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UNIVALENT HOLOMORPHIC FUNCTIONS WITH FIXED
FINITELY MANY COEFFICIENTS INVOLVING SALAGEAN
OPERATOR

M. ACU! AND SH. NAJAFZADEH?*

ABSTRACT. By using generalized Salagean differential operator a new class of
univalent holomorphic functions with fixed finitely many coefficients is defined.
Coefficient estimates, extreme points, arithmetic mean, and weighted mean prop-
erties are investigated.

1. INTRODUCTION AND PRELIMINARIES

Let A denote the class of functions of the form
flz)=z+ Z a2 (1.1)

which are holomorphic in the unit disk A = {z: |z| < 1}.
We denote by N the subclass of A consisting of functions f(z) € A which are
holomorphic univalent in A and are of the form

flz)=2— Z apz”, (ar, > 0). (1.2)
The generalized Salagean operator is defined in [I] by

Dy f(z) = f(2)

Dif(2) = (L= A\)f(2) + Azf (2)
D3 f(z) = DX(D3 ' f(2)), A=0

see also [2].
If f(2) is given by (|1.2)), we see that
+oo
Dif(z)=z— > [1+ (k— DA apz". (1.3)
k=t+1
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When A = 1, we get the classic Salagean differential operator [3].
A function f(z) € N is said to be in N, (e, 3,7, 0) if and only if

(DY f(2)] — LD3*M f(2)
2DV (2) = B(1+0)a

where «, 3,7, 0 belong to [0,1].

<7, (1.4)

Now we introduce the class N3 (v, 3,7, 0), the subclass of Ny, x(«, 3,7, 0) consisting
of functions with negative and fixed finitely many coefficient of the form

_ ay(2 = B(1+0))cm
M@ == Mmooy s m( - Tz )

Such type of work was recently carried out by Shams and Kulkani [4]. See also [5].
We need the following lemma for proving our main results.

Lemma 1.1. A function f(z) given by is in the class Ny (o, B,7,0) if and
only if

DI+ (= DN THEA + k(L= A) = L+ 207)a] < ay(2 = B(1+6)).  (1.6)

Proof. Let the inequality ((1.6] E holds true and suppose |z| = 1. Then we obtain
(DYP2f(2)) = 1D3 f(2)] = 7120 = 20 3550 (1 + (k= DA a2 = B(1 + 0)al
=S [+ (B = DA EEA + k(L — A) — 1+ 2a7)ar — ay(2— B(1+6))] <0

Hence, by maximum modulus theorem, we conclude that f(z) € N, (o, 5,7,6).

Conversely, let f(z) defined by (1.2)) be in the class N, x(a, 3,7, ), so the condition

yields

‘Zk v+ (B = D)™ (FA + k(1L = A) — Lagz*!

— Y 2a(1 4+ (k= DA — B(1 + )« <7, z€A.

Since for any z, |Re(z)| < |z|, then

R o[ (= D)X RA + k(1 — X) — 1)]ap2b!
“e@-B8(1+0) — 3201+ (k — 1)A)Ha,zh-! 7

By letting z — 1 through real values, we get the required result. 0

2. MAIN RESULTS

We begin by proving a necessary and sufficient conditions for a function belonging
to the class N (o, 3,7, 0).



UNIVALENT HOLOMORPHIC FUNCTIONS WITH ... 3
Theorem 2.1. Let f(z) defined by , then f(z) € N5 (e, B,7,0) if and only if
+oo t
1+ (B —DXN)" N E2PA+ k(1 — X)) — 1+ 2a
Z[(+( JAN" RN + K ( ) +a)]ak<1_zcm.

2.1
@ A(1+0) o
Proof. By letting
. — &7(2 B ﬁ(l + 9)>Cm (2 2)
(4 (m = DA m2A + m(1 = A) — 1+ 2a)’ '
since Ny (@, 3,7,0) C Nua(a, 8,7,0), so f(z) € N5 (a, 8,7, 0) if and only if
i (L+ (m = D)™ (m*A+ m(1l = 2) — 1+ 207)
+00
1 — DA (E? 1—X)—1+2
+Z (1+ (k= DN (EN+E(1—N) + cw)ak<1
k=t+1 0‘7(2 - ﬁ(l + 9))
or t
+oo _ n+1/1.2 oY)
el ay(2 = B(1+0)) —~
and this gives the result.
O

Corollary 2.2. If f(z) defined by be in Ny (v, B,7,0) then for k >t +1 we

o (2= B(1L+6)(1— )
ay(2—-06(14+0))(1— fn: Cm
WS T = D) (£ R = A — 1+ 207)" (2:3)
and result is best possible for the function
B ! ay(2 =61+ 0))em .
9(2) == = mZ:Q L+ (m — DA™ (A +m(l -\ — 1+ 2a7)"
_ a7(2 — 6(1 + 9))(1 — Zin:Q Cm) Sk (24)

(14 (= DN E2A+ k(1= X) — 14+ 2a7)
3. EXTREME POINTS AND ARITHMETIC MEAN STRUCTURE
Now we find Extreme points and convolution structure for functions in Nﬁj’;\(a, B,7,0).
Theorem 3.1. Let
t
fi(z) = 2 = Z (1+ (m— 1))\()177Jf(12(m2ﬁ)\(:——'7—ne()1)c—m/\) — 1+ 2a) -

m=2
and for k >t+1

fe(z) =2 — (2= PL+ B))em &
’“ 2 (0 m = DA (m2A + m(1 = 3) =1+ 207)
ay(2=BL+0)(1 =D 5 cm) k-

L+ (k= DA™ (B2 + k(1 —\) — 1+ 2a9)
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Then F(z) € Nﬁf)‘\(a,ﬁ,% 0) if and only if it can be expressed in the form

where o, >0 (k>1t) and 3,25 o = 1.

Proof. Let F(2) = Y72 ox fu(2), then

_ ay(2 = B(1 +6))em m
Fz) ==~ mz (T4 (m— DA™ (m2A+m(1— A) — 1 +2a7)

=2

. Z a2 =B+ 0o

z
Z t+1 kE— DA E2A+ k(1 — X)) — 14+ 2a7)

Finally we have

o0

Z (14 (k=DN)" M EEXN+E(L = X) —1+2a7)(1 = >0 %, cm)ay(2 — B(1 + 0)) oy

ay(2—=614+0)(1+ (k= DA EA+ k(1 — X)) — 1+ 2a7)

k=t+1
t

—Zcm) Z Uk:(l—Zcm)(l—at)<1—Zcm.

m=2 k=t+1 m=2 m=2
Thus F(2) € N3 (v, 8,7, 0).
Conversely suppose F'(z) € N5 (a, 3,7,6), so

t

- ay(2 =B +0))cm .
PO =2 ) GG (P + k0 - N~ 15 207) k; e

By putting

(1+ (=D AN+ k(1= X)) — 1+ 2ay)
ay(2 =B+ 0)(1 =3, m)

we have o, > 0 and if we put oy = 1— Z j—t4+1 Ok, We conclude the required result. [

Theorem 3.2. Let fi(2) (j=1,2,...,1) defined by

O = ag, (k’zt—i—l)

l 400
- 22 1+ (m— DA™ (m2A +m(l— A) — 1+ 2a7) k; kg%

" ]=_1Jrl

be in N5 (a, 3,7,0), then the function

+0o0 +oo

ay(2 = B(140))C,, k
H(z)=2— " d
(2) = =z ng 1+ (m— DN (m2A +m(l— N — 1+ 2a7)" k:zt;l K2
(cx = 0)

is also in N (o, 3,7,0), where dj, = %22:1 g j-
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Proof. We have

+oo

Z (14 (k=N KA+ k(1= N) — 1+ 2ay)
ay(2 = B(1+0))

B (14 (k= DA™ 1 (E2A + k(1 — A) — 14 207)
ap lan(2— B(1 +6)) 2 ars)

dp,

k=t+1

k=t+1 j=1
l +o0o
1 14+ (=DM (EPA+E(1—)) — 1+ 2«
:72 3 (1+( ) )a ((2—5(14(—9)) ) ’Y)ak,j
j=1 Lk=t+1 v
1 l t t
<7jzl 1—mzz2cm zl—n;cm

and the proof by Theorem is complete. So NS”/”\ (cr, B,7,0) is closed under arith-
metic mean. 0

Remark 3.3. with the same calculation with theorem|3.2| we can prove that Nﬁfg‘\(a, B3,7,0)
is closed under weighted mean.
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