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Abstract

In the present paper, we obtain sandwich theorems for univalent functions by using some results
of differential subordination and superordination for univalent functions involving the Rafid-Jassim
operator.
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1. Introduction

Let H = H(U) be the class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1}.
For n ∈ N and a ∈ C. Let H[a, n] be the subclass of H of the form:

f(z) = a+ anz
n + an+1z

n+1 + ... (a ∈ C)

Let A denote the subclass of H of functions f of the form:

f(z) = z +
∞∑
n=2

anz
n, (z ∈ U), (1.1)
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which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let f and g are analytic functions
in H, f is said to be subordinate to g, or g is said to be superordinate to f in U and write f ≺ g,
if there exists a Schwarz function K in U , which with K(0) = 0, and |K(z)| < 1, (z ∈ U) where
f(z) = g(K(z)). In such a case we write f ≺ g or f(z) ≺ g(z) (z ∈ U). If g is univalent in U , then
f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U) [14, 15].

Definition 1.1. [14] Let ∅ : C3 × U → C and h(z) be univalent in U . If p(z) is analytic in U and
satisfies the second-order differential subordination:

∅(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (1.2)

then p(z) is called a solution of the differential subordination (1.2), and the univalent function q(z)
is called a dominant of the solution of the differential subordination (1.2), or more simply dominant
if p(z) ≺ q(z) for all p(z) satisfying (1.2). A univalent dominant q̃(z) that satisfies q̃(z) ≺ q(z) for
all dominant q(z) of (1.2) is said to be the best dominant is unique up to a relation of U .

Definition 1.2. [14] Let p, h ∈ A and ∅(r, s, t; z) : C3 × U → C. If p and ∅(p(z), zp′(z), z2p′′(z); z)
are univalent function in U and if p satisfies

h(z) ≺ ∅(p(z), zp′(z), z2p′′(z); z), (1.3)

then p is called a solution of the differential superordination (1.3). An analytic function q(z)
which is called a subordinat of the solutions of the differential superordination (1.3), or more simply
a subordinant if p ≺ q for all the functions p satisfying (1.3). A univalent subordinant q̃ that satisfies
q ≺ q̃ for all the subordinats q of (1.3) is said to be the best subordinat.

Several authors [1, 2, 9, 14, 16] obtained sufficient conditions on the functions h, p and ∅ for
which the following implication holds

h(z) ≺ ∅(p(z), zp′(z), z2p′′(z); z),
then

q(z) ≺ p(z) (1.4)

Using the results (see [3, 4, 5, 6, 10, 11, 15]) to obtain sufficient conditions for normalized analytic
functions to satisfy:

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z)

where q1 and q2 are given univalent functions in U and q1(0) = q2(0) = 1. Also, several authors
(see[1, 3, 5, 6, 7, 8]) derived some differential subordination and superordination results with some
sandwich theorems.

For f ∈ A, Buti and Jassim [13] defined the following generalized integral operator:

pµ,β,ℓλ,α,θ,kf(z) =
θk(λ− β + 2)µ−α+1

ℓµ−α+1Γ(µ− α + 1)

∫ 1

0

(log
1

τ ℓ
)µ−αf(

zτ

θk
)dτ , (1.5)

where

λ− α < 1, ℓ > 0, τ > 0, θ > 0, k > 0
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For f(z) ∈ A given by (1.1), we have

pµ,β,ℓλ,α,θ,kf(z) = z +
∞∑
n=2

[
λ− β + 2

λ− β + n+ 1

]µ−α+1

anz
n (1.6)

From (1.6), we note that

z
(
pµ,β,ℓλ,α,θ,kf(z)

)′
= (µ− β + 2)pµ,β,ℓλ,α−1,θ,kf(z)− (λ− β + 1)pµ,β,ℓλ,α,θ,kf(z). (1.7)

The main object of the present investigation is to find sufficient conditions for certan normalized
analytic function f to satisfy:

q1(z) ≺

[
pµ,β,ℓλ,α,θ,kf(z)

z

]Υ
≺ q2(z).

and

q1(z) ≺

[
pµ,β,ℓλ,α−1,θ,kf(z)

pµ,β,ℓλ,α,θ,kf(z)

]Υ
≺ q2(z).

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1.
In this paper, we derive some sandwich theorems, involving the operator pµ,β,ℓλ,α,θ,kf(z).

2. Preliminaries

We need the following definitions and lemmas to prove our results.

Definition 2.1. [14] Denote by Q the set of all functions q that are analytic and injective on
Ū |E(q), where Ū = U ∪ {z ∈ ∂U}, and

E(q) = {ε ∈ ∂U : lim
z→ε

q(z) = ∞}

and are such that q′(ε) ̸= 0 for ε ∈ ∂U |E(q). Further, let the subclass of Q for which q(0) = a be
denoted by Q(a), and Q(0) = Q0, Q(1) = Q1 = {q ∈ Q : q(0) = 1}.

Lemma 2.2. [15] Let q be a convex univalent function in U and let α ∈ C, β ∈ C|{0} with

Re

{
1 +

zq′′(z)

q′(z)

}
> max{0,−Re(

α

β
)}.

If p is analytic in U and

αp(z) + βzp′(z) ≺ αq(z) + βzq′(z), (2.1)

then p ≺ q and q is the best dominant of (2.1).

Lemma 2.3. [4] Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D
containing q(U) with ϕ(w) ̸= 0, when w ∈ q(U). Set Q(z) = zq′(z)ϕ(q(z)) and h(z) = θ(q(z))+Q(z).
Suppose that

� Q(z) is starlike univalent in U ,
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� Re
{

zh′(z)
Q(z)

}
> 0 for z ∈ U .

If p is analytic in U , with p(0) = q(0), p(U) ⊆ D and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), (2.2)

then p ≺ q and q is the best dominant of (2.2).

Lemma 2.4. [15] Let q be a convex univalent in U and let β ∈ C, that Re(β) > 0. If p ∈ H[q(0), 1]∩
Q and p(z) + βzp′(z) is univalent in U , then

q(z) + βzq′(z) ≺ p(z) + βzp′(z), (2.3)

which implies that q ≺ p and q is the best subordinant of (2.3).

Lemma 2.5. [12] Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D
containing q(U). Suppose that

� Re
{

θ′(q(z))
ϕ(q(z))

}
> 0 for z ∈ U ,

� Q(z) = zq′(z)ϕ(q(z)) is starlike univalent in U .

If p ∈ H[q(0), 1] ∩Q, with p(U) ⊂ D, θ(p(z)) + zp′(z)ϕ(p(z)) is univalent in U and

θ(q(z)) + zq′(z)ϕ(q(z)) ≺ θ(p(z)) + zp′(z)ϕ(p(z)), (2.4)

then q ≺ p and q is the best subordinant of (2.4).

3. Differential Subordination Results

Here, we introduce some differential subordination results by using the Rafid-Jassim operator.

Theorem 3.1. Let q be convex univalent function in U with q(0) = 1, 0 ̸= ε ∈ C, γ > 0 and suppose
that q satisfies:

Re

{
1− zq′′(z)

q′(z)

}
> max{0,−Re(

γ

ε
)}. (3.1)

If f ∈ A satisfies the subordination

(λ− β + 2)

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ (
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)
+

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
≺ q(z) +

ε

γ
zq′(z) (3.2)

then [
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
≺ q(z), (3.3)

and q is the best dominant of (3.2).
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Proof . Define the function p by

p(z) =

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
, (3.4)

then the function p(z) is analytic in U and p(0) = 1, therefore, differentiating (3.4) with respect
to z and using the identity (1.7) in the resulting equation, we obtain

zp′(z)

p(z)
= γ

z
(
pµ,β,ℓλ,α,θ,Kf(z)

)′
pµ,β,ℓλ,α,θ,Kf(z)

− 1

 . (3.5)

Hence

zp′(z)

p(z)
= γ

[
(λ− β + 2)

(
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)]
.

Therefore,

zp′(z)

γ
=

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ [
(λ− β + 2)

(
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)]
.

The subordination (3.2) from the hypothesis becomes

p(z) +
ε

γ
zp′(z) ≺ q(z) +

ε

γ
zq′(z).

An application of lemma 2.2 with β = ε
γ
and α = 1, we obtain (3.3). □

Putting q(z) =
(
1+z
1−z

)
in Theorem 3.1, we obtain the following corollary:

Corollary 3.2. Let 0 ̸= ε ∈ C, γ > 0 and

Re

{
1 +

2z

1− z

}
> max{0,−Re(

γ

ε
)}.

If f ∈ A satisfies the subordination

(λ− β + 2)

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ (
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)
+

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
≺

(
1− z2 + 2 ε

γ
z

(1− z)2

)
,

then [
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
≺
(
1 + z

1− z

)
and q(z) =

(
1+z
1−z

)
is the best dominant.
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Theorem 3.3. Let q be convex univalent function in U with q(0) = 1, q′(z) ̸= 0 (z ∈ U) and assume
that q satisfies

Re

{
1 +

m

ε
(q(z))m +

m− 1

ε
(q(z))m−1 − z

q′(z)

q(z)
+ z

q′′(z)

q′(z)

}
> 0, (3.6)

where m ∈ C, ε ∈ C|{0} and z ∈ U . Suppose that z q′(z)
q(z)

is starlike univalent in U . If f ∈ A
satisfies

Ψ(γ, µ, β, ℓ, λ, θ, k,m; z) ≺ (1 + q(z))q(z)m−1 + εz
q′(z)

q(z)
, (3.7)

where,

Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) =

[
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γm
+

[
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γ(m−1)

+ εγ(λ− β + 2)

(
pµ,β,ℓλ,α−2,θ,Kf(z)

pµ,β,ℓλ,α−1,θ,Kf(z)
−

pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

)
,

(3.8)

then [
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γ
≺ q(z) (3.9)

and q is the best dominant of (3.7).

Proof . Define the function p by

p(z) =

[
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γ
. (3.10)

Then the function p(z) is analytic in U and p(0) = 1 differenitating (3.10) with respect to z and
using the identity (1.7), we get,

zp′(z)

p(z)
= γ

[
(µ− β + 2)

(
pµ,β,ℓλ,α−2,θ,Kf(z)

pµ,β,ℓλ,α−1,θ,Kf(z)
−

pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

)]
.

By setting
θ(w) = (1 + w)wm−1 and ϕ(w) = ε

w
, w ̸= 0,

we see that θ(w) and ϕ(w) are analytic in C|{0} and that ϕ(w) ̸= 0, w ∈ C|{0}. Also, we get

Q(z) = zq′(z)ϕ(q(z)) = εz
q′(z)

q(z)

and

h(z) = θ(q(z)) +Q(z) = (1 + q(z))q(z)m−1 + εz
q′(z)

q(z)
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It is clear that Q(z) is starlike univalent in U ,

Re

{
zh′(z)

Q(z)

}
= Re

{
1 +

m

ε
(q(z))m +

m− 1

ε
(q(z))m−1 − z

q′(z)

q(z)
+ z

q′′(z)

q′(z)

}
> 0.

By a straightforward computation, we obtain

Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) = (1 + p(z))(p(z))m−1 + εz
p′(z)

p(z)
, (3.11)

where Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) is given by (3.8).
From (3.7) and (3.11), we have

(1 + p(z))(p(z))m−1 + εz
p′(z)

p(z)
≺ (1 + q(z))(q(z))m−1 + εz

q′(z)

q(z)
. (3.12)

Therefore, by Lemma 2.3, we get p(z) ≺ q(z). By using (3.10), we obtain the result. □
Putting q(z) =

(
1+Az
1+Bz

)
, (−1 ≤ B < A ≤ 1) in Theorem 3.3, we obtain the following corollary:

Corollary 3.4. Let −1 ≤ B < A ≤ 1 and

Re

{
m

ε

(
1 + Az

1 +Bz

)m

+
m− 1

ε

(
1 + Az

1 +Bz

)m−1

+
1 +Bz(4 + 3Az)

(1 +Bz)(1 + Az)

}
> 0

where ε ∈ C|{0} and z ∈ U , if f ∈ A satisfies

Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) ≺
[
1 +

(
1 + Az

1 +Bz

)](
1 + Az

1 +Bz

)m−1

+ εz
A−B

(1 + Az)(1 +Bz)
,

where is given Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) by (3.8),
then [

pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γ
≺
(
1 + Az

1 +Bz

)
and q(z) =

(
1+Az
1+Bz

)
is the best dominant.

4. Differential Superordination Results

Theorem 4.1. Let q be convex univalent function in U with q(0) = 1, γ > 0 and Re{ε} > 0. Let
f ∈ A satisfies [

pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
∈ H[q(0), 1] ∩Q

and

(λ− β + 2)

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ (
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)
+

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
be univalent in U . If
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q(z) +
ε

γ
zq′(z) ≺ (λ− β + 2)

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ (
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)
+

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
, (4.1)

then

q(z) ≺

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
(4.2)

and q is the best subordinant of (4.1).

Proof . Define the function p by

p(z) =

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
. (4.3)

Differentiating (4.3) with respect to z, we get

zp′(z)

p(z)
= γ

z
(
pµ,β,ℓλ,α,θ,Kf(z)

)′
pµ,β,ℓλ,α,θ,Kf(z)

− 1

 . (4.4)

After some computations and using (1.7), from (4.4), we obtain

(λ− β + 2)

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ (
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)
+

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
= p(z) +

ε

γ
zp′(z),

and now, by using Lemma 2.4, we get the desired result. □
Putting q(z) =

(
1+z
1−z

)
in Theorem 4.1, we obtain the following corollary:

Corollary 4.2. Let γ > 0 and Re{ε} > 0. If f ∈ A satisfies[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
∈ H[q(0), 1] ∩Q

and

(λ− β + 2)

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ (
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)
+

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
be univalent in U . If

(
1− z2 + 2 ε

γ
z

(1− z)2

)
≺ (λ− β + 2)

[
P µ,β,ℓ
λ,α,θ,Kf(z)

z

]γ (
P µ,β,ℓ
λ,α−1,θ,Kf(z)

P µ,β,ℓ
λ,α,θ,Kf(z)

− 1

)
+

[
P µ,β,ℓ
λ,α,θ,Kf(z)

z

]γ
,

then
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(
1 + z

1− z

)
≺

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
and q(z) =

(
1+z
1−z

)
is the best subordinant.

Theorem 4.3. Let q be convex univalent function in U with q(0) = 1, q′(z) ̸= 0 and assume that q
satisfies

Re

{
m

ε
(q(z))mq′(z) +

m− 1

ε
(q(z))m−1q′(z)

}
> 0, (4.5)

where m ∈ C, ε ∈ C|{0} and z ∈ U .

Suppose that z q′(z)
q(z)

is starlike univalent in U . Let f ∈ A satisfies[
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γ
∈ H[q(0), 1] ∩Q,

and Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) is univalent in U , where is given Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) by
(3.8).

If

(1 + q(z))(q(z))m−1 + εz
q′(z)

q(z)
≺ Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z), (4.6)

then

q(z) ≺

[
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γ
(4.7)

and q is the best subordinant of (4.6).

Proof . Define the function p by

p(z) =

[
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γ
. (4.8)

Differentiating (4.8) with respect to z, we get

zp′(z)

p(z)
= γ

[
(µ− β + 2)

(
pµ,β,ℓλ,α−2,θ,Kf(z)

pµ,β,ℓλ,α−1,θ,Kf(z)
−

pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

)]
.

By setting
θ(w) = (1 + w)wm−1 and ϕ(w) = ε

w
, w ̸= 0,

we see that θ(w) and ϕ(w) are analytic in C|{0} and that ϕ(w) ̸= 0, w ∈ C|{0}. Also, we get

Q(z) = zq′(z)ϕ(q(z)) = εz
q′(z)

q(z)
.

It is clear that Q(z) is starlike univalent in U ,
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Re

{
θ′(q(z))

ϕ(q(z))

}
= Re

{
m

ε
(q(z))mq′(z) +

m− 1

ε
(q(z))m−1q′(z)

}
> 0

By a straightforward computation, we obtain

Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) = (1 + p(z))(p(z))m−1 + εz
p′(z)

p(z)
, (4.9)

where Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) is given by (3.8).
From (4.6) and (4.9), we have

(1 + q(z))(q(z))m−1 + εz
q′(z)

q(z)
≺ (1 + p(z))(p(z))m−1 + εz

p′(z)

p(z)
. (4.10)

Therefore, by Lemma 2.5, we get q(z) ≺ p(z). □

5. Sandwich Results

Theorem 5.1. Let q1 be convex univalent function in U with q1(0) = 1, γ > 0 and Re{ε} > 0 and
q2 be univalent U , q2(0) = 1 and satisfies (3.1). Let f ∈ A satisfies[

pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
∈ H[1, 1] ∩Q

and

(λ− β + 2)

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ (
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)
+

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
be univalent in U . If

q1(z)+
ε

γ
zq′1(z) ≺ (λ−β+2)

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ (
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)
− 1

)
+

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
≺ q2(z)+

ε

γ
zq′2(z),

then

q1(z) ≺

[
pµ,β,ℓλ,α,θ,Kf(z)

z

]γ
≺ q2(z)

and q1 and q2 are respectively the best subordinant and the best dominant.

Theorem 5.2. Let q1 be convex univalent in U with q1(0) = q2(0) = 1. Suppose q1 satisfies (4.5)
and q2, satisfies (3.6). Let f ∈ A satisfies[

pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γ
∈ H[1, 1] ∩Q

and Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) is univalent in U , where is given Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) by
(3.8).

if
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(1 + q1(z))(q1(z))
m−1 + εz

q′1(z)

q1(z)
≺ Ψ(γ, µ, β, ℓ, λ, θ, k,m, ε; z) ≺ (1 + q2(z))(q2(z))

m−1 + εz
q′2(z)

q2(z)

then

q1(z) ≺

[
pµ,β,ℓλ,α−1,θ,Kf(z)

pµ,β,ℓλ,α,θ,Kf(z)

]γ
≺ q2(z)

and q1 and q2 are respectively the best subordinant and the best dominant.
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