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Abstract

We are starting to construct a new theory of linear operators of various types defined on fuzzy normed
space inspired by the theory of linear operators of various types defined on ordinary normed space.
The first goal in this paper is to introduce the notion of a fuzzy bounded linear operator on a-fuzzy
normed space then basic properties of this type of linear operators are proved. The second aim in
this paper is to introduce the notion of a fuzzy compact linear operator on a-fuzzy normed space
then we shall discuss important general properties of this type of linear operators.

Keywords: a-fuzzy normed space, Fuzzy bounded linear operator, Fuzzy compact linear operator.
2020 MSC: 46S40, 47S40

1. Introduction

We are starting to construct a new theory of fuzzy functional analysis inspired by the classical
functional analysis theory. The literature review of this paper is as follows in 2011 in [3] Kider
introduce his first definition of fuzzy normed space also in [4] he introduce a completion of this
fuzzy normed space. Again in [5] Kider introduce a new definition of fuzzy normed space. In [12, 2]
Kider and Kadhum introduce the fuzzy norm of a linear fuzzy bounded operators then they proved
basic properties of this fuzzy norm of fuzzy bounded operators. Kider and Ali in [1, 8] introduce
the definition of fuzzy normed algebra and they discuss important general properties of this type of
algebra.

Kider and Gheeab in [9, 10] introduced the notion general fuzzy normed space after that they
proved basic and important properties of this type of fuzzy normed spaces. In [13], Kider and
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Kadhum proved basic properties of fuzzy compact linear operators on fuzzy normed spaces. In [7]
Kider introduce a new type of fuzzy metric he call it fuzzy soft metric and he proved some properties
of fuzzy soft metric space also Kider in the same year in [6] he introduced the notion of a-fuzzy
metric and he proved some properties of a-fuzzy metric space. Kider and M. Gheeab in [11] proved
some properties of the adjoint operator of a general fuzzy bounded operator. Khudhair and Kider
in [14, 16, 17] introduce the notion a-fuzzy norm then they discuss important general properties of
a-fuzzy normed space.

The organization of this paper are as follows, the aim of section two is to recall the a-fuzzy normed
space with its basic properties and the goal of section three is to investigate important properties
when the linear operator is fuzzy closed. Finally the main results in this paper are in section four
which is designed to investigate important properties when the linear operator is fuzzy compact.

2. The a-fuzzy normed space and its basic properties

Remark 2.1. [15] If ⊚ is a t-conorm then
(i)for all 0 < a < 1, 0 < b < 1, with a > b, there exists c, 0<c<1, satisfies a > b⊚ c.
(ii) for all a, 0 < a < 1, there exists 0 < b < 1, satisfies b⊚ b ≤ a.

Example 2.2. [15] a ⊚ b = a + b − ab, the algebra product is a continuous t-conorm, for all 0 ≤
a, b ≤ 1.

Definition 2.3. [14] If ⊚ is a continuous t-conorm and aR : R → I is a fuzzy set then aR is called
a-fuzzy absolute value on R if the following are satisfied, for all r, s ∈ R:

(i) aR(r) ∈ (0, 1],
(ii) aR(r) = 0 ⇐⇒ if r = 0,
(iii) aR(σr) ≤ aR(σ)aR(r),
(iv) aR(r + s) ≤ aR(r) ⊚ aR(s).
Then (R, aR, ⊚) is called a-fuzzy absolute value space.

Definition 2.4. [14] Any arbitrary fuzzy Cauchy sequence (rk) in R is fuzzy, if there exists r ∈ R,
satisfying rk → r, then R is called fuzzy complete.

Definition 2.5. [14] Let ⊚ be a continuous t-conorm and let Z be a vector space over R. If (R, aR,
⊚) is a-fuzzy absolute value space and nZ: Z→[0, 1] be a fuzzy set then nZ is called a-fuzzy norm
on Z if it satisfy the following conditions for all z, w ∈ Z and for all 0̸= α ∈ R:

(i) nZ(z) ∈(0, 1],
(ii) nZ(z) =0 ⇐⇒ z=0,
(iii) nZ(σz) ≤ aR(σ) nZ(z),
(iv) nZ(z + w) ≤ nZ(z) ⊚ nZ (w).
Then (Z, nZ, ⊚) is called a-fuzzy normed space.

Example 2.6. [14] If t⊚s=t + s −ts for all t, s ∈I, Z=C[p, b], and (R, aR, ⊚) is a-fuzzy absolute
space define nZ(z) = maxr∈[p, b] aR[z(r)], for all z ∈ Z. Then (Z, nZ, ⊚) is a-fuzzy normed space.

Lemma 2.7. [14] nZ(z−w) = nZ(w−z), for all z, w ∈ Z, when (Z, n, ⊚) is a-fuzzy normed space.

Definition 2.8. [14] Let (zk) ∈ Z where (Z, nZ , ⊚) is a-fuzzy normed space. Then (zk) is fuzzy
converges to the limit z as k→ ∞ if, for all, s ∈ (0,1), there exists N ∈ N such that nZ(zk−z) <
s, for all k≥N. If (zk) is fuzzy converge to the limit z or limn→∞ nZ(zk−z) =0. For simply we write
limk→∞ zk =z or zk→z as k → ∞.
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Definition 2.9. [14] fb(w, r)= {z ∈Z: n(w−z) < t} is open fuzzy ball and fb[w, r]= {z ∈ Z:
n(w−z) ≤ t} is the open closed fuzzy ball with the center u ∈Z and radius t, where (Z, n, ⊚) is
a-fuzzy normed space.

Lemma 2.10. [14] The function z 7−→ nZ(z) is a fuzzy continuous function from Z into R when (Z,
n, ⊚) and (R, n, ⊚) are a-fuzzy normed spaces.

Lemma 2.11. [14] If ∀ s ∈ (0, 1), ∃ N ∈ N such that nZ(zk−zm) < s, ∀ k, m ≥N then (zk) is a
fuzzy Cauchy sequence in a-fuzzy normed space (Z, nZ, ⊚).

Definition 2.12. [14] If fb(w, j) ⊆W for any arbitrary w∈W and for some j ∈(0, 1), then W⊆Z
is fuzzy open in the a-fuzzy normed space that (Z, nZ , ⊚). Also, D⊆Z is fuzzy closed if DC is
fuzzy open.

Moreover the fuzzy closure of D, D is defined to be the smallest fuzzy closed set contains D.

Definition 2.13. [14] If B = Z, where B⊆Z, then B is fuzzy dense in the a-fuzzy normed space
(Z, nZ , ⊚).

Theorem 2.14. [14] fb(z, j) is a fuzzy open set in a-fuzzy normed space (Z, nZ, ⊚).

Definition 2.15. [14] If for any arbitrary fuzzy Cauchy sequence (zk) in a-fuzzy normed space (Z,
nZ, ⊚) there exists z ∈ Z with zk →z, then Z is known as fuzzy complete.

Definition 2.16. [14] If zk →z ∈ Z, then (zk) is fuzzy Cauchy in a-fuzzy normed space (Z, nZ, ⊚).

Theorem 2.17. [14] d∈D if and only if there exists(dk) ∈ D with dk→ d when D⊂Z and (Z, nZ,
⊚) is a-fuzzy normed space.

Theorem 2.18. [14] If (Z1, n1, ⊚), (Z2, n2, ⊚), . . . , (Zk, nk, ⊚) are a-fuzzy normed spaces then
(Z, n, ⊚) is fuzzy complete a-fuzzy normed space if and only if (Z1, n1, ⊚), (Z2, n2, ⊚), . . . , (Zk,
nk, ⊚) are fuzzy complete, where Z= Z1 × Z2 × . . . × Zk and n[(z1, z2, . . . , zk)]=n1(z1) ⊚ n2(z2)
⊚, . . . , ⊚ nk(zk) for all (z1, z2, . . . ,zk) ∈ Z.

Definition 2.19. [16] If (Z, nZ, ⊚) and (W, nW, ⊚) are two a-fuzzy normed spaces. Then the oper-
ator L:Z→W is called fuzzy continuous at z∈Z. If for all r∈ (0, 1), ∃ t ∈ (0, 1), with nW[L(z)−L(y)]
< r, for any y∈Z with nZ(z−y)< t. Also L is said to be fuzzy continuous on Z if it is fuzzy continuous
at every point of Z.

Theorem 2.20. [16] If D={z∈Z: 0<n(z)≤1} is a fuzzy closed fuzzy in Z and is compact then Z
must be finite dimension where (Z, n, ⊚) is a-fuzzy normed space

Definition 2.21. [16] The operator L:D(L)→Y is said to be fuzzy bounded if there exists s ∈
(0, 1) with

nY [L(z)] < snZ(z), for each z∈D(L), (2.1)

where (Z, nZ, ⊚) and (Y, nY , ⊚) are two a-fuzzy normed spaces.

Example 2.22. [16] Let Z be that vector space of all polynomials on [0,1] with nZ(u) =maxt∈IaR[u(t)].
Then (Z, nZ, ⊚) is a-fuzzy normed space. Let L:Z→Z be defined by L[u(t)]=u(t)′ then L is linear
operator and L is not fuzzy bounded.
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Notation .[16] Suppose that (Z, nZ , ⊚) and (W, nW , ⊚) are two a-fuzzy normed spaces. Put
afb(Z, W) = {L:Z→Z, L is a linear fuzzy bounded operator}.

Theorem 2.23. [16] Suppose that (Z, nZ, ⊚) and (W, nW , ⊚) are two a-fuzzy normed spaces.
Define nafb(Z, W)(L) = supz∈D(L)nW (Lz) for all L∈ afb(Z, W). Then [afb(Z, W), nafb(Z, W), ⊚] is
a-fuzzy normed space.

Remark 2.24. [16] Equation (2.1) can be written by

nW [L(u)] < nafb(Z, W )[L]nZ(u). (2.2)

Theorem 2.25. [16] If W is fuzzy complete then afb(Z, W) is fuzzy complete where (Z, nZ, ⊚) and
(W, nW , ⊚) are two a-fuzzy normed spaces.

Theorem 2.26. [16] Suppose that (Z, nZ, ⊚) and (W, nW , ⊚) are two a-fuzzy normed spaces such
that L:D(L)→W is a linear operator where D(T)⊆W. Then L is fuzzy continuous if and only if L
is fuzzy bounded .

Definition 2.27. [16] An a-fuzzy normed space (Z, n, ⊚) is said to be fuzzy compact if there
exist {U1, U2, U3,. . . , Uk}⊆ Ω such that Z =

⋃k
j=1Uj.

Theorem 2.28. [16] The a-fuzzy normed space (Z, n, ⊚) is fuzzy compact if and only if for every
arbitrary sequence (zk) in Z has a subsequence (zkj) with zkj →z∈Z.

Theorem 2.29. [16] Let (Z, nZ, ⊚) be fuzzy complete a-fuzzy normed space and M ⊆Z. Then W is
fuzzy complete if and only if W is fuzzy closed.

Proposition 2.30. [16] Z is fuzzy totally bounded if (Z, n, ⊚) is a fuzzy compact a-fuzzy normed
space.

Definition 2.31. [14] A sequence (zk) in a-fuzzy normed space (Z, nZ, ⊚) is said to fuzzy weakly
convergent if there exists z ∈ Z with every h ∈ afb(Z, R), limk→∞ h(zk)=h(z). The vector z is said
to be the weak limit to (zk) and (zk) is said to be fuzzy converges weakly to z. This is written zk→w z.

Theorem 2.32. [14] Suppose that (zk) is weak converges to z in a-fuzzy normed space (Z, nZ, ⊚).
Then

(1) the weak limit z is unique.
(2) every subsequence (zkj) of (zk) converges weakly to z.
(3) the sequence (nZ(zk)) is fuzzy bounded.

Theorem 2.33. [14] Suppose that (zk) is in a-fuzzy normed space (Z, nZ, ⊚). 1. If zk →z then
zk→wz .2. zk→wz implies zk →z when dim Z=m for some m∈ N.

Theorem 2.34. [14] Suppose that (Z, nZ, ⊚) and (W, nW , ⊚) are a-fuzzy normed spaces with dim
Z=k, then every linear operator L:Z→W is fuzzy bounded.
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3. When the linear operator is fuzzy closed

Definition 3.1. Let (Z, nZ, ⊚), (W, nW , ⊚) be two a-fuzzy normed spaces and S:Z→W be a linear
operator. Then S is called fuzzy closed if the graph of S, G(S)={(z, w): z∈Z, w=S(z)} is closed in
the (Z×W, n, ⊚), n[(z, w)]= nZ(z) ⊚ nW (w) for all (z, w) ∈ Z×W.

Theorem 3.2. Let (Z, nZ, ⊚), (W, nW , ⊚) be two fuzzy complete a-fuzzy normed spaces and
S:Z→W be a fuzzy closed operator. If D(S) is fuzzy closed in W then S is fuzzy bounded.

Proof . We know that from Theorem (2.18), (Z × W,n,⊚) is fuzzy complete. Now suppose that
G(S) is fuzzy closed in Z × W and D(S) is fuzzy closed in Z. Hence G(S) and D(S) are fuzzy
complete. Now consider the mapping P : G(S) → D(S) defined by P [z, S(z)] = z so P is linear
and is fuzzy bounded because n(P [(z, S(z))]) = nZ(z) ≤ nZ(z) ⊚ nW [S(z)] = n[(z, S(z))]. But P
is bijective, so P−1 : D(S) → G(S) defined by P−1(z) = [z, S(z)] we see that P−1 is fuzzy bounded
say n[(z, S(z))] ≤ t.nZ(z), for some t ∈ (0, 1) and all z ∈ D(S). Hence S is fuzzy bounded since
nW [S(z)]≤ nW [S(z)] ⊚ nZ(z) = n[(z, S(z))]≤t.nZ(z), for all z ∈ D(S). □

Theorem 3.3. The operator S is fuzzy closed if and only if zk → z where zk ∈ D(S) and S(zk) →
w then z∈ D(S) and S(z)=w., where (Z, nZ, ⊚), (W, nW , ⊚) are two a-fuzzy normed spaces and
S:Z→W is a linear operator.

Proof . By definition of G(S) it is fuzzy closed if and only if u = (z, w) ∈ G(S) if and only if there
are uk = (zk, S(zk)) ∈ G(S) such that zk → z, S(zk) → w and u = (z, w) ∈ G(S) if and only if
z ∈ D(S) and w = S(z). This complete the prove. □

Here we give an example of a fuzzy bounded operator but not fuzzy closed that is fuzzy closedness
does not imply fuzzy boundedness for a linear operator.

Example 3.4. Let Z=C[0, 1] and S:Z→Z be an operator defined by: S(z(t))=z(t)′ where the prime
denotes differentiation and D(S) is a subspace of Z consist of all functions z(t) ∈ Z which have a
continuous derivative. Then S is not fuzzy bounded but it is fuzzy closed.

Proof . We know that from Example(2.22), that S is not fuzzy bounded. Now we prove that S
is fuzzy closed by applying Theorem (3.3) Let (zk) ∈ D(S) be such that both (zk), S(zk) fuzzy
converges say, zk → z and S(zk)=zk

′ → w. Since fuzzy converges in the a-fuzzy norm of C[0, 1] is
uniform fuzzy convergence on [0, 1] from zk

′ → w we have
∫ t

0
w(τ)d(τ) =

∫ t

0
limk→∞ zk (τ)

′d(τ) =

limk→∞
∫ t

0
zk (τ)

′d(τ) = z(t) −z(0), that is, z(t) = z(0) +
∫ t

0
w(τ)d(τ). This shows that z ∈ D(S)

and z′ = w. Now Theorem (2.2) implies that S is fuzzy closed. □
In the following example we see that fuzzy boundedness does not imply fuzzy closedness of linear

operator.

Example 3.5. Let S:D(S)→D(S) where D(S)⊆ Z be the identity operator on D(S) where D(S) is a
proper dense subspace of the a-fuzzy normed space (Z, nZ, ⊚). Then it is trivial that S is linear and
fuzzy bounded. However S is not fuzzy closed.

Proof . This follows immediately from Theorem (3.3) if we take an z ∈ Z−D(S) and sequence (zk)
in D(S) which fuzzy converges to z. □

Proposition 3.6. Let S:Z→W be a fuzzy bounded linear operator where (Z, nZ, ⊚), (W, nW , ⊚)
are two a-fuzzy normed spaces. Then

(i) S is fuzzy closed if D(S) is fuzzy closed subset of Z.
(ii) If S is fuzzy closed and (W, nW , ⊚) is fuzzy complete then D(S) is fuzzy closed subset of Z.
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Proof . (i) If (zk) ∈ D(S) and it is fuzzy converges say, zk → z also S(zk) fuzzy converges, then
z ∈ D(S) = D(S), because D(S) is fuzzy closed and S(zk) → w. Since S is fuzzy continuous, by
Theorem (3.2), S is fuzzy closed.

(ii) For z ∈ D(S), we can find (zk) in D(S), zk → z, since S is fuzzy bounded nW [S(zk)−S(zm)] =
nW [S(zk − zm)] ≤ nafb(Z,W )(S).nZ [zk − zm]. This shows that (S(zk)) is fuzzy Cauchy so (S(zk)) is
fuzzy converges say, S(zk) → w ∈ W , because W is fuzzy complete.

Now since S is fuzzy closed z ∈ D(S), by Proposition (3.6) and S(z) = w. Thus D(S) ⊆ D(S)
but D(S) ⊆ D(S). Hence D(S) is fuzzy closed. □

4. When the linear operator is fuzzy compact

Definition 4.1. A is called relatively fuzzy compact if A is fuzzy compact, where (Z, nZ, ⊚) is
a-fuzzy normed space and A⊆ Z

Definition 4.2. The linear operator S:Z→ W is called fuzzy compact operator if S maps every
fuzzy bounded subset A of Z to a relatively fuzzy compact S(A) of W. Where (Z, nZ, ⊚) and (W,
nW , ⊚) are a-fuzzy normed spaces.

Theorem 4.3. Every fuzzy compact linear operator S:Z→ W is fuzzy bounded, hence fuzzy contin-
uous, whenever (Z, nZ, ⊚) and (W, nW , ⊚) are a-fuzzy normed spaces.

Proof . The fuzzy ball B = {z ∈ Z : nZ(z) = 1} is fuzzy bounded. Since S is fuzzy compact, S(B)
is fuzzy compact and is fuzzy bounded by Proposition (2.29). So that supz∈BnW [S(z)] < ∞. Hence,
S is fuzzy bounded and by Theorem (2.26) it is fuzzy continuous. □

Lemma 4.4. If (Z, nZ, ⊚) a-fuzzy normed space with dim Z< ∞ then the identity operator is not
fuzzy compact.

Proof . Since the fuzzy closed unit fuzzy ball B = {z ∈ Z : nZ(z) ≤ 1} is fuzzy bounded. If
dimZ = ∞, then Theorem (2.20) implies that B cannot be fuzzy compact. Thus I(B) = B = B is
not relatively fuzzy compact. □

Theorem 4.5. The operator S is fuzzy compact if and only if (S(zk)) has a fuzzy convergent subse-
quence for every fuzzy bounded sequence (zk) in Z. Where (Z, nZ, ⊚) and (W, nW , ⊚) are a-fuzzy
normed spaces and S:Z→ W is a linear operator.

Proof . If S is fuzzy compact and the sequence (zk) is fuzzy bounded in Z, the closure of (S(zk))
is fuzzy compact in W and Definition (4.1) shows that (S(zk)) has a convergent subsequence. For
the converse suppose that every fuzzy bounded sequence (zk) in Z contains a subsequence (zkj) such
that (S(zkj)) fuzzy converges in W . Consider any fuzzy bounded subset B of Z and let (wk) be any
sequence in S(B), then S(zk) = wk, for some zk ∈ B and (zk) is fuzzy bounded, because B is fuzzy
bounded. By our assumption (S(zk)) contains a fuzzy convergent subsequence. Hence S(B) is fuzzy
compact by Definition (4.1), because (wk) was arbitrary in S(B). Hence S is fuzzy compact. □

Proposition 4.6. Let (Z, nZ, ⊚) and (W, nW , ⊚) be a-fuzzy normed spaces and S1:Z→ W, S2:Z→
W be two a linear operators. If S1 and S2 are fuzzy compact operators then (S1+ S2) is a fuzzy
compact operator.
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Proof . It is clear that (S1+ S2) is a linear operator. Let (zk) be a fuzzy bounded sequence in Z,
then by Theorem (4.5), S1(zk) has a fuzzy convergent subsequence, say S1(zkj) and S2(zk) has a fuzzy
convergent subsequence, say S2(zkj) but the sum of two fuzzy convergent sequence is again fuzzy
convergent this implies that, S1(zk) + S2(zk)=[ S1+ S2]( zk) contains a fuzzy convergent subsequence.
Hence (S1+ S2) is fuzzy compact operator by Theorem (4.5). □

Proposition 4.7. If S is fuzzy compact operator then αS is a fuzzy compact operator. Where (Z,
nZ, ⊚) and (W, nW , ⊚) are a-fuzzy normed spaces and S:Z→ W is a linear operators.

Proof . It is clear that αS is a linear operator. Let (zk) be a fuzzy bounded sequence in Z then by
Theorem 4.5, S(zk) has a fuzzy convergent subsequence, say, S(zkj) this implies that αS(zkj) is fuzzy
convergent subsequence of αS(zk). Hence αS is a fuzzy compact operator by Theorem (4.5). □

Notation. Let afc(Z,W ) = {SjS : Z → W is a linear fuzzy compact operator}. From Proposition
(4.6) and Proposition (4.7), we have next result

Proposition 4.8. If (Z, nZ, ⊚) and (W, nW , ⊚) are a-fuzzy normed spaces then afc(Z, W) is a
subspace of afb(Z,W).

Theorem 4.9. If W is a fuzzy complete, then afc(Z,W ) is a fuzzy closed subspace of afb(Z,W ),
where (Z, nZ ,⊚) and (W,nW ,⊚) are a-fuzzy normed spaces

Proof . Let S ∈ afc(Z, W) . Then there exists (Sk) in afc(Z,W ) such that Sk → S. S is a linear
operator, because

S(αz1 + δz2) = lim
k→∞

Sk( αz1 + δz2) = α lim
k→∞

Sk( z1) + δlim
k→∞

Sk( z2) = αS(z1) + δS(z2).

Now we will show that S is fuzzy compact operator. Let (zj) be a fuzzy bounded sequence in Z,
then by Theorem (4.6), Sk(zj) contains a fuzzy convergent subsequence. Hence

S(zj) = lim
k→∞

Sk(zj)

contains a convergent subsequence. Thus S ∈ afc(Z,W ). This implies that afc(Z,W ) = afc(Z, W ) .
Hence afc(Z,W ) is a fuzzy closed subspace of afb(Z,W ). □

The next result follows from Theorem (4.9) and Theorem (2.28).

Theorem 4.10. If W is a fuzzy complete then afc(Z,W) is a fuzzy complete when (Z, nZ, ⊚) and
(W, nW , ⊚) are a-fuzzy normed spaces.

Theorem 4.11. If S is fuzzy bounded and dim S(Z) is finite then the operator S is fuzzy compact.
When (Z, nZ, ⊚) and (W, nW , ⊚) are a-fuzzy normed spaces and S:Z→ W, be a linear operators

Proof . Let (zk) be a fuzzy bounded sequence in Z then from the inequality nW [S(zk)] ≤ nfb(Z, W )(S).
nZ [zk]. We have (S(zk)) is fuzzy bounded hence (S(zk)) is relatively compact by Theorem (4.5),
because dimS(Z) is finite. It follows that (S(zk)) has a convergent subsequence but (zk) was an
arbitrary fuzzy bounded sequence in Z. Hence S is fuzzy compact operator by Theorem (4.5). □

Theorem 4.12. If S is fuzzy bounded and dim Z is finite then the operator S is fuzzy compact. When
(Z, nZ, ⊚) and (W, nW , ⊚) are a-fuzzy normed spaces and S:Z→ W, be a linear operators.
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Proof . Since dimZ is finite implies dimS(Z) is finite and dimZ is finite implies fuzzy boundedness
of S by Theorem (2.33). Now the operator S is fuzzy compact follows from Theorem (4.11). □

Theorem 4.13. Suppose that (Sk) ∈ afc(Z,W ) if Sk → S, then S∈ afc(Z, W) when (Z, nZ, ⊚)
and (W, nW , ⊚) are a-fuzzy normed spaces with W is fuzzy complete.

Proof . Since S1 is fuzzy compact, (zk) has a subsequence ( z
(1)
k ) such that (S1 ( z

(1)
k )) is fuzzy

Cauchy. Similarly ( z
(1)
k ) has a subsequence ( z

(2)
k ) such that (S2 ( z

(2)
k )) is fuzzy Cauchy. By

continuing in this way we see that (ym)= ( z
(m)
m )is a subsequence of (zk) such for every fixed positive

integer j the sequence (Sj(ym))
∞
m=1 is a fuzzy Cauchy. Since (zk) is fuzzy bounded say, nZ(zk)≤ t,

for some t ∈ (0, 1). Let r ∈ (0, 1), since Sk → S, there is k = p such that nfb(Z, W )[S − Sp] < t,
but (Sp(ym))

∞
m=1 is fuzzy Cauchy so there is N such that nW [Sp(yj) − Sp(yk)] < r, for all j, k ≥ N .

Hence, for all j, k ≥ N ,

nW [S(yj)− S(yk)] ≤nW [S(yj)− Sp(yj)]⊚ nW [Sp(yj)− Sp(yk)]⊚ nW [Sp(yk)− S(yk)]

≤nfb(Z, W )[S − Sp]. nZ(yj)⊚ r ⊚ nfb(Z, W )[Sp − S]. nZ(yk)

≤t.c⊚ r ⊚ t.c.

We can find q ∈ (0, 1) such that [t.c⊚ r⊚ t.c] < q. Thus nW [S(yj)− S(yk)] < q. This shows that
(S(ym)) is a fuzzy Cauchy sequence and fuzzy converges in W since W is fuzzy complete but (ym)
is a subsequence of the arbitrary fuzzy bounded sequence (zk). Now Theorem (4.5) implies fuzzy
compactness of the operator S. □

Another basic property of fuzzy compact linear operator is that it transforms weakly fuzzy con-
vergent sequences into strongly fuzzy convergent sequences as follows in the next result.

Theorem 4.14. If (zk) in Z with zk→wz then (S(zk)) is strongly fuzzy converge in W and S(zk)
→w= S(z), whenever (Z, nZ, ⊚) and (W, nW , ⊚) are a-fuzzy normed spaces and S:Z→W is a fuzzy
compact linear operator.

Proof . Let S(zk) = wk and w = S(z). First we will prove that

wk→ww (4.1)

then

wk → w. (4.2)

Let g be any fuzzy bounded linear functional on W . We define functional f on Z by f(z) =
g(S(z)), for all z ∈ Z. Then f is linear and is fuzzy bounded, because S is fuzzy compact. Now

aR[f(z)] =aR[g(S(z))]

≤nfb(W,R)[g].nW [S(z)]

≤nfb(W,R)[g].nfb(Z, W )[S].nZ [z].

By definition zk→wz implies f(zk)→wf(z), hence by definition g[S(zk)→wg[S(z)]. That is g(wk) →
g(w). Since g was arbitrary, this proves wk→ww. Now to prove (4.2), suppose that (wk) has a sub-
sequence wkj such that

nW [wkj − w] ≥ t for some t ∈ (0, 1). (4.3)

Since (zk) is weakly fuzzy convergent, (zk) is fuzzy bounded by Theorem 2.38 and so is (zkj).
Now fuzzy compactness of S implies by Theorem (4.5) that (Szkj) has a convergent subsequence say,
(w̃j). Let w̃j → w̃ so w̃j →ww̃. Hence w̃ = w by (2.2) and Theorem (2.32), we have nW [w̃j −w] → 0
but this contradicts with nW [w̃j − w] ≥ t > 0 by (4.2). So that (4.2) must be hold. □
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5. Conclusion

In this work we present the definition of fuzzy bounded linear operator on a-fuzzy normed space
then basic properties of this type of operators are proved. After that we introduce the definition
of fuzzy bounded linear operator on a-fuzzy normed space then basic properties of this type of
operators are proved. It is known that each study left out some things and needed further elaboration
throughout this study we come up with the fact that there are many notions for a linear operator one
can introduced for future work such as fuzzy open linear operator, fuzzy compact linear operator,
. . . , etc.
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