Int. J. Nonlinear Anal. Appl. 13 (2022) 1, 3929-3935 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.6192



# Some types of Smarandache filters of a Smarandache BH-algebra

Qasim Mohsin Luhaib<sup>a,\*</sup>, Husein Hadi Abbass<sup>b</sup>

<sup>a</sup> Thi-Qar General Directorate of Education, Ministry of Education, Iraq <sup>b</sup>Department of Mathematics, Faculty of Education for Girls, University of Kufa Najaf, Iraq

(Communicated by Ali Jabbari)

## Abstract

In this paper, the notions of a Smarandache p-filter, a Smarandache n-fold p-filter, Smarandache q-filter, a Smarandache-n-fold q-filter of a Smarandache BH-Algebra are introduced. Some properties of them with some theorems, proportions and examples are given.

*Keywords:* BCK-algebra, BH-algebra, Smarandache filter. 2020 MSC: 13L99

### 1. Introduction

The idea of BCK-algebras was formulated first in [4, 5]. In the same year another algebraic structure called BCI-algebra which was a popularization of a BCK-algebra was given by K. Iséki [6]. In 1983, Hu and Li introduced the notion of a BCH-algebra which was a popularization of BCK/BCI-algebras [8, 11]. Hoo show that the notions of an ideal and a filter in a BCI-algebra [7]. A BH-algebra is an algebraic structure introduced by Jun et al in [10] which was a popularization of BCH/BCI/BCK-algebras. The notions of a Smarandache BCI-algebra, Smarandache ideal of a Smarandache BCI-algebra are given by Jun in [9]. Abbass and Dahham introduced the concept of completely closed filter of a BH-algebra in [1]. Abbass and Luhaib introduced the idea of Smarandache filter of a Smarandache BH-Algebra in [3]. In this paper, the notions of a Smarandache-p-filter, a Smarandache n-fold p-filter, Smarandache q-filter, a Smarandache-n-fold q-filter and of a Smarandache BH-Algebra are given.

\*Corresponding author

*Email addresses:* qasimmohsinluhaib@gmail.com (Qasim Mohsin Luhaib), husseinh.abbas@uokufa.edu.iq (Husein Hadi Abbass)

# 2. Preliminaries

In this section, several basic connotations about a BCI-algebra, a BCK-algebra, a Smarandache BH-algebra, and a Smarandache filter of a Smarandache are reviewed.

**Definition 2.1.** [9] A BCI-algebra is an algebra  $(X, \Box, 0)$ , where X is a nonempty set,  $\Box$  is a binary operation and 0 is a constant, for all  $x, y, z \in X$ , satisfying the following axioms:

i. ((x□y)□(x□z))□(z□y) = 0,
ii. (x□(x□y))□y = 0,
iii. x□x = 0,
iv. x□y = 0 and y□x = 0 imply x = y.

**Definition 2.2.** [8] BCK-algebra is a BCI-algebra satisfying the axiom:  $0 \Box x = 0$ , for all  $x \in X$ .

**Definition 2.3.** [10] A BH-algebra is a nonempty set X with a constant 0 and a binary operation  $\Box$  satisfying the following conditions:

i. x □ x = 0, for all x∈X.
ii. x □ y = 0 and y □ x = 0 imply x = y, for all x, y∈X.
iii. x □ 0 = x, for all x∈X.

**Definition 2.4.** [10] A nonempty subset S of a BH-algebra X is called a subalgebra of X if  $x \Box y \in S$ , for all  $x, y \in S$ .

**Definition 2.5.** [1] A filter of a BH-algebra X is a non-empty subset F of X such that: (F<sub>1</sub>) if  $x \in F$  and  $y \in F$ , then  $y \square (y \square x) \in F$  and  $x \square (x \square y) \in F$ . (F<sub>2</sub>) If  $x \in F$  and  $x \square y = 0$  then  $y \in F$  for all  $y \in X$ . Further F is a closed filter if  $0 \square x \in F$ , for all  $x \in F$ .

**Definition 2.6.** [2] Let X be a BH-algebra and F be a filter of X. Then F is called a p-filter denoted by p - f if it satisfies:

if 
$$x, y \in F$$
 imply  $(x \square z) \square (y \square z) \in F$  for all  $y, z \in X$ .

**Definition 2.7.** [2] Let F be a filter of a BH-algebra X. If  $x, y \in F$  and there exists a fixed  $n \in N$  such that  $z^n \in X$  imply  $(x \square z^n) \square (y \square z^n) \in F$ , for all  $z \in X$ . Then F is said to be a **n-fold p-filter** of X.

**Definition 2.8.** [2] Let X be a BH-algebra and F be a filter of X. Then F is called a *q*-filter denoted by q-f if it satisfies:

If 
$$x \Box z \in F$$
,  $y \in F$  imply  $x \Box (y \Box z) \in F$ , for all  $x, z \in X$ .

**Definition 2.9.** [2] Let X be a BH-algebra, F be a filter of X, and there exists a fixed  $n \in N$  such that  $x \square z^n \in F, y \in F$ , for all  $x, z \in imply x \square (y \square z^n) \in F$ . Then F is called a n-fold q-filter of X.

**Definition 2.10.** [3] A Smarandache BH-algebra is defined to be a BH-algebra X in which there exists a proper subset Q of X denoted by S. BH-algebra such that

i.  $0 \in Q$  and  $|Q| \ge 2$ .

ii. Q is a BCK-algebra under the operation of X.

**Definition 2.11.** [3] A non-empty subset F of a S. BH-algebra X is called a **Smarandache filter** of X denoted by S.f, if it satisfies  $(F_1)$  and

(F<sub>3</sub>) If  $x \in F$  and  $x \Box y = 0$  then  $y \in F$ ,  $\forall y \in Q$ .

**Proposition 2.12.** [3] Let X be a S. BH-algebra and let  $\{F_{\beta}, \beta \in \Omega\}$  be a family of S.f of X. Then  $\bigcap_{\beta \in \Omega} F_{\beta}$  is an S.f of X.

**Proposition 2.13.** [3] Let X be a S.f and let  $\{F_i, i \in \lambda\}$  be a chain of S.f of X. Then  $\bigcup F_\beta$  is a S.f

of X.

**Theorem 2.14.** [3] Let X be a S. BH-algebra, and F be a S.f of X such that  $x \Box y \neq 0$ , for all  $y \notin F$  and  $x \in F$ . Then F is a filter of X.

## 3. Main Results

In this section, the notions of a Smarandache-p-filter, a Smarandache n-fold p-filter, Smarandache q-filter, a Smarandache-n-fold q-filter and of a Smarandache BH-Algebra of a Smarandache BH-Algebra are introduced. Also, some properties of these notions are studied.

**Definition 3.1.** Let X be a S. BH-algebra and F be a Smarandache filter of X. Then F is called a Smarandache p-filter of X and denoted by S.p-f of X if it satisfies:

If 
$$x, y \in F$$
 imply  $(x \Box z) \Box (y \Box z) \in F$  for all  $z \in Q$ 

Further F is a Smarandache closed p-filter if  $0 \square x \in F$ , for all  $x \in F$ .

**Example 3.2.** Let  $X = \{0, 1, 2, 3\}$ . Define  $\Box$  as follows:

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 2 | 3 |
| 1 | 1 | 0 | 1 | 2 |
| 2 | 2 | 2 | 0 | 1 |
| 3 | 3 | 3 | 2 | 0 |

where  $Q = \{0, 1\}$ , the subset  $F = \{0, 1, 2\}$  is a S.P.f of X. But is not p.f of X, since  $z = 3, x = 3, y = 0, (3 \square 3) \square (0 \square 3) = 3 \notin F$ .

**Proposition 3.3.** Let X be a S. BH-algebra and F be a p-f of X. Then F is a S.p-f of X.

**Proof**. Directly since  $Q \subseteq X$ .  $\Box$ 

**Theorem 3.4.** Let X be a S. BH-algebra, and F be a S.p-f of X such that  $x \Box y \neq 0$ ,  $y \notin F$  if  $(x \Box z) \Box (y \Box z) \notin F$  and  $x \in F, z \in X$ . Then F is a p.f of X.

 $\beta \in \Omega$ 

**Proof**. Let *F* be a S.p-f of *X* it follows that By Definition3.1 is a S.f of *X*. Since  $x \Box y \neq 0, y \notin F, x \in F$ , By Theorem 2.14, *F* is a filter of *X*.

Now, let  $x, y \in F, z \in X$ , then we have two cases:

**Case (I):** If  $z \in Q$ , imply  $(x \square z) \square (y \square z) \in F$  because by definition 3.1 F is S.p-f of X,

**Cases(II):** If  $z \notin Q$ , then either  $(x \Box z) \Box (y \Box z) \in \notin F$  or  $(x \Box z) \Box (y \Box z) \in F$ .

Suppose  $(x \square z) \square (y \square z) \notin F$ , then  $y \notin F$ , this is a contradiction. Thus  $(x \square z) \square (y \square z) \in F$ . Therefore, is a p.f of X.  $\square$ 

**Proposition 3.5.** Let X be a Smarandache BH-algebra, and let  $\{F_{\beta}, \beta \in \Omega\}$  be a family of S.p-fs of X. Then  $\bigcap_{\beta \in \Omega} F_{\beta}$  is a S.p-f of X.

**Proof**. Let  $\{F_{\beta}, \beta \in \Omega\}$  be a family of S.p-fs of X, imply  $\{F_{\beta}, \beta \in \Omega\}$  be a family of Smarandache filters of X. Hence, By Proposition 2.12,  $\bigcap_{\beta \in \Omega} F_{\beta}$  is a S.f of X. Now, let  $x, y \in \bigcap_{\beta \in \Omega} F_{\beta}$  and  $z \in Q$ . Then  $x, y \in F_{\beta}$  and  $z \in Q, \forall \beta \in \Omega$  implies that  $(x \Box z) \Box (y \Box z) \in F_{\beta}, \forall \beta \in \Omega$ , because  $F_{\beta}$  is a S.p-f of

Then  $x, y \in F_{\beta}$  and  $z \in Q, \forall \beta \in \Omega$  implies that  $(x \square z) \square (y \square z) \in F_{\beta}, \forall \beta \in \Omega$ , because  $F_{\beta}$  is a S.p-f of X, for all  $\beta \in \Omega$ , this mean that  $(x \square z) \square (y \square z) \in \bigcap_{\beta \in \Omega} F_{\beta}$ . Therefore  $\bigcap_{\beta \in \Omega} F_{\beta}$  is a S.p-f of X.  $\square$ 

|   | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 2 | 2 | 2 | 0 | 0 | 1 | 0 |
| 3 | 3 | 2 | 2 | 0 | 1 | 1 |
| 4 | 4 | 4 | 4 | 4 | 0 | 1 |
| 5 | 5 | 5 | 5 | 5 | 5 | 0 |

**Example 3.6.** Let  $X = \{0, 1, 2, 3, 4, 5\}$ . Define  $\Box$  as follows:-

where  $Q = \{0, 2\}$ . The subset  $F_1 = \{0, 2, 3\}$  and  $F_2 = \{0, 2, 5\}$  are two S.p-f of X, but  $F_1 \cup F_2 = \{0, 2, 3, 5\}$  is not a S.p-f of X, since  $x = 3, y = 5, z = 0 \in Q$  but  $(3 \square 0) \square (5 \square 0) = 1 \notin F_1 \cup F_2$ ,

**Proposition 3.7.** Let X be a S. BH-algebra, and let  $\{F_{\beta}, \beta \in \Omega\}$  be a chain of S.P.f of X. Then  $\bigcup_{\beta \in \Omega} F_{\beta}$  is a S.P.f of X.

**Proof**. Let  $\{F_{\beta}, \beta \in \Omega\}$  be a chain of S.P.f of X. it follows that  $\{F_{\beta}, \beta \in \Omega\}$  be a chain of Smarandache filters of X [By definition 3.1]. This together with Proposition (2.13) implies that  $\bigcup_{\beta \in \Omega} F_{\beta}$  is a Smarandache filter of X.

Now, let  $x, y \in \bigcup_{\beta \in \Omega} F_{\beta}, z \in Q$ , then there exists  $F_n, F_m \in \{F_{\beta}, \beta \in \Omega\}$ , such that  $x \in F_j$  and  $y \in F_k$ . Then either  $F_n \subseteq F_m$  or  $F_m \subseteq F_n$ . If  $F_n \subseteq F_m$ , it follows that  $x, y \in F_m$  and  $z \in Q$ . So, there exists  $m \in \Omega$  such that  $(x \square z) \square (y \square z) \in F_m$ , because  $F_i$  is a S.P.f of  $X, (\forall \beta \in \Omega)$ . Then  $(x \square z) \square (y \square z) \in \bigcup_{\beta \in \Omega} F_{\beta}$ . Similarly,  $F_m \subseteq F_n$  implies that  $\bigcup_{\beta \in \Omega} F_{\beta}$  is a S.P.f of X.  $\square$ 

**Definition 3.8.** Let F be a Smarandache filter of a S. BH-algebra X. If  $x, y \in F$  and there exists a fixed  $n \in N$  such that  $z^n \in Q$  imply  $(x \square z^n) \square (y \square z^n) \in F$ , for all  $z \in Q$ . Then F is said to be a Smarandache n-fold p-filter of X, denoted by a **S. n-fold. p-f** of X.

**Example 3.9.** Let  $X = \{0, 1, 2, 3, 4\}$  be as in example 3.6. The filter  $F = \{0, 2, 3\}$  is a S. 2-fold. *p-f of X*.

**Theorem 3.10.** Let X be a S. BH-algebra, and F be a S. n-fold. p-f of X such that  $x \Box y \neq 0, y \notin F$ if  $(x \Box z^n) \Box (y \Box z^n) \notin F$  and  $x \in F, z^n \in X$ , for a fixed  $n \in N$ . Then F is a n-fold p-filter of X.

**Proof**. Let F be a S. n-fold. P.f of X, then By Definition 3.8, F is a S.f of X. Since  $x \Box y \neq 0, y \notin F, x \in F$ , By Theorem 2.14, F is a filter of X. Now, let  $x, y \in F, z^n \in X$ , then we have the following two cases:

**Case (I):** If  $z^n \in Q$ , then  $(x \square z^n) \square (y \square z^n) \in F$ , because by Definition 3.8, F is S. *n*-fold. P.f of X,

**Cases(II):** If  $z^n \notin Q$ , then either  $(x \square z^n) \square (y \square z^n) \notin F$  or  $(x \square z^n) \square (y \square z^n) \in F$ .

Suppose that  $(x \Box z^n) \Box (y \Box z^n) \notin F$ , then  $y \notin F$ , this a contradiction. Thus  $(x \Box z^n) \Box (y \Box z^n) \in F$ , consequently F is a *n*-fold p-filter of X.  $\Box$ 

**Proposition 3.11.** Let X be a S. BH-algebra, and let  $\{F_{\beta}, \beta \in \Omega\}$  be a family of S. n-fold. p-f of X. X. Then  $\bigcap_{\beta \in \Omega} F_{\beta}$  is a S. n-fold. p-f of X.

**Proof** . Straightforward.  $\Box$ 

**Proposition 3.12.** Let X be a Smarandache BH-algebra, and let  $\{F_{\beta}, \beta \in \Omega\}$  be a chain of S. *n-fold.* p-f of X. Then  $\bigcup_{\beta \in \Omega} F_{\beta}$  is a S. n-fold. p-f of X.

**Proof** . Straightforward.  $\Box$ 

**Definition 3.13.** Let X be a S. BH-algebra and F be a Smarandache filter of X. Then F is called a Smarandache q-filter and denoted by a S.q-f of X if it satisfies:- If  $x \Box z \in F, y \in F$  imply  $x \Box (y \Box z) \in F$  for all  $x, z \in Q$ .

**Example 3.14.** Let  $X = \{0, 1, 2, 3, 4\}$ . Define  $\Box$  as follows:

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 2 |
| 2 | 2 | 2 | 0 | 2 | 0 |
| 3 | 3 | 1 | 3 | 0 | 3 |
| 4 | 4 | 4 | 4 | 4 | 0 |

Where  $Q = \{0, 2\}$ . The subset  $F = \{0, 1, 2\}$  is a S.q-f of X but it is not a q-filter of X. Since x = 3, y = 0, z = 3 and  $3 \square (0 \square 3) = 3 \notin F$ 

 $\beta \in \Omega$ 

**Proposition 3.15.** Let X be a S. BH-algebra and F is a q-filter of X. Then F is a S.q.f of X.

**Proof** . Since  $Q \subseteq X$ , the proof is clear.  $\Box$ 

**Remark 3.16.** Consider the  $Q_1$ - S. BH-algebra and  $Q_2$ -Smarandache BH-algebra X such that  $Q_1 \subseteq Q_2$ . The  $Q_1$ -Smarandache q-filter of X may be not a  $Q_2$ -Smarandache q-filter of X as in the following example. Consider  $X = \{0, 1, 2, 3\}$  in example 3.14, where  $Q_1 = \{0, 1\}, Q_2 = \{0, 2, 3\}$  are BCK-algebras and  $Q_1 \subseteq Q_2$ :  $F = \{0, 1, 2\}$  is a  $Q_1$ -Smarandache q-filter of X, but it is not  $Q_2$ -Smarandache q-filter of X. Since x = 3, y = 2, z = 3 implies that  $3 \square (2 \square 3) = 3$ , but  $3 \notin F$ .

**Proposition 3.17.** Let X be a S. BH-algebra and F be a S.q-f of X, such that  $F \subseteq Q$ . Then F is a subalgebra of X.

**Proof**. Let  $x, y \in F$ . Since  $z \in Q$ , choose z = 0, we have  $x = x \square 0 \in F, y \in F, x, 0 \in Q$ , because  $F \subseteq Q$ . This Implies that  $x \square (y \square 0) \in F$ , because by Definition 3.13, F is a S.q.f of X. Then  $x \square y \in F$ . Hence, F is a subalgebra.  $\square$ 

**Theorem 3.18.** Let X be a S. BH-algebra, and be a S.q-f of X such that  $x \Box y \neq 0, x \Box z \notin F$ , and  $y \notin Fifx \Box (y \Box z) \notin F$  and  $x \in F, z \in X$ . Then F is a q-filter of X.

**Proof**. Let F be a S.q.f of X, then By Definition 3.13, it is a S.f of X. Since  $x \Box y \neq 0$ ,  $y \notin F$ ,  $x \in F$ , By Theorem 2.14, F is a filter of X.

Now, let  $x \square z \in F, y \in F, x, z \in X$ , then we have the following two cases:

**Case** (I): If  $x, z \in Q$ , then by Definition 3.13,  $x \square (y \square z) \in F$ ,

**Cases(II):** If  $x, z \notin Q$ , then either  $x \square (y \square z) \notin F$  or  $x \square (y \square z) \in F$ .

If  $x \square (y \square z) \notin F$ , then  $y = \in F$ , or  $x \square z \notin F$ , contradiction. Since  $x \square z \in F, y \in F$ , we have  $x \square (y \square z) \in F$ . Hence, it is a q-filter of X.  $\square$ 

**Proposition 3.19.** Let X be a S. BH-algebra, and let  $\{F_{\beta}, \beta \in \Omega\}$  be a family of S.q-f of X. Then  $\bigcap_{\beta \in \Omega} F_{\beta}$  is a S.q-f of X.

**Proof**. Let  $\{F_{\beta}, \beta \in \Omega\}$  be a family of S.q-fs of X, then By Definition 3.13,  $\{F_{\beta}, \beta \in \Omega\}$  be a family of S.f of X. Thus, By Proposition 2.12,  $\bigcap F_{\beta}$  is a S.f of X.

Now, let  $x \square z \in \bigcap_{\beta \in \Omega} F_{\beta}$ ,  $y \in \bigcap_{\beta \in \Omega} F_{\beta}$  such that  $x, z \in Q$ , it follows that  $x \square z \in F_{\beta}, y \in F_{\beta}$ , such

that  $x, z \in Q$ , imply  $x \square (y \square z) \in F_{\beta}$ ,  $(\forall \beta \in \Omega)$ , because  $F_i$  is a S.q-f of X. Hence,  $x \square (y \square z) \in \bigcap F_{\beta}$ .

Therefore,  $\bigcap_{\beta \in \Omega} F_{\beta}$  is a S.q-f of X.  $\Box$ 

**Remark 3.20.** Let X be a S. BH-algebra and let  $f_1, f_2$  be a S.q.f of X. Then  $f_1 \cup f_2$  is not necessary a S.q.f of X.

**Example 3.21.** Consider  $X = \{0, 1, 2, 3, 4, 5\}$  be as in example 3.6, where  $Q = \{0, 1\}$ . The subset  $F_1 = \{0, 1, 3\}$  and  $F_2 = \{0, 1, 4\}$  are two S.q-fs of X, but  $F_1 \cup F_2 = \{0, 1, 3, 4\}$  is not a S.q-f of X, because  $3, 4 \in F_1 \cup F_2$ , but  $3 \square (3 \square 4) = 2 \notin F_1 \cup F_2$ . Then  $F_1 \cup F_2$  it is not a S.q-f.

**Proposition 3.22.** Let X be a S. BH-algebra and let  $\{F_{\beta}, \beta \in \Omega\}$  be a chain of S.q.f of X. Then  $\bigcup F_{\beta}$  is a S.q.f of X.

**Proof**. Let  $\{F_{\beta}, \beta \in \Omega\}$  be a chain of S.q.f of X. Then by Definition 3.13  $\{F_{\beta}, \beta \in \Omega\}$  is a chain of S.f of X. Thus, by Proposition 2.13,  $\bigcup_{\beta \in \Omega} F_{\beta}$  is a S.f of X,

Now, let  $x \square z \in \bigcup_{\beta \in \Omega} F_{\beta}$ ,  $y \in \bigcup_{\beta \in \Omega} F_{\beta}$ , such that  $x, z \in Q$ , then there exist  $F_n, F_m \in \{F_{\beta} : \beta \in \Omega\}$ , such that  $x \square z \in F_n$  and  $y \in F_m$ . Thus either  $F_n \subseteq F_m$  or  $F_m \subseteq F_n$ .

If  $F_n \subseteq F_m$ , then  $x \square z \in F_m, y \in F_m$ , such that  $x, z \in Q$ , thus there exists  $m \in \Omega$  such that  $x \square (y \square z) \in F_m$ , because  $F_\beta$  is a S.q.f of X, for all  $\beta \in \Omega$ . Consequently,  $x \square (y \square z) \in \bigcup F_\beta$ .  $\beta \in \Omega$ 

Similarly,  $F_m \subseteq F_n$ . Hence,  $\bigcup_{\beta \in \Omega} F_\beta$  is a S.q-f of X.  $\Box$ 

### References

- [1] H.H. Abbass and H. A. Dahham, A Competity Closed Ideal of a BG-Algebra, First Edition Scholar's Press, Germany, 2016.
- H.H. Abbass and A.A. Hamza, On U-BG-Filter and Ideal of a U-BG-BH- Algebra, M.Sc thesis, Kufa University, [2]2017.
- [3]H.H. Abbass and Q. M. Luhaib, On Smarandache Filter of a Smarandache BH-Algebra, J. Phys. Conf. Ser. 1234(1) (2019) 12099.
- H. Bordbar, Y. B. Jun, and S.-Z. Song, Homomorphic image and inverse image of weakclosure operations on [4]ideals of BCK-algebras, Math. 8(4) (2020) 567.
- [5]Y. Imai and K. Iséki, On Axiom System of Propositional Calculi XIV, Proc. Japan Acad. 42 (1966) 19–20.
- [6]K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26-29
- C.S. Hoo, Filters and ideals in BCI-algebra, Math. Japonica 36 (1991) 987-997. [7]
- Q.P. Hu and X. Li, On BCH algebras, Sem. Notes Kobi Univ, 11(2) (1983) 313320. [8]
- [9] Y.B. Jun, Smarandache BCC-algebras, Int. J. Math. Math. Sci. 18 (2005) 2855–2861.
- [10] Y.B. Jun, E.H. Roh and H.S. Kim, On BH-algebras, Sci, Math. Japonicae 1(1) (1998) 347–354.
- [11] Q. M. Luhaib and Hu. H. Abbass, On a smarandache closed and completely filter of a smarandache bh-algebra, IOP Conf. Ser. Mater. Sci. Engin. 928 (2020) 042017.