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Abstract

The research paper’s main goal is to propose the notions of µ-L-closed, q-compact and q-Lindelöf
spaces in generalized topological spaces. A number of properties concerning those new spaces are
investigated and the characteristics of mappings are explored. The traditional definitions and at-
tributes of common generalized topological spaces are applied to the newly formed mathematical
concept.

Keywords: µ-L-closed space, GTS, q-compact, µ-Lindelöf, (µ, ν)-continuous function.

1. Introduction and Preliminaries

The concept of topological spaces on non-empty sets is a long-standing concept that undoubtedly
encompasses the entirety of mathematics as well as many other subjects such as science, engineering,
pharmacy, and so on. In the closing years of the twentieth century, Cs’asz’ar introduced the concept
of generalized topological spaces [5] which have been studied by numerous mathematicians from all
over the world. Lots of mathematicians took a new approach as a result of this, attempting to
generalize many topological notions to this new arena.
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The generalized topology is a subset of the power set P (X) that is closed under arbitrary unions.
A non-empty subset of P (X) satisfying such condition is called generalized topology on X (denoted
by µ ) and (X,µ) is called a generalized topological space (or briefly GTS). The subsets of P (X) are
known as µ-open sets, that is; an open set A in the generalized space µ is called µ−closed if X − A
is µ−open. A subset A of µ is the union of µopen sets. Generalized topological space provided
in this article actually acts modulo small sets wrapped in an ideal, but in a different way that
simplifies things. We may readily benefit from it since ideal compliance with generalized topology
is now a basic characteristic of generalized space. Separation axioms, which were first formulated
to detect non-homeomorphic topological spaces, have been generalized by topologists. If X and Y
are two topological spaces and X fulfills a separation axiom while Y does not, then they are not
homeomorphic. These are basic concepts that can be found throughout the study of topological
spaces and its applications.

In recent years, generalized topological spaces have been used to investigate the structure and
features of certain of these [14]. In generalized topological spaces, Sarsak [21] investigated the
separation axioms µ−D0, µ−D1, , µ−D2, µ− T0, µ− T1, µ− T2, µ−R0 and µ−R1. The last
five axioms appear in more extended forms in Császâr −R0 and Csász´ar −R1. A subset A of X is
said to be Dµ−set if there exists a µ−open proper subset U and µ−open subset V such A = U − V ,
hence each µ−open proper subset of X is Dµ−open. The interior of A in X is denoted by iµ(A) is
the union each µ−open subset contained in A. The closure of A in X is denoted by Cµ(A) equals
the intersection of each µ−closed subset containing A. Now, each of iµ and Cµ are monotonic and
idempotent.

Tyagi and Choudhary [22] defined Mµ as the union of all µ−open subsets of X. A generalized
space X is said to be strong if Mµ = X. The generalized topological space (X, µ) is called µ−D0 if
for every distinct x ̸= y in X, there exists a µ−open set containing x but not y or a µ−open set
containing y but not x. Now, a Dµ−set is contained in Mµ and X − Mµis not trivial or has the
property µ − D0 . In such a class of a GTS X, the property of µ − D0 does not introduce any
non trivial partition. There are no Dµ−open sets that contain X − Mµ points. If a generalized
topological space X is closed under finite intersections, it is called a quasi-topological space [8].
Every topological space is a quasi-topological space, every quasi-topological space is a GTS, and X
is a topological space if and only if it is a topological space. A subset A of X that contains X−Mµis
called generalized-closed or g-closed [23] in a GTS X if Cµ (A)∩Mµ ⊆ U whenever A∩Mµ ⊆ U ∈ µ.
A GTS X is µ − T0 if for every x ̸= y in Mµ, there exists a µ−open subset U containing x but not
y or U contains y but not x. X is µ − T1 if for each x ̸= y in Mµ, there exists disjoint µ−open
subsets U and V such that x ∈ U , y /∈ u and y ∈ V, x /∈ V . X is a µ − T2 space if for each
x ̸= y in Mµ, there exists two disjoint µ−open subsets U and V such that x ∈ U and y ∈ V . X is
µ−regular if for each µ−closed subset F of X and a point x /∈ F, ∃ disjoint µ−open subsets U and
V such that x ∈ U and F

⋂
Mµ ⊆ V. X is a µ−normal if for each disjoint µ−closed subsets F1 and

F2 , there exist two disjoint µ−open subsets U1 and U2 such that F1 ∩Mµ ⊆ U1and F2 ∩Mµ ⊆ U2

[24]. ’A. Cs’az’ar also proposed the concepts of continuous functions and related interior and closure
operators. Using a closure operator established on generalized neighborhood systems, he examined
characterizations for the generalized continuous function (=(ψ, ψ

′
)−continuous function). A strong

generalized neighborhood system (briefly SGNS) generates a strong generalized neighborhood space
(briefly GNS). Also, the SGNS induces and generates a structure (the collection of all sg-open sets
on an SGNS) which is a topological generalization. Furthermore, ’A. Cs’az’ar introduced the quasi-
topology [9, 2] which is considered a generalized topology [7]. Consider the nonempty set X with the
power set exp(X) and the continuous function ψ : X → ee

X
, then ψ is called generalized neighborhood

system if x ∈ V and V ∈ ψ(x) [15].Typically, if ψ satisfies the following conditions, it is termed a
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strong generalized neighborhood system on X [16]:
i) x ∈ V for all V ∈ ψ (x) .
ii) For all U, V ∈ ψ (x) , U

⋂
V ∈ ψ (x) .

(X,ψ (x)) is said to be a strong generalized neighborhood space on X and V is a strong generalized
neighborhood of x ∈ X. Every strong generalized neighborhood system is, definitely, a generalized
neighborhood system. If ψ is a generalized neighborhood system onX and U ⊆ X, then the interior of
U on ψ (denoted by iψ (U)) is defined by the set of all points x ∈ U, where there exists an open subset
V ∈ ψ (x) such that V ⊆ U. For closure of U on ψ (denoted by γψ(U)) is the set of all points x ∈
U, where there exists an open subset V ∈ ψ (x) such that U ∩V ̸= ϕ. Firmly, iψ(A) ⊆ A ⊆ γψ(A) for
every subset A ofX, iψ (A

⋂
B) = iψ(A)

⋂
iψ(B), γψ (A) = X−iψ(X−A) and iψ (A) = X−γψ(X−A)

for every subsets A and B of 2X . In addition, γψ (A
⋃
B) = γψ (A)

⋃
γψ (B)[16]. Now, if (X,ψ (x))

is a SGNS on X and a subset A is contained in X, then the weak interior of a subset A on X is
I (A) = {x ∈ A, A ∈ ψ (x)} and the closure of a subset A on X C (A) = {x ∈ A, X−A /∈ ψ (x)}[15].
For the non-empty set X, the subfamily qX of eX is said to be a quasi-topology if ϕ ∈ qX , qX
is closed under finite intersection and qX is closed under arbitrary union. (X, qX) is a q−space
on X, a subset U of X is q−open and X − U is q−closed [17]. The set of all open subsets of
qX is denoted by QO(X) and the set of all closed subsets of qX is denoted by QC(X). The set
Q (x) = {V ∈ QO (X) : x ∈ V }. Typically, every topological space is a q−space on X, but
the inverse is not true. The q−interior of a subset A is qInt (A) =

⋃
{U ⊆ A : U ∈ qX} and the

q−closure of a subset A is qCl (A) =
⋃

{A ⊆ F : X − F ∈ qX}[17]. An element x of X is contained
in qInt(A) if and only if there exists U ∈ Q (x)such that U is contained in A. Furthermore, x is
contained in qCl(A) if and only if A

⋂
W ̸= ϕ ∀W ∈ Q (x) .

If each of its Lindelöf subsets is closed, a topological space is called L-closed by Hdeib and Pareek
in 1983. They gathered a lot of information and asked two questions. The first is: Is there a standard
L-closed space that isn’t a P-space? The second question is: If every countable subset in an L-closed
space is closed, when is the inverse true? Henriksen and Woods responded to the questions about
Tychonoff spaces two years later.

2. µ − L-closed Spaces

If every open cover of a topological space X has a countable subcover, it is said to be Lindelöf
[1]. A subset A of a space X is called semi-open if A ⊆ IntA and A is said to be semi-closed if X\A
is semi-open [12]. Let A be a GTS X, then A is said to be µ − semi − open if Cµ(iµ (A)) and it is
called µ − semi − closed if X − A is µ − semi − open [19]. A subset A of a GTS X is said to be
µ-Lindelöf if every cover of A by µ-open subsets has a countable subcover and a GTS X is called
µ-Lindelöf if each cover of X by µ-open sets has a countable subcover. A quasi-topological space X
is closed under finite intersection. A subset A of X is said to be semi-Lindelöf relative to X if each
cover of A by semi-open subsets of X has a countable subcover [20].

Definition 2.1. A GTS X is said to be µ−L-closed GTS if each of its µ-Lindelöf subsets is
µ−closed.

Proposition 2.2. If Y is a subspace of the generalized space X, if A is a µ− semi−closed subset of
Y and Y is closed in X ,then A is µ−closed in X. Furthermore, A =

⋂
u⊆Y u such that u is µ−open

subset of Y .

Proposition 2.3. A GTS X is said to be hereditarily µ−Lindelöf if every subspace of X is µ−Lindelöf.
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Proposition 2.4. A hereditarily µ−Lindelöf space X is µ−L-closed if it is countable and discrete.

Proposition 2.5. A subset A of a µ−L-closed GTS X is µ−Lindelöf if and only if for each family
F̃={Fα : α ∈ Λ} consisting of µ−closed subsets of X with the property that for each countable

subfamily F of F̃ such that (
⋂
F )

⋂
A ̸= ϕ, then (

⋂
F̃ )

⋂
A ̸= ϕ.

Proposition 2.6. In a µ−L-closed GTS X, X is µ− Lindelöf if and only if for each family
F̃={Fα : α ∈ Λ} consisting of µ−closed subsets of X having the property that for each countable

subfamily F of F̃ such that (
⋂
F ) ̸= ϕ, we have (

⋂
F̃ ) ̸= ϕ.

If A is a nonempty subset of a GTS X, the generalized subspace topology on A is {V ∩ A :
V ∈ µ} is denoted by µA and (A, µA) is the generalized [19]. For the GTS X. A subset A of Mµ

is called µ − Gδ− set if A is the countable intersection of µ−open subsets of X. A µ − Fσ− set
represents the countable union of µ−closed subsets of X [24]. In a GTS X, a subset U of Mµ is
called µ− dδ−open subset if U =

⋃
i∈Λ Fi

⋂
Mµ, such that Fi is regular µ− Fσ−subset of X ∀i ∈ Λ.

Furthermore, V =
⋂
i∈ΛGi

⋃
(X −Mµ) is µ− dδ−closed for all Gi regular µ− Fσ−subset of X [24].

The intersection of µ− d−closed subsets is also closed in X.

Proposition 2.7. If A is a nonempty subset of a µ−L-closed GTS X, then:

(i) µA is a GTS.
(ii) µA is a P−space.
(iii) B ⊆ A is µA−L-closed subspace iff B = F ∩ A for some µ−closed subset F .

Proposition 2.8. If A be a nonempty subset of a µ−L-closed GTS X and B ⊆ A, then B is
µ− Lindelof iff B is µA−Lindelöf.
Proof . Assume that A = {Aα : α ∈ Λ} is a cover of A by µB−open subsets of X. So,

Aα = {Uα ∩ A:α ∈ Λ} for each µ−open subset Uα. Hence, Ũ = {Uα : α ∈ Λ} is a
countable cover of A by µ−open subsets of X, but A is µ− Lindelof , there exist A countable subset
{α1, α2, . . .} of Λ h that B ⊆

⋃∞
i=1 Uαi

, thus A is µB − Lindelof.

On the other side, we claim that B is µA − Lindelof . Let Ũ = {Uα : α ∈ Λ} be a cover of B
by µ−open subsets of X, so B = {Uα ∩ B : α ∈ Λ} is a µA−open cover of A. Since B is, so
µA−Lindelof , there exists a countable subset {α1, α2, . . .} of Λ such that B ⊆

⋃∞
i=1 Uαi

. Hence, B
is µ− Lindelof . □

Proposition 2.9. If X is a µ−L−closed GTS and A is a regular µ−Gδ−subset, hence A
⋃
(X−Mµ)

is µ− dδ−closed.

Proposition 2.10. If a GTS (X,µ
′
) is finer than (X, µ) and (X, µ) is µ−L-closed then is (X,µ

′
)

is µ−L-closed [3].

Proposition 2.11. If X is a µ−L−closed GTS and A is a regular µ−Gδ−subset, then A is µ−Gδ−
set.

Proposition 2.12. If X is a µ−L−closed GTS and A is µ−dδ−closed subset, then A is µ−d-closed
and µ−closed.

Proposition 2.13. If X is a Noetherian topological space, then each subspace of a µ − L−closed
GTS is µ− L−closed GTS.

Proposition 2.14. If X is a µ − L−closed GTS, then the finite union of Noetherian subspaces of
X is Noetherian.

Proposition 2.15. Every Hausdorff Noetherian subspace of a a µ− L−closed GTS is finite, closed
and discrete.
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3. Product Properties of µ − L− Closed Generalized topological Spaces

LetX and Y be two generalized topological spaces such that f : (X, µ) → (Y, ν) is (µ, ν)−continuous,
then ∀A,B ⊆ X the following are equivalent:

(i) f (cµ (A)) ⊆ cν (f (A)) .
(ii) cµf

−1 (B) ⊆ f−1 (cν (B)) .
IfX and Y are two generalized topological spaces such that f : (X, µ) → (Y, ν) is (µ, ν)−continuous,
bijective and f−1is (µ, ν)−continouos, then f is said to be a homeomorphism [24].

Proposition 3.1. If X and Y are two generalized topological spaces such that X is µ− Lindelöf
and Y is µ−regular. If f : (X, µ) → (Y, ν) is a (µ, ν)−continuous onto function, then Y is
µ−Lindelöf.
Proof . Assume that Ũ = {uα : α ∈ Λ} is a µ−open cover of Y where uα is a µ−open subset of Y ,
then f−1 (uα) is a µ−open subset of X since f is a (µ, ν)−continuous function.
Now Y =

⋃
α∈Λ uα, hence f

−1 (Y ) = f−1
(⋃

α∈Λ uα
)
=

⋃
α∈Λ f

−1(uα) = X because f is onto.
But X is µ−Lindelöf, thus there exists a countable subset {α1, α2, . . .} ⊆ Λ such that X =

⋃
i∈N f

−1(uαi
)

and Y = f (X) =
⋃
i∈N f(f

−1 (uαi
)) ⊆ uαi

since f is onto and Y =
⋃
i∈N uαi

Is µ− Lindelöf [4]. □

Lemma 3.2. If X and Y are two generalized topological spaces such that each open cover of X
consisting of µ−open subsets has a countable refinement consisting of µ−open subsets and if f :
(X, µ) → (Y, ν) is a (µ, ν)−continuous onto function, so Y is µ−Lindelöf.

Proof . Suppose that Ũ = {uα : α ∈ Λ} is an open cover for Y where uα is a µ−open subset of Y .
{f−1 (uα) : α ∈ Λ} is an open cover of X because f is (µ, ν)−continuous.
Now, {f−1 (uα) : α ∈ Λ} has a refinement consisting of µ−open subsets of X. Thus, there exists
a countable subset {α1, α2, . . .} of Λ and {f−1(uαi

: i∈ N} is a subcover of X consisting of µ−open
subsets. {uαi

: i∈ N} is an open subcover of Y consisting of µ−open subsets of Y . Therefore, Y is
µ−Lindelöf. □

Proposition 3.3. If X and Y are two generalized topological spaces such that Y is a µ−L-closed
space. If f : (X, µ) → (Y, ν) is a (µ, ν)−continuous bijective function, then X is a µ−L-closed
space.
Proof . Assume that f : (X, µ) → (Y, ν) is a (µ, ν)−continuous bijective function.
Suppose that Y is a µ−L-closed space, let F be a µ−Lindelöf subset of X, so f(F ) is µ−Lindelöf
since f is a (µ, ν)−continuous function. But Y is a µ−L-closed space, so f(F ) is a µ−closed subset
of Y and F = f−1 (f (F )) is a µ−closed subset of X since f is a one to one function. Thus, X is a
µ−L-closed space. □

Remark 3.4. A GTS X that is µ−L-closed space is homeomorphic to itself.

Proposition 3.5. If X and Y are two generalized topological spaces such that X is µ− Lindelöf,
Y is µ−L-closed, if f : (X, µ) → (Y, ν) is a (µ, ν)−continuous bijective function, then f is
homeomorphism.
Proof . We claim that f is a µ−closed function. Assume that Ũ is a µ−closed family of X such that
C ∈ Ũ , hence C is a µ−closed proper subset of X. Now, since X is µ−Lindelöf, so C is a µ−Lindelöf
subset of X, thus f(C) is µ−Lindelöf since f is (µ, ν)−continuous. But Y is a µ−L-closed space,
so f(C) is a µ−closed subset of Y . Therefore f is a closed and homeomorphic function. □

Corollary 3.6. If a (µ, ν)−continuous function from a µ− T2−Lindelöf space to µ−L-closed space
is closed, then every (µ, ν)−continuous bijective function is homeomorphism.
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Proposition 3.7. Being a µ−L-closed space is a topological property.
Proof . If X is a µ−L-closed space and Y is any space, if f : (X, µ) → (Y, ν) is a homeomorphism.
If A is a µ−Lindelöf subset of X, hence f (A)is µ−Lindelöf because f is (µ, ν)−continuous. Since
X is a µ−L-closed space, A is µ−closed, thus f (A) is closed since f is a closed function. Therefore,
Y is a µ−L-closed space. □

For the non-empty index set Λ and X̃ = {(X i, µi) : i ∈ Λ} . If X =
∏

i∈ΛXi, then the GTS
generated by the basis {uk : uk ∈ µk, uk = Mµk except for finite number of indecies} is said to
be Cs´asz´ar generalized product GT on X and (X, µ) is the Cs´asz´ar generalized product GTS
[10].

Proposition 3.8. Let X and Y be two generalized topological spaces such that X is µ−L-closed.
For a function f such that f : (X, µ) → (Y, ν) and {(x, f (x) : x ∈ X} is a µ−Lindelöf subset of
X × Y , hence f is (µ, ν)− continuous.
Proof . If πx and πy are two projection functions. Assume that π

′
x = πx|f , π

′
x and πy are (µ, ν)−

continuous onto functions. Suppose that C̃ = {(x, f(x)) : x ∈ X}. Since C̃ is µ−Lindelöf, each
µ−closed subset of f is µ−Lindelöf , thus π

′
x is a closed projection function, that is if A ⊆ f is a

µ−closed subset, hence A is µ−Lindelöf since X is µ−L-closed space. Now, f is defined on X and
π

′
x is a bijection. Since π

′
x is closed projection, then for each µ−open set V ⊆ f, we have π

′
x(v) is

µ−open subset of X. Thus f = πy ◦ (π
′
x)

−1 is (µ, ν)−continuous. □

Theorem 3.9. If {(Xα, µ
α) : α ∈ Λ} is a family of generalized topological spaces and (X,µ) is any

generalized space such that a f : (X,µ) → (
∏

α∈Λ)(Xα, µ
α), so f is (µα1 , µα2 , . . .)−continuous iff its

composition with every projection function πα:
∏

α∈ΛXα�Xα (µα1 , µα2 , . . .)−continuous.

Proposition 3.10. If X is a Noetherian space and Y is a µ−L-closed subspace of X, then the
continuous image of Y is µ−L-closed.

4. q- Compact and Space q- Lindelöf Spaces

Definition 4.1. A topological space X is called quasi-compact (resp. Lindelöf ) if each q−open
cover of X has a finite (countable) subcover.

Definition 4.2. If X and Y are two topological spaces, then the continuous function f : X → Y is
called q−compact if for every q−open subset W of Y , f−1 (W ) = U is q−comact subset of X.

Definition 4.3. If X is a topological space and Y is a subspace of X, then Y is q−retrocompact if
the canonical injection f : Y → X is q−compact.

Lemma 4.4. A composition of q−compact functions is q−compact.

Lemma 4.5. If X is a q−compact topological space, F is a q-closed subset of X, then F is q−compact.
Proof . Suppose that X is a q−compact space and F is a q−closed subset of X. Let {Uα : α ∈ Λ}
be an open cover of F where Uαis a q−open subset of X ∀α ∈ Λ, there exist a q−open subset Vαsuch
that Uα = F

⋂
Vα ∀α ∈ Λ Now, {(X − F )

⋃
Vα : α ∈ Λ} is an open cover of X, but X is q−compact,

there exists a finite subset {α1, α2, . . . , αn} of Λ such that X =
⋃
i∈N (X − F )

⋃
Vαi

∀α ∈ Λ. Hence,
F =

⋃
i∈N Uαi

∀α ∈ ΛThus, F is q−compact. □
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Proposition 4.6. If X is a Hausdorff space and a subset F of X is q−compact, then F is q−closed.
Proof . Suppose that x ∈ X and F is q−compact in X such that x /∈ F. If Uα and Vα are two disjoint
q−open subsets of X such that x ∈ Vα , x /∈ F ∀α ∈ Λ Now, F is q-compact, so F ⊆

⋃
α∈Λ Uα

, there
exists a finite subset {α1, α2, . . . , αn} of Λ such that F ⊆

⋃
i∈N Uαi

∀α ∈ Λ, so V =
⋂
i∈N Vαi

contains
x and V

⋂
Uαi

= ϕ ∀i∈ N. Thus F is a q−closed subset of X. □

Proposition 4.7. q−compactness is invariant under continuous functions.
Proof . Let X and Y be two topological spaces such that X is q−compact space, let Uα be a
q−open subset of Y ∀α ∈ Λ such that Y =

⋃
α∈Λ Uα. If f : X → Y is a continuous function, then

X =
⋃
α∈Λ f

−1(Uα), but X is q-compact, thus there exists a finite subset {α1, α2, . . . , αn} of Λ such
that X =

⋃
i∈N f

−1(Uαi
). By continuity of f , f (X) =

⋃
i∈N Uαi

. Thus Y is q−compact. □

Proposition 4.8. q − retrocompactness is invariant under continuous functions.
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