Int. J. Nonlinear Anal. Appl. Volume 12, Special Issue, Winter and Spring 2021, 2273-2283 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.6198

Some new results on differential subordinations and superordinations for analytic univalent functions defined by Rafid-Jassim operator

Saad Raheem Bakheet^{a,*}, Waggas Galib Atshan^a

^aDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq

(Communicated by Ehsan Kozegar)

Abstract

In the present paper, we obtain sandwich theorems for univalent functions by using some results of differential subordination and superordination for univalent functions involving the Rafid-Jassim operator.

Keywords: Analytic function, Integral Operator, Differential Subordination, Superordination, Sandwich theorem. 2010 MSC: 30C45

1. Introduction

Let H = H(U) be the class of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. For $n \in N$ and $a \in \mathbb{C}$. Let H[a, n] be the subclass of H of the form:

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \ (a \in \mathbb{C})$$

Let A denote the subclass of H of functions f of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ (z \in U),$$
(1.1)

*Corresponding author

Email addresses: ma20.post80qu.edu.iq (Saad Raheem Bakheet), waggas.galib0qu.edu.iq (Waggas Galib Atshan)

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Let f and g are analytic functions in H, f is said to be subordinate to g, or g is said to be superordinate to f in U and write $f \prec g$, if there exists a Schwarz function K in U, which with K(0) = 0, and |K(z)| < 1, $(z \in U)$ where f(z) = g(K(z)). In such a case we write $f \prec g$ or $f(z) \prec g(z)$ $(z \in U)$. If g is univalent in U, then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subset g(U)$ [14, 15].

Definition 1.1. [14] Let $\emptyset : \mathbb{C}^3 \times U \to \mathbb{C}$ and h(z) be univalent in U. If p(z) is analytic in U and satisfies the second-order differential subordination:

$$\emptyset(p(z), zp'(z), z^2 p''(z); z) \prec h(z),$$
(1.2)

then p(z) is called a solution of the differential subordination (1.2), and the univalent function q(z)is called a dominant of the solution of the differential subordination (1.2), or more simply dominant if $p(z) \prec q(z)$ for all p(z) satisfying (1.2). A univalent dominant $\tilde{q}(z)$ that satisfies $\tilde{q}(z) \prec q(z)$ for all dominant q(z) of (1.2) is said to be the best dominant is unique up to a relation of U.

Definition 1.2. [14] Let $p, h \in A$ and $\emptyset(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}$. If p and $\emptyset(p(z), zp'(z), z^2p''(z); z)$ are univalent function in U and if p satisfies

$$h(z) \prec \emptyset(p(z), zp'(z), z^2 p''(z); z),$$
 (1.3)

then p is called a solution of the differential superordination (1.3). An analytic function q(z) which is called a subordinat of the solutions of the differential superordination (1.3), or more simply a subordinant if $p \prec q$ for all the functions p satisfying (1.3). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all the subordinates q of (1.3) is said to be the best subordinate.

Several authors [1, 2, 9, 14, 16] obtained sufficient conditions on the functions h, p and \emptyset for which the following implication holds

$$h(z) \prec \emptyset(p(z), zp'(z), z^2 p''(z); z),$$

then

$$q(z) \prec p(z) \tag{1.4}$$

Using the results (see [3, 4, 5, 6, 10, 11, 15]) to obtain sufficient conditions for normalized analytic functions to satisfy:

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z)$$

where q_1 and q_2 are given univalent functions in U and $q_1(0) = q_2(0) = 1$. Also, several authors (see[1, 3, 5, 6, 7, 8]) derived some differential subordination and superordination results with some sandwich theorems.

For $f \in A$, Buti and Jassim [13] defined the following generalized integral operator:

$$p_{\lambda,\alpha,\theta,k}^{\mu,\beta,\ell}f(z) = \frac{\theta k(\lambda - \beta + 2)^{\mu - \alpha + 1}}{\ell^{\mu - \alpha + 1}\Gamma(\mu - \alpha + 1)} \int_0^1 (\log\frac{1}{\tau^\ell})^{\mu - \alpha} f(\frac{z\tau}{\theta k}) d_\tau,$$
(1.5)

where

$$\lambda - \alpha < 1, \ell > 0, \tau > 0, \theta > 0, k > 0$$

For $f(z) \in A$ given by (1.1), we have

$$p_{\lambda,\alpha,\theta,k}^{\mu,\beta,\ell}f(z) = z + \sum_{n=2}^{\infty} \left[\frac{\lambda - \beta + 2}{\lambda - \beta + n + 1}\right]^{\mu - \alpha + 1} a_n z^n \tag{1.6}$$

From (1.6), we note that

$$z\left(p_{\lambda,\alpha,\theta,k}^{\mu,\beta,\ell}f(z)\right)' = (\mu - \beta + 2)p_{\lambda,\alpha-1,\theta,k}^{\mu,\beta,\ell}f(z) - (\lambda - \beta + 1)p_{\lambda,\alpha,\theta,k}^{\mu,\beta,\ell}f(z).$$
(1.7)

The main object of the present investigation is to find sufficient conditions for certan normalized analytic function f to satisfy:

$$q_1(z) \prec \left[\frac{p_{\lambda,\alpha,\theta,k}^{\mu,\beta,\ell}f(z)}{z}\right]^{\Upsilon} \prec q_2(z).$$

and

$$q_1(z) \prec \left[\frac{p_{\lambda,\alpha-1,\theta,k}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,k}^{\mu,\beta,\ell} f(z)} \right]^{\Upsilon} \prec q_2(z).$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$. In this paper, we derive some sandwich theorems, involving the operator $p_{\lambda,\alpha,\theta,k}^{\mu,\beta,\ell}f(z)$.

2. Preliminaries

We need the following definitions and lemmas to prove our results.

Definition 2.1. [14] Denote by Q the set of all functions q that are analytic and injective on $\overline{U}|E(q)$, where $\overline{U} = U \cup \{z \in \partial U\}$, and

$$E(q) = \{ \varepsilon \in \partial U : \lim_{z \to \varepsilon} q(z) = \infty \}$$

and are such that $q'(\varepsilon) \neq 0$ for $\varepsilon \in \partial U | E(q)$. Further, let the subclass of Q for which q(0) = a be denoted by Q(a), and $Q(0) = Q_0, Q(1) = Q_1 = \{q \in Q : q(0) = 1\}.$

Lemma 2.2. [15] Let q be a convex univalent function in U and let $\alpha \in \mathbb{C}$, $\beta \in \mathbb{C} | \{0\}$ with

$$Re\left\{1+\frac{zq''(z)}{q'(z)}\right\} > \max\{0, -Re(\frac{\alpha}{\beta})\}.$$

If p is analytic in U and

$$\alpha p(z) + \beta z p'(z) \prec \alpha q(z) + \beta z q'(z), \qquad (2.1)$$

then $p \prec q$ and q is the best dominant of (2.1).

Lemma 2.3. [4] Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$, when $w \in q(U)$. Set $Q(z) = zq'(z)\phi(q(z))$ and $h(z) = \theta(q(z)) + Q(z)$. Suppose that

• Q(z) is starlike univalent in U,

• $Re\left\{\frac{zh'(z)}{Q(z)}\right\} > 0 \text{ for } z \in U.$

If p is analytic in U, with $p(0) = q(0), p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)),$$
(2.2)

then $p \prec q$ and q is the best dominant of (2.2).

Lemma 2.4. [15] Let q be a convex univalent in U and let $\beta \in \mathbb{C}$, that $Re(\beta) > 0$. If $p \in H[q(0), 1] \cap Q$ and $p(z) + \beta z p'(z)$ is univalent in U, then

$$q(z) + \beta z q'(z) \prec p(z) + \beta z p'(z), \qquad (2.3)$$

which implies that $q \prec p$ and q is the best subordinant of (2.3).

Lemma 2.5. [12] Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U). Suppose that

- $Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} > 0 \text{ for } z \in U,$
- $Q(z) = zq'(z)\phi(q(z))$ is starlike univalent in U.

If $p \in H[q(0), 1] \cap Q$, with $p(U) \subset D$, $\theta(p(z)) + zp'(z)\phi(p(z))$ is univalent in U and

$$\theta(q(z)) + zq'(z)\phi(q(z)) \prec \theta(p(z)) + zp'(z)\phi(p(z)),$$

$$(2.4)$$

then $q \prec p$ and q is the best subordinant of (2.4).

f

3. Differential Subordination Results

Here, we introduce some differential subordination results by using the Rafid-Jassim operator.

Theorem 3.1. Let q be convex univalent function in U with q(0) = 1, $0 \neq \varepsilon \in \mathbb{C}$, $\gamma > 0$ and suppose that q satisfies:

$$Re\left\{1 - \frac{zq''(z)}{q'(z)}\right\} > \max\{0, -Re(\frac{\gamma}{\varepsilon})\}.$$
(3.1)

If $f \in A$ satisfies the subordination

$$(\lambda - \beta + 2) \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \prec q(z) + \frac{\varepsilon}{\gamma} z q'(z)$$
(3.2)

then

$$\left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma} \prec q(z), \tag{3.3}$$

and q is the best dominant of (3.2).

Proof. Define the function p by

$$p(z) = \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma}, \qquad (3.4)$$

then the function p(z) is analytic in U and p(0) = 1, therefore, differentiating (3.4) with respect to z and using the identity (1.7) in the resulting equation, we obtain

$$\frac{zp'(z)}{p(z)} = \gamma \left[\frac{z \left(p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z) \right)'}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right].$$
(3.5)

Hence

$$\frac{zp'(z)}{p(z)} = \gamma \left[(\lambda - \beta + 2) \left(\frac{p_{\lambda, \alpha - 1, \theta, K}^{\mu, \beta, \ell} f(z)}{p_{\lambda, \alpha, \theta, K}^{\mu, \beta, \ell} f(z)} - 1 \right) \right].$$

Therefore,

$$\frac{zp'(z)}{\gamma} = \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma} \left[(\lambda - \beta + 2) \left(\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)} - 1\right) \right].$$

The subordination (3.2) from the hypothesis becomes

$$p(z) + \frac{\varepsilon}{\gamma} z p'(z) \prec q(z) + \frac{\varepsilon}{\gamma} z q'(z).$$

An application of lemma 2.2 with $\beta = \frac{\varepsilon}{\gamma}$ and $\alpha = 1$, we obtain (3.3). Putting $q(z) = \left(\frac{1+z}{1-z}\right)$ in Theorem 3.1, we obtain the following corollary:

Corollary 3.2. Let $0 \neq \varepsilon \in \mathbb{C}$, $\gamma > 0$ and

$$Re\left\{1+\frac{2z}{1-z}\right\} > \max\{0, -Re(\frac{\gamma}{\varepsilon})\}.$$

If $f \in A$ satisfies the subordination

$$(\lambda - \beta + 2) \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \prec \left(\frac{1 - z^2 + 2\frac{\varepsilon}{\gamma} z}{(1 - z)^2} \right),$$

then

$$\left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma} \prec \left(\frac{1+z}{1-z}\right)$$

and $q(z) = \left(\frac{1+z}{1-z}\right)$ is the best dominant.

Theorem 3.3. Let q be convex univalent function in U with q(0) = 1, $q'(z) \neq 0$ ($z \in U$) and assume that q satisfies

$$Re\left\{1+\frac{m}{\varepsilon}(q(z))^{m}+\frac{m-1}{\varepsilon}(q(z))^{m-1}-z\frac{q'(z)}{q(z)}+z\frac{q''(z)}{q'(z)}\right\}>0,$$
(3.6)

where $m \in \mathbb{C}, \varepsilon \in \mathbb{C} | \{0\}$ and $z \in U$. Suppose that $z \frac{q'(z)}{q(z)}$ is starlike univalent in U. If $f \in A$ satisfies

$$\Psi(\gamma,\mu,\beta,\ell,\lambda,\theta,k,m;z) \prec (1+q(z))q(z)^{m-1} + \varepsilon z \frac{q'(z)}{q(z)},\tag{3.7}$$

where,

$$\Psi(\gamma,\mu,\beta,\ell,\lambda,\theta,k,m,\varepsilon;z) = \left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right]^{\gamma m} + \left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right]^{\gamma(m-1)} + \varepsilon\gamma(\lambda-\beta+2)\left(\frac{p_{\lambda,\alpha-2,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)} - \frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right).$$

$$(3.8)$$

then

$$\left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right]^{\gamma} \prec q(z)$$
(3.9)

and q is the best dominant of (3.7).

Proof. Define the function p by

$$p(z) = \left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right]^{\gamma}.$$
(3.10)

Then the function p(z) is analytic in U and p(0) = 1 differentiating (3.10) with respect to z and using the identity (1.7), we get,

$$\frac{zp'(z)}{p(z)} = \gamma \left[(\mu - \beta + 2) \left(\frac{p_{\lambda,\alpha-2,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)} - \frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} \right) \right].$$

By setting

 $\theta(w) = (1+w)w^{m-1}$ and $\phi(w) = \frac{\varepsilon}{w}, w \neq 0$, we see that $\theta(w)$ and $\phi(w)$ are analytic in $\mathbb{C}|\{0\}$ and that $\phi(w) \neq 0, w \in \mathbb{C}|\{0\}$. Also, we get

$$Q(z) = zq'(z)\phi(q(z)) = \varepsilon z \frac{q'(z)}{q(z)}$$

and

$$h(z) = \theta(q(z)) + Q(z) = (1 + q(z))q(z)^{m-1} + \varepsilon z \frac{q'(z)}{q(z)}$$

It is clear that Q(z) is starlike univalent in U,

$$Re\left\{\frac{zh'(z)}{Q(z)}\right\} = Re\left\{1 + \frac{m}{\varepsilon}(q(z))^m + \frac{m-1}{\varepsilon}(q(z))^{m-1} - z\frac{q'(z)}{q(z)} + z\frac{q''(z)}{q'(z)}\right\} > 0.$$

By a straightforward computation, we obtain

$$\Psi(\gamma,\mu,\beta,\ell,\lambda,\theta,k,m,\varepsilon;z) = (1+p(z))(p(z))^{m-1} + \varepsilon z \frac{p'(z)}{p(z)},$$
(3.11)

where $\Psi(\gamma, \mu, \beta, \ell, \lambda, \theta, k, m, \varepsilon; z)$ is given by (3.8). From (3.7) and (3.11), we have

$$(1+p(z))(p(z))^{m-1} + \varepsilon z \frac{p'(z)}{p(z)} \prec (1+q(z))(q(z))^{m-1} + \varepsilon z \frac{q'(z)}{q(z)}.$$
(3.12)

Therefore, by Lemma 2.3, we get $p(z) \prec q(z)$. By using (3.10), we obtain the result. \Box Putting $q(z) = \left(\frac{1+Az}{1+Bz}\right)$, $(-1 \leq B < A \leq 1)$ in Theorem 3.3, we obtain the following corollary:

Corollary 3.4. Let $-1 \leq B < A \leq 1$ and

$$Re\left\{\frac{m}{\varepsilon}\left(\frac{1+Az}{1+Bz}\right)^m + \frac{m-1}{\varepsilon}\left(\frac{1+Az}{1+Bz}\right)^{m-1} + \frac{1+Bz(4+3Az)}{(1+Bz)(1+Az)}\right\} > 0$$

where $\varepsilon \in \mathbb{C} | \{ 0 \}$ and $z \in U$, if $f \in A$ satisfies

$$\Psi(\gamma,\mu,\beta,\ell,\lambda,\theta,k,m,\varepsilon;z) \prec \left[1 + \left(\frac{1+Az}{1+Bz}\right)\right] \left(\frac{1+Az}{1+Bz}\right)^{m-1} + \varepsilon z \frac{A-B}{(1+Az)(1+Bz)},$$

where is given $\Psi(\gamma, \mu, \beta, \ell, \lambda, \theta, k, m, \varepsilon; z)$ by (3.8), then

$$\left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right]^{\gamma} \prec \left(\frac{1+Az}{1+Bz}\right)$$

and $q(z) = \left(\frac{1+Az}{1+Bz}\right)$ is the best dominant.

4. Differential Superordination Results

Theorem 4.1. Let q be convex univalent function in U with q(0) = 1, $\gamma > 0$ and $Re{\varepsilon} > 0$. Let $f \in A$ satisfies

$$\left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma} \in H[q(0),1] \cap Q$$

and

$$(\lambda - \beta + 2) \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma}$$

be univalent in U. If

$$q(z) + \frac{\varepsilon}{\gamma} z q'(z) \prec (\lambda - \beta + 2) \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma}, \quad (4.1)$$

then

$$q(z) \prec \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma}$$
(4.2)

and q is the best subordinant of (4.1).

Proof. Define the function p by

$$p(z) = \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma}.$$
(4.3)

Differentiating (4.3) with respect to z, we get

$$\frac{zp'(z)}{p(z)} = \gamma \left[\frac{z \left(p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z) \right)'}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right].$$
(4.4)

After some computations and using (1.7), from (4.4), we obtain

$$(\lambda - \beta + 2) \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} = p(z) + \frac{\varepsilon}{\gamma} z p'(z),$$

and now, by using Lemma 2.4, we get the desired result. \Box Putting $q(z) = \left(\frac{1+z}{1-z}\right)$ in Theorem 4.1, we obtain the following corollary:

Corollary 4.2. Let $\gamma > 0$ and $Re{\varepsilon} > 0$. If $f \in A$ satisfies

$$\left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma} \in H[q(0),1] \cap Q$$

and

$$(\lambda - \beta + 2) \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\beta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda$$

be univalent in U. If

$$\left(\frac{1-z^2+2\frac{\varepsilon}{\gamma}z}{(1-z)^2}\right) \prec (\lambda-\beta+2) \left[\frac{P_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma} \left(\frac{P_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{P_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}-1\right) + \left[\frac{P_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma},$$

then

$$\left(\frac{1+z}{1-z}\right) \prec \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma}$$

and $q(z) = \left(\frac{1+z}{1-z}\right)$ is the best subordinant.

Theorem 4.3. Let q be convex univalent function in U with q(0) = 1, $q'(z) \neq 0$ and assume that q satisfies

$$Re\left\{\frac{m}{\varepsilon}(q(z))^m q'(z) + \frac{m-1}{\varepsilon}(q(z))^{m-1}q'(z)\right\} > 0,$$
(4.5)

where $m \in \mathbb{C}$, $\varepsilon \in \mathbb{C} | \{0\}$ and $z \in U$.

Suppose that $z\frac{q'(z)}{q(z)}$ is starlike univalent in U. Let $f \in A$ satisfies

$$\left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right]^{\gamma} \in H[q(0),1] \cap Q,$$

and $\Psi(\gamma, \mu, \beta, \ell, \lambda, \theta, k, m, \varepsilon; z)$ is univalent in U, where is given $\Psi(\gamma, \mu, \beta, \ell, \lambda, \theta, k, m, \varepsilon; z)$ by (3.8).

If

$$(1+q(z))(q(z))^{m-1} + \varepsilon z \frac{q'(z)}{q(z)} \prec \Psi(\gamma, \mu, \beta, \ell, \lambda, \theta, k, m, \varepsilon; z),$$
(4.6)

then

$$q(z) \prec \left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right]^{\gamma}$$

$$(4.7)$$

and q is the best subordinant of (4.6).

Proof. Define the function p by

$$p(z) = \left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right]^{\gamma}.$$
(4.8)

Differentiating (4.8) with respect to z, we get

$$\frac{zp'(z)}{p(z)} = \gamma \left[(\mu - \beta + 2) \left(\frac{p_{\lambda,\alpha-2,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)} - \frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} \right) \right]$$

By setting

 $\theta(w) = (1+w)w^{m-1}$ and $\phi(w) = \frac{\varepsilon}{w}, w \neq 0$, we see that $\theta(w)$ and $\phi(w)$ are analytic in $\mathbb{C}|\{0\}$ and that $\phi(w) \neq 0, w \in \mathbb{C}|\{0\}$. Also, we get

$$Q(z) = zq'(z)\phi(q(z)) = \varepsilon z \frac{q'(z)}{q(z)}.$$

It is clear that Q(z) is starlike univalent in U,

$$Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} = Re\left\{\frac{m}{\varepsilon}(q(z))^m q'(z) + \frac{m-1}{\varepsilon}(q(z))^{m-1}q'(z)\right\} > 0$$

By a straightforward computation, we obtain

$$\Psi(\gamma,\mu,\beta,\ell,\lambda,\theta,k,m,\varepsilon;z) = (1+p(z))(p(z))^{m-1} + \varepsilon z \frac{p'(z)}{p(z)},$$
(4.9)

. . .

where $\Psi(\gamma, \mu, \beta, \ell, \lambda, \theta, k, m, \varepsilon; z)$ is given by (3.8). From (4.6) and (4.9), we have

$$(1+q(z))(q(z))^{m-1} + \varepsilon z \frac{q'(z)}{q(z)} \prec (1+p(z))(p(z))^{m-1} + \varepsilon z \frac{p'(z)}{p(z)}.$$
(4.10)

Therefore, by Lemma 2.5, we get $q(z) \prec p(z)$. \Box

5. Sandwich Results

Theorem 5.1. Let q_1 be convex univalent function in U with $q_1(0) = 1$, $\gamma > 0$ and $Re{\varepsilon} > 0$ and q_2 be univalent U, $q_2(0) = 1$ and satisfies (3.1). Let $f \in A$ satisfies

$$\left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma} \in H[1,1] \cap Q$$

and

$$(\lambda - \beta + 2) \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma}$$

be univalent in U. If

$$q_1(z) + \frac{\varepsilon}{\gamma} z q_1'(z) \prec (\lambda - \beta + 2) \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \left(\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} - 1 \right) + \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)}{z} \right]^{\gamma} \prec q_2(z) + \frac{\varepsilon}{\gamma} z q_2'(z),$$

then

$$q_1(z) \prec \left[\frac{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}{z}\right]^{\gamma} \prec q_2(z)$$

and q_1 and q_2 are respectively the best subordinant and the best dominant.

Theorem 5.2. Let q_1 be convex univalent in U with $q_1(0) = q_2(0) = 1$. Suppose q_1 satisfies (4.5) and q_2 , satisfies (3.6). Let $f \in A$ satisfies

$$\left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell}f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell}f(z)}\right]^{\gamma}\in H[1,1]\cap Q$$

and $\Psi(\gamma, \mu, \beta, \ell, \lambda, \theta, k, m, \varepsilon; z)$ is univalent in U, where is given $\Psi(\gamma, \mu, \beta, \ell, \lambda, \theta, k, m, \varepsilon; z)$ by (3.8). if

$$(1+q_1(z))(q_1(z))^{m-1} + \varepsilon z \frac{q_1'(z)}{q_1(z)} \prec \Psi(\gamma, \mu, \beta, \ell, \lambda, \theta, k, m, \varepsilon; z) \prec (1+q_2(z))(q_2(z))^{m-1} + \varepsilon z \frac{q_2'(z)}{q_2(z)}$$

then

$$q_1(z) \prec \left[\frac{p_{\lambda,\alpha-1,\theta,K}^{\mu,\beta,\ell} f(z)}{p_{\lambda,\alpha,\theta,K}^{\mu,\beta,\ell} f(z)} \right]^{\gamma} \prec q_2(z)$$

and q_1 and q_2 are respectively the best subordinant and the best dominant.

References

- S.A. Al-Ameedee, W.G. Atshan and F.A. Al-Maamori, On sandwich results of univalent functions defined by a linear operator, J. Interdiscip. Math. 23(4) (2020) 803–809.
- [2] S.A. Al-Ameedee, W.G. Atshan and F.A. Al-Maamori, Some new results of differential subordinations for higherorder derivatives of multivalent functions, J. Phys. Conf. Ser. 1804(1) (2021) 012111.
- [3] R.M. Ali, V. Ravichandran, M.H. Khan and K.G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004) 87—94.
- [4] F.M. Al-Oboudi and H.A. Al-Zkeri, Applications of Briot-Bouquet differential subordination to some classes of meromorphic functions, Arab J. Math Sci. 12(1) (2006) 17–30.
- W.G. Atshan and A.A.R. Ali, On some sandwich theorems of analytic functions involving Noor-Sãlãgean operator, Adv. Math. Sci. J. 9(10) (2020) 8455–8467.
- [6] W.G. Atshan and A.A.R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operators, Iraqi J. Sci. 62(7) (2021) 2376–2383.
- [7] W.G. Atshan, A.H. Battor and A.F. Abaas, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, J. Interdiscip. Math. 24(3) (2021) 579–591.
- [8] W.G. Atshan and R.A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, J. Phys. Conf. Ser. 1664(1) (2020) 012043.
- [9] W.G. Atshan and S.R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, J. Ineq. Pure Appl. Math. 10(2) (2009) 11.
- [10] W.G. Atshan, I.A.R. Rahman and A.A. Lupas, Some results of new subclasses for bi-univalent functions using Quasi-subordination, Symmetry 13(9) (2021) 1653.
- [11] T. Bulboaca, Classes of first-order differential superordinations, Demonst. Math. 35(2) (2002) 287–292.
- [12] T. Bulboacă, Differential subordinations and superordinations: Recent results, Casa Cărții de Știință, 2005.
- [13] R.H. Buti and K.A. Jassim, A subclass of spiral-like functions defined by generalized Komatu operator with (R-K) integral operator, Iop Conf. Ser. Materials Sci. Engin. 571 (2019) 012040.
- [14] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, CRC Press, 2000.
- [15] S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex Variables 48(10) (2003) 815–826.
- [16] T.N. Shanmugam, S. Shivasubramaniam and H. Silverman, On sandwich theorems for classes of analytic functions, Int. J. Math. Sci. 2006 (2006) 1–13.