbf{q}) \setminus \{\phi\}, \mathbf{\mathcal{C}} = \{s; q_1 \in s\}, \mathbf{\mathcal{C}}^* \alpha O(\mathbf{q}) = P(q), \mathbf{\mathcal{C}}^{"*} \alpha O(\mathbf{q}) = \{s;q_1 \in s\} \cup \{\phi\}.$ Then f is $\mathbf{\mathcal{C}}^* \alpha O(\mathbf{q})$ continuous function and irresolute function but it is not continues and not strongly function since $f^{-1}(q_1) = \{q_2\} \notin \tau.$

The following diagram, explains the relations between the concept in Definition 4.1.



References

- [1] G. Choquet, Sur les notions de filtre et grille, Compt. Rend. Acad. Sci. Paris 224 (1947) 171–173.
- [2] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer Math. Month. 70 (1963) 36–41.
- [3] M.O. Mustafa and R.B. Esmaeel, Separation axioms with grill-toplogical open set, J. Phys. Conf. Ser. 1879(2) (2021) 022107.
- [4] M.O. Mustafa and R.B. Esmaeel, Some properties in grill-topological open and closed sets, J. Phys. Conf. Ser. 1897(1) (2021), 012038.
- [5] A.I. Nasir and R.B. Esmaeel, On α-J-space On -J-space, JARDCS 11(1) (2019) 1379–1382.
- [6] B. Roy and M.N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math. 33(4) (2007) 771–786.
- [7] S.G. Saeed and R.B. Esmaeel, Separation axioms via ag-open set, J. Phys. Conf. Ser. 1591(1) (2020) 012099.
- [8] D. Saravanakumar and N. Kalaivani, On grill Sp-open set in grill topological spaces, J. New Theory 23 (2018) 85–92.