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Abstract

This paper attempts to study the vibration characteristics of a simply supported nth order rectangular nanoplate
using the modified couple stress theory. The modified couple stress theory, which has only one length scale parameter,
has been used to consider the small-scale effects. The basic and auxiliary equations of the nanoplate are obtained
after determining the strain energy, kinetic energy, and external work and substituting them into Hamilton’s equation.
Then, the vibrations of the simply supported nth order rectangular nanoplate with a thickness of h are investigated by
substituting the boundary and force conditions into the governing equations. Navier’s method is used for the solution.
The results indicate that the frequencies of the different modes of the nth order nanoplate decrease with an increase
in the length-to-thickness ratio of the nanoplate. Furthermore, the frequency is the smallest when the effect of the
size parameter is not considered (classical theory), and it increases with an increase in the size effect. In addition,
the frequency is smallest for the first mode and increases for the subsequent modes. Also, the vibrational frequency
increases with an increase in the order of the nanoplate.
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1 Introduction

The most reliable method to study materials on a small scale is the experimental method on atomic and molecular
scales. In this method, the nanostructure is studied in its real dimensions. In this technique, an atomic force microscope
(AFM) is used to apply different mechanical loads on the nanoplates, and the responses are measured to determine the
mechanical properties of the nanostructures. The fundamental problems of this method are the difficulty in controlling
the experimental conditions on this scale, the high costs, and the time-consuming nature of the method. Hence, this
method is used only for validating other simple and inexpensive methods.

Atomic simulation is another approach in the study of small-scale structures. In this method, the behavior of the
atoms and molecules are investigated by considering the intermolecular and interatomic effects on their movement,
which ultimately leads to an overall deformation in the object. Using this method involves a high computational cost

∗Corresponding author
Email addresses: mjdeskandari@gmail.com (Majid Eskandari Shahraki), mshariati44@gmail.com (Mahmoud Shariati),

azarmut@mut.ac.ir (Reza Azarafza), mohsenheydari1371@gmail.com (Mohsen Heydari Beni), jejaam@gmail.com (Jafar Eskandari Jam )

Received: August 2021 Accepted: October 2021

http://dx.doi.org/10.22075/ijnaa.2021.23793.2779


2374 Eskandari Shahraki, Shariati, Azarafza, Heydari Beni, Eskandari Jam

and is not economical when the problem includes large deformations or when the scale is larger than one or more
atoms. Hence, this method is used only for problems with small deformations.

Given the limitations mentioned in the above methods for studying nanostructures, researchers have sought simpler
approaches for investigating nanostructures. Small-scale modeling of structures using continuum mechanics is another
approach to the study of these materials. There are various size-dependent continuum theories that have considered
size effects, including the following: Micromorphic theory, microstructure theory, micropolar theory, Cosserat theory,
nonlinear theory, modified couple stress theory, and strain gradient elasticity theory. These are the extended versions
of the classical field theories, where the size effect has been considered.

2 Modified couple stress theory:

In 2002, Yang et al. [9] modified the stress couple theory presented by Toupin [7], Mindlin and Tiersten [4],
Koiter [2], and Mindlin [3] to propose a modified couple stress theory with only one material length scale parameter
for representing the size effect as opposed to the classical couple stress theory, which has two material length scale
parameters.

In the modified couple stress theory, the strain energy density in three-dimensional vertical coordinates for an
object limited to a volume V and a surface Ω is expressed as follows [8]:

U =
1

2

∫
V

(σijεij +mijχij)dV i, j = 1, 2, 3 (2.1)

where

εij =
1

2
(ui,j + uj,i) (2.2)

χij =
1

2
(θj,i + θj,i) (2.3)

Also χij and εij are the symmetric part of the curvature tensor and the strain tensor, respectively. θi and ui are
defined as the displacement vector and the rotation vector, respectively.

θ =
1

2
Curlu (2.4)

Moreover, σij and mij are the stress tensor and the deviatoric part of the couple stress tensor, respectively, which are
defined as follows:

σij = λεkkδij + 2µεij (2.5)

mi,j = 2µl2χij (2.6)

Where λ and µ are the Lamé parameters, δij is the Kronecker delta, and l is the material length scale parameter.
It can be inferred from Eq. (2.3) and (2.6) that χij and mij are symmetric.

3 nth order plate model:

The displacement equations of an nth order plate are defined as follows:

u1(x, y, z, t) =zφx(x, y, t)−
1

n

(
2

h

)n−1

zn
(
∂w(x, y, t)

∂x
+ φx(x, y, t)

)
n = 3, 5, 7, 9, . . .

u2(x, y, z, t) =zφy(x, y, t)−
1

n

(
2

h

)n−1

zn
(
∂w(x, y, t)

∂y
+ φy(x, y, t)

)
n = 3, 5, 7, 9, . . .

u3(x, y, z, t) =w(x, y, t)

(3.1)
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where φx and φy are the rotations of the normal vector about the x and y axes, and w is the displacement of
the midpoint of the plate along the z-axis. The symmetric part of the curvature tensor, the strain tensor, the stress
tensor, and the rotation vector for the nth order plate model are as follows:

εxx =z
∂φx

∂x
− 1

n

(
2

h

)n−1

zn
(
∂2w

∂x2
+

∂φx

∂x

)
(3.2)

εyy =z
∂φy

∂y
− 1

n

(
2

h

)n−1

zn
(
∂2w

∂y2
+

∂φy

∂y

)
(3.3)

εzz =0 (3.4)

εxy =εyx =
1

2
z

(
∂φx

∂y
+

∂φy

∂x

)
− 1

2n

(
2

h

)n−1

zn
(
∂φx

∂y
+

∂φy

∂x
+ 2

∂2w

∂x∂y

)
(3.5)

εxz =εzx =
1

2

(
1−

(
2z

h

)n−1)(
∂w

∂x
+ φx

)
(3.6)

εyz =εzy =
1

2

(
1− 2

(
2z

h

)n−1)(
∂w

∂y
+ φy

)
(3.7)

θx =
∂w

∂y
− 1

2

(
1− 2

(
2z

h

)n−1)(
∂w

∂y
+ φy

)
(3.8)

θy =− ∂w

∂x
− 1

2

(
1− 2

(
2z

h

)n−1)(
∂w

∂x
+ φx

)
(3.9)

θz =
1

2

(
z − 1

n

(
2

h

)n−1

zn
)(

∂φy

∂x
− ∂φx

∂y

)
(3.10)

xxx =
∂2w

∂x∂y
− 1

2

(
1−

(
2z

h

)n−1)(
∂2w

∂x∂y
+

∂φy

∂x

)
(3.11)

xyy =− ∂2w

∂x∂y
+

1

2

(
1−

(
2z

h

)n−1)(
∂φx

∂y
+

∂2w

∂x∂y

)
(3.12)

xzz =
1

2

(
1−

(
2z

h

)n−1)(
∂φy

∂x
− ∂φx

∂y

)
(3.13)

xxy = =
1

2

(
∂2w

∂y2
− ∂2w

∂x2

)
+

1

4

(
1−

(
2z

h

)n−1)(
∂2w

∂x2
+

∂φx

∂x
− ∂2w

∂y2
− ∂φy

∂y

)
(3.14)

xxz =
1

4

(
z − 1

n

(
2

h

)n−1

zn
)(

∂2φy

∂x2
− ∂2φx

∂y∂x

)
− 1

4

((
2

h
− 2n

h

)(
2n

h

)n−2)(
∂w

∂y
+ φy)

)
(3.15)

xyz =
1

4

((
2

h
− 2n

h

)(
2z

h

)n−2)(
∂w

∂x
+ φx

)
+

1

4

(
z − 1

n

(
2

h

)n−1

zn
)(

∂2φy

∂x∂y
− ∂2φx

∂y2

)
(3.16)

σxx =(λ+ 2µ)εxx + λεyy (3.17)

σyy =λεxx + (λ+ 2µ)εyy (3.18)

σzz =λ(εxx + εyy) (3.19)

σyx =σxy = 2µεxy (3.20)

σxz =σzx = 2µεxz (3.21)

σyz =σzy = 2µεyz (3.22)

The changes in the strain energy are expressed as follows:

δU =

∫
V

(σxxδεxx + σyyδεyy + 2σxyδεxy + 2σxzδεxz + 2σyzδεyz +mxxδxxx

+myyδxyy +mzzδxzz + 2mxyδxxy + 2mxzδxxz + 2myzδxyz)dV

(3.23)
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For simplification, the coefficients of the variables can be named from F1 to F15 according to Eq. (3.24) and
obtained individually.

δU =

∫
V

(F1δw,xx +F2δw,yy +F3δw,xy +F4δw,x +E5δw,y +E6δφx,yy

+F7δφy,xx + F8δφy,xy + F9δφx,yx + F10δφx,x + F11δφy,y + F12δφx,y

+F13δφy,x + F14δφx + F15δφy)dV

(3.24)

where:

F1 =
∂2w

∂x2

[
(λ+ 2µ)(A3 −A1A2) +

1
2µl

2(1 +A4)− 1
4µl

2(1 +A4)(1−A4)
]

+
∂2w

∂y2
[
λ(A3 −A1A2)− 1

2µl
2(1 +A4) +

1
4µl

2(1−A4)(1 +A4)
]

+
∂φx

∂x

[
−(λ+ 2µ)(A2A1)− 1

4µl
2(1−A4)(1 +A4)

]
+
∂φy

∂y

[
−λ(A2A1)− 1

4µl
2(1−A4)(1 +A4)

]
(3.25)

F2 =
∂2w

∂y2
[
(λ+ 2µ)(A3 −A1A2) +

1
2µl

2(1 +A4)− 1
4µl

2(1 +A4)(1−A4)
]

+
∂2w

∂x2

[
λ(A3 −A1A2)− 1

2µl
2(1 +A4) +

1
4µl

2(1−A4)(1 +A4)
]

+
∂φy

∂y

[
−(λ+ 2µ)(A2A1)− 1

4µl
2(1−A4)(1 +A4)

]
+
∂φx

∂x

[
−λ(A2A1)− 1

4µl
2(1−A4)(1 +A4)

]
(3.26)

F3 =
∂2w

∂x∂y

[
4µA2

2 + µl2(1 +A4)
2
]
+

∂φx

∂y

[
−2µA2A1 − 1

2µl
2(1−A4)(1 +A4)

]
+
∂φy

∂x

[
−2µA2A1 − 1

2µl
2(1−A4)(1 +A4)

] (3.27)

F4 =

(
∂w

∂x
+ φx

)[
µ(1−A4)

2 + 1
4µl

2A2
5

]
+

(
∂2φy

∂x∂y
− ∂2φx

∂y2

)[
1
4µl

2A5A1

]
(3.28)

F5 =

(
∂w

∂y
+ φy

)[
µ(1−A4)

2 + 1
4µl

2A2
5

]
+

(
∂2φy

∂x∂y
− ∂2φy

∂x2

)[
1
4µl

2A5A1

]
(3.29)

F6 = F8

(
∂w

∂x
+ φx

)[
1
4µl

2A2
5A1

]
+

(
∂2φy

∂x∂y
− ∂2φx

∂y2

)[
1
4µl

2A2
1

]
(3.30)

F7 = F9 =

(
∂w

∂y
+ φy

)[
− 1

4µl
2A2

5A1

]
+

(
∂2φy

∂2x
− ∂2φx

∂x∂y

)[
1
4µl

2A2
1

]
(3.31)

F10 =
∂2w

∂x2

[
(λ+ 2µ)(A2

1 − zA1)− 1
4µl

2(1−A4)(1 +A4)
]

+
∂2w

∂y2
[
λA1(−z +A1) +

1
4µl

2(1−A4)(1 +A4)
]

+
∂φx

∂x

[
(λ+ 2µ)A2

1 +
1
4µl

2(1−A4)
2
]
+

∂φy

∂y

[
λA2

1 − 1
4µl

2(1−A4)
2
] (3.32)
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F11 =
∂2w

∂y2
[
(λ+ 2µ)(A2

1 − zA1)− 1
4µl

2(1−A4)(1 +A4)
]

+
∂2w

∂x2

[
λA1(−z +A1) +

1
4µl

2(1−A4)(1 +A4)
]

+
∂φy

∂y

[
(λ+ 2µ)A2

1 +
1
4µl

2(1−A4)
2
]
+

∂φx

∂x

[
λA2

1 − 1
4µl

2(1−A4)
2
] (3.33)

F12 =
∂2w

∂x∂y

[
−2µA2A1 − 1

2µl
2(1−A4)(1 +A4)

]
+
∂φx

∂y

[
µA2

1 + µl2(1−A4)
2
]
+

∂φy

∂x

[
µA2

1 − 1
2µl

2(1−A4)
2
] (3.34)

F13 =
∂2w

∂x∂y

[
−2µA2A1 − 1

2µl
2(1−A4)(1 +A4)

]
+
∂φx

∂y

[
µA2

1 − 1
2µl

2(1−A4)
2
]
+

∂φy

∂x

[
µA2

1 + µl2(1−A4)
2
] (3.35)

F14 =

(
∂w

∂x
+ φx

)[
µ(1−A4)

2 + 1
4µl

2A2
5

]
+

(
∂2φy

∂x∂y
− ∂2φx

∂y2

)[
1
4µl

2A5A1

]
(3.36)

F15 =

(
∂w

∂y
+ φy

)[
µ(1−A4)

2 + 1
4µl

2A2
5

]
+

(
∂2φx

∂x∂y
− ∂2φy

∂x2

)[
1
4µl

2A5A1

]
(3.37)

The coefficients A are as follows:

A1 = z − 1

n

(
2

h

)n−1

zn (3.38)

A2 =
1

n

(
2

h

)n−1

zn (3.39)

A3 =
1

n

(
2

h

)n−1

zn+1 (3.40)

A4 = 4

(
2z

h

)n−1

(3.41)

A5 =

(
2

h
− 2n

h

)(
2z

h

)n−2

(3.42)

A6 =
1

n

(
2

h

)n−1

(3.43)

A7 = µ

(
2

h

)n−1

In−1 (3.44)
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A8 = µ

(
2

h

)2n−2

I2n−2 (3.45)

A9 = (λ+ 2µ)

(
1

n

(
2

h

)n−1)2

I2n (3.46)

A10 = (λ+ 2µ)
1

n

(
2

h

)n−1

In+1 (3.47)

A11 =
1

4
µl2

(
1

n

(
2

h

)n−1)2

(n2 − n)2I2n−4 (3.48)

A12 =
1

4
µl2h (3.49)

Ii =

∫ h
2

−h
2

Zidz (i = 0, 1, 2, n− 1, n, n+ 1, 2n− 4, 2n− 2, 2n) (3.50)

4 Virtual work equation:

The virtual work done by the external force consists of three parts:

1. The virtual work done by the body forces on V = Ω ∗ (−h/2, h/2)

2. The virtual work done by the surface tractions at the top and bottom surfaces (Ω)

3. The virtual work done by the surface traction on the side surfaces S = Γ ∗ (−h/2, h/2) where Ω is the mid-plane
of the plate, and Γ is the mid-perimeter of the plate.

If (fx, fy, fz) is the body force, (cx, cy, cz) is the body couple, (qx, qy, qz) are forces exerted on the surface Ω,
(tx, ty, tz) is the Cauchy tractions, and (Sx, Sy, Sz) is the surface couple, the variations of virtual work will be as
follows:

δw = −
[ ∫

Ω

(fxδu+ fyδV + fzδw + qxδu+ qyδV + qzδw + cxδθx + cyδθy + czδθz)dxdy

+

∫
Γ

(txδu+ tyδV + tzδw + sxθx + syδθy + szδθz)dΓ

] (4.1)

Since the only external force applied in this research is qz, the virtual work is as follows:

δw =

∫ a

0

∫ b

0

q(x, y)δw(x, y)dxdy (4.2)

The changes in the kinetic energy are expressed as follows:

δT =

∫
A

∫ h
2

−h
2

ρ(u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3)dAdz (4.3)

where ρ is the density. Furthermore, according to Hamilton’s principle [1], the following holds:∫ T

0

(δT − (δU − δw))dt = 0 (4.4)

where T is the kinetic energy, U is the strain energy, and W is the work done by the external forces.
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5 Plate equations

Using Hamilton’s principle (Eq. (4.4)), the basic equations are obtained as follows[∫ h
2

−h
2

(
∂2F1

∂x2
− ∂F4

∂x
+

∂2F2

∂y2
+

∂2F3

∂x∂y
− ∂F5

∂y

)
dz

]
= q(x, y) + ρI0w,tt

−A2
6ρI2n

(
∂2w

∂x2
+

∂2w

∂y2

)
,tt

+A2
6ρJn+1

(
∂φx

∂x
+

∂φy

∂y

)
,tt

(5.1)

∫ h
2

−h
2

(
∂2F6

∂y2
+

∂2F9

∂x∂y
− ∂F12

∂y
+

∂F10

∂x
+ F14

)
dz = ρk2φx,tt −A6ρJn+1

(
∂w

∂x

)
,tt

(5.2)

∫ h
2

−h
2

(
∂2F7

∂x2
− ∂F13

∂x
+

∂2F8

∂x∂y
− ∂F11

∂y
+ F15

)
dz = ρk2φy,tt −A6ρJn+1

(
∂w

∂y

)
,tt

(5.3)

in which we have the following:

J1 = I1 −A6In (5.4)

Jn+1 = In+1 −A6I2n (5.5)

K2 = I2 − 2A6In+1 −A2
6I2n (5.6)

6 Determination of the general equations of an nth order plate

Considering the following parameters:

B1 = 2A12 + l2A7 +
1

2
l2A8 + 2A9 (6.1)

B2 =
1

2
B1 = A12 +A9 +

1

2
l2A7 +

1

4
l2A8 (6.2)

B3 = −µh+ 2A7 −A8 −A11 (6.3)

B4 = A9 −A10 +
1

4
l2A8 −A12 (6.4)

B5 = 3A12 −
3

2
l2A7 +

3

4
l2A8 − (λ+ µ)I2 + 2(λ+ µ)A6In+1 − (λ+ µ)A2

6I2n (6.5)

B6 = −µI2 + 2µA6I4 − µA2
6I6 − 4A12 + 2l2A7 − l2A8 (6.6)

B7 =
1

4
µl2I2 −

1

2
µl2A6In+1 +

1

4
µl2A2

6I2n (6.7)

B8 = −(λ+ 2µ)I2 + 2A10 −A9 −A12 +
1

2
l2A7 −

1

4
l2A8 (6.8)
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B9 =
5

4
l2A8 −

1

2
µl2A2

6I2n−2 − l2A7 −
1

2
l2nA7 + 3A12 − (λ+ µ)I2 − (λ+ µ)A2

6I2n

+ 2(λ+ µ)A6In+1

(6.9)

B10 =
3

2
l2A7 +

1

2
l2nA7 −

3

2
l2A8 +

1

2
µl2A2

6I2n−2 − µI2 − µA2
6I2n + 2µA6I2n+1 − 4A12 (6.10)

B11 = ρA2
6I2n (6.11)

B12 = ρA6In+1 − ρA2
6I2n (6.12)

B13 = ρI2 − 2ρA6In+1 − ρA2
6I2n (6.13)

The general equations of an nth order plate will be as follows:

B1
∂4w

∂x2∂y2
+B2

∂4w

∂x4
+B2

∂4w

∂y4
+B3

∂2w

∂x2
+B3

∂2w

∂y2
+B4

∂3φx

∂x3
+B4

∂3φx

∂x∂y2

+B4
∂3φy

∂y∂x2
+B3

∂φx

∂x
+B3

∂φy

∂y
+B4

∂3φy

∂y3
= q(x, y) + ρh

∂2w

∂t2

−B11

(
∂4w

∂x2∂t2
+

∂4w

∂y2∂t2

)
+B12

(
∂3φx

∂x∂t2
+

∂3φy

∂y∂t2

) (6.14)

−B4
∂3w

∂x∂y2
+B5

∂2φy

∂y∂x
+B6

∂2φx

∂y2
+B7

∂4φy

∂x∂y3
−B7

∂4φx

∂y4
+B7

∂4φy

∂y∂x3
−B7

∂4φx

∂y2∂x2

−B3
∂w

∂x
−B3φx −B4

∂3w

∂x3
+B8

∂2φx

∂x2
= −B12

∂3w

∂x∂t2
+B13

∂2φx

∂t2

(6.15)

−B4
∂3w

∂y∂x2
+B9

∂2φx

∂y∂x
+B10

∂2φy

∂x2
+B7

∂4φy

∂x4
+B7

∂4φx

∂x2∂y2
−B7

∂4φx

∂y∂x3
−B7

∂4φx

∂x∂y3

−B4
∂3w

∂y3
−B3

∂w

∂y
−B3φy + b8

∂2φy

∂y2
= −B12

∂3w

∂y∂t2
+B13

∂2φy

∂t2

(6.16)

7 Navier solution method

The Navier solution method can be used for rectangular plates with simply supported boundary conditions on
all edges. Since the boundary conditions are automatically satisfied in this method, the unknown functions at the
mid-plane are expressed as dual trigonometric series, as follows [6, 10]:

W (x, y, t) =

∞∑
m=1

∞∑
n=1

Wmn sinαx sinβye
iωt (7.1)

φx(x, y, t) =

∞∑
m=1

∞∑
n=1

Xmn cosαx sinβye
iωt (7.2)

φy(x, y, t) =

∞∑
m=1

∞∑
n=1

Ymn sinαx cosβye
iωt (7.3)

The force is calculated as follows:
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q =

∞∑
m=1

∞∑
n=1

Qmn sinαx sinβye
iωt (7.4)

Qmn =
4

ab

∫ a

0

∫ b

0

q(x, y) sinαx sinβydxdy (7.5)

Qm,n =


q0 for a sinusoidal force
16q0
mnπ2

for a uniform force

4Q0

ab
for a point force at the center of the plate

(7.6)

where

α =
πm

a
, β =

πn

b
, i =

√
−1 (7.7)

The simply supported boundary conditions are satisfied by the Navier method according to the following equations:
x = 0 w(0, y) = w(a, y) =

∑∑
wmn sin

mπ
a x sin nπ

b y = 0

,

x = a φy(0, y) = φy(a, y) =
∑∑

ymn sin
mπ
a x cos nπ

b y = 0

(7.8)


y = 0 w(x, 0) = w(x, b) =

∑∑
wmn sin

mπ
a x sin nπ

b y = 0

,

y = b φx(x, 0) = φx(x, b) =
∑∑

Xmn cos
mπ
a x sin nπ

b y = 0

(7.9)

8 Equation matrix of the nth order plate:

After solution using the Navier method and naming the coefficients of the equation variables as follows:

M1 = B1α
2β2 +B2α

4 +B2β
4 −B3α

2 −B3β
2 (8.1)

M2 = M4 = B4α
3 +B4αβ

2 −B3α (8.2)

M3 = M7 = B4β
3 +B4α

2β −B3β (8.3)

M5 = −B7β
4 −B7α

2β2 −B6β
2 −B8α

2 −B3 (8.4)

M6 = B7αβ
3 +B7α

3β −B5αβ (8.5)

M8 = −B7α
3β −B7αβ

3 −B9αβ (8.6)

M9 = B7α
4 +B7α

2β2 −B10α
2 −B8β

2 −B3 (8.7)

N1 = −B11α
2 −B11β

2 − ρh (8.8)

N2 = N4 = B12α (8.9)
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Table 1: Comparison between the frequencies of the first mode for different length-to-thickness ratios and length-scale-parameter-to-
thickness ratios for an nth order nanoplate (MHZ)(a/b = 1).

l/h
a/h

5 10 20 30 40 50
0 444.5855 121.6342 31.2161 13.9441 7.8576 5.0330
0.5 653.6982 173.8911 44.2699 19.7447 11.1202 7.1210
1 1055.3211 276.5826 70.1049 31.2407 17.5894 11.2621
2 1963.4588 511.3107 129.3539 57.6223 32.4387 20.7686

N3 = N7 = B12β (8.10)

N5 = N9 = −B13 (8.11)

N5 = N9 = −B13 (8.12)

The general matrix of the equations of an nth order plate and the auxiliary equations will be obtained as follows:M1 M2 M3

M4 M5 M6

M7 M8 M9

− ω2

N1 N2 N3

N4 N5 N6

N7 N8 N9

wmn

Xmn

ymn

 =

Qmn

0
0

 (8.13)

The plate is considered to be made of various materials, including epoxy, graphene, copper, etc. In this paper, the
plate material is considered to be graphene. A thin single-layer graphene plate has the following properties [1]:

E = 1.06TPa, ν = 0.25, h = 0.34nm, ρ = 2250kg/m3.

Moreover, the relationship between E and µ and ν can be written as follows:

λ =
vE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(8.14)

Where E is Young’s modulus, and µ and λ are Lamé parameters [5]. Also, the force has been considered to be
q = 1N/m2 .

9 Results and discussion:

The computational program was has been written in MATLAB software, and the results have been obtained from
this software. All the boundary conditions have been considered to be simply supported.

Tables 1 to 4 indicate that the frequencies of the different modes (ω11−ω12−ω21−ω22) of the nth order nanoplate
decrease with an increase in the length-to-diameter ratio. Furthermore, the frequency is the smallest when the effect of
the size parameter is not considered (classical theory), and it increases with an increase in the size effect. In addition,
the frequency is smallest for the first mode and increases for the subsequent modes.

Table 1 indicates that the frequencies of the different modes of the nth order nanoplate increase with an increase
in the ratio of the length scale parameter to the thickness of the nanoplate.

Table 5 compares the different mode frequencies for the nth order nanoplate with different orders. As seen in the
table, the vibrational frequency increases with an increase in the order of the nanoplate.

Tables 6 to 9 display the different mode frequencies (ω11 − ω12 − ω21 − ω22) for different nanoplates. According to
the table, the frequency is the highest for the Kirchhoff nanoplate when the length scale parameter is not considered.
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Table 2: Comparison of the frequency ω12 for different length-to-thickness ratios and length-scale-parameter-to-thickness-ratios for an nth
order nanoplate (MHZ)(a/b = 1).

a/h
l/h

0 0.5 1 2
5 969.9190 1491.1907 2460.6235 4620.1898
10 289.9375 420.6563 674.3836 1250.9755
20 77.0069 109.6563 174.0385 321.4395
30 34.6497 49.1546 77.8533 143.6613
40 19.5766 27.7342 43.8941 80.9709
50 12.5548 17.7753 28.1226 51.8696

Table 3: Comparison of the frequency ω21 for different length-to-thickness ratios and length-scale-parameter-to-thickness-ratios for an nth
order nanoplate (MHZ)(a/b = 1).

a/h
l/h

0 0.5 1 2
5 969.9190 1491.1907 2460.6235 4620.1898
10 289.9375 420.6563 674.3836 1250.9755
20 77.0069 109.6563 174.0385 321.4395
30 34.6497 49.1546 77.8533 143.6613
40 19.5766 27.7342 43.8941 80.9709
50 12.5548 17.7753 28.1226 51.8696

Table 4: Comparison of the frequency ω22 for different length-to-thickness ratios and length-scale-parameter-to-thickness-ratios for an nth
order nanoplate (MHZ)(a/b = 1).

a/h
l/h

0 0.5 1 2
5 1400.0932 2231.9203 3742.7704 7073.5822
10 444.5855 653.6982 1055.3211 1963.4588
20 121.6342 173.8911 276.5826 511.3107
30 55.1098 78.3225 124.1752 229.2384
40 31.2161 44.2699 70.1049 129.3539
50 20.0437 28.3971 44.9443 82.9090

Table 5: Comparison of the different mode frequencies for the nth order nanoplate with different orders (MHZ) (a/b = 1, a/h = 5)

Mode
n

3 5 7 9 11 13 15
ω11 1055.3211 1058.2515 1063.3141 1067.3951 1070.5480 1073.0140 1074.9821
ω12 2460.6235 2471.3233 2491.3787 2507.9604 2520.9555 2531.2138 2539.4538
ω21 2460.6235 2471.3233 2491.3787 2507.9604 2520.9555 2531.2138 2539.4538
ω22 3742.7704 3760.0712 3795.5355 3825.2651 3848.6823 3867.2063 3882.0979
ω33 7581.5671 7601.9951 7668.8776 7724.6763 7767.7158 7801.0760 7827.4309
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Figure 1: Comparison of the different mode frequencies for different length-parameter-to-thickness rations of the nth order nanoplate
(MHZ) (a/b = 2, a/h = 30)

Table 6: Comparison of the frequency ω11 for different nanoplates (MHZ)(a/b = 1)

l/h
a/h

10 20 30 40 50
Kirchhoff plate

0 124.98838 31.43847 13.98857 7.87172 5.03883
0.5 176.76026 44.46071 19.78283 11.13229 7.12598
1 279.48251 70.29855 31.27940 17.60169 11.26717
2 515.34028 129.62412 57.67637 32.45591 20.77563

Mindlin plate
0 121.5505 31.2102 13.9429 7.8572 5.0329
0.5 249.5297 64.2570 28.7266 16.1924 10.3732
1 436.5378 115.4757 51.9052 29.3145 18.7965
2 722.2379 215.5686 99.1252 56.4382 36.3253

Third-order shear deformation plate
0 121.6342 31.2161 13.9441 7.8576 5.0330
0.5 173.8911 44.26997 19.7447 11.1202 7.1210
1 276.5826 70.1049 31.2407 17.5894 11.2621
2 511.3107 129.3539 57.6223 32.4387 20.7686
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Table 7: Comparison of the frequency ω12 for different nanoplates (MHZ)(a/b = 1)

a/h
l/h

0 0.5 1 2
Kirchhoff plate

10 308.7461 436.6329 690.3772 1272.9926
20 78.3559 110.8119 175.2090 323.0695
30 34.9237 49.3895 78.0917 143.9940
40 19.6641 27.8093 43.9704 81.0774
50 12.5909 17.8062 28.1540 51.9135

Mindlin plate
10 289.5156 592.8023 988.5087 1223.2879
20 76.9722 158.2169 280.4153 492.9660
30 34.6425 71.3140 128.0217 237.9174
40 19.5743 40.3193 72.7219 137.8488
50 12.5539 25.8663 46.7575 89.4593

Third-order shear deformation plate
10 289.9375 420.6563 674.3836 1250.9755
20 77.0069 109.6563 174.0385 321.4395
30 34.6497 49.1546 77.8533 143.6613
40 19.5766 27.7342 43.8941 80.9709
50 12.5548 17.7753 28.1226 51.8696

Table 8: Comparison of the frequency ω21 for different nanoplates (MHZ)(a/b = 1)

a/h
l/h

0 0.5 1 2
Kirchhoff plate

10 308.7461 436.6329 690.3772 1272.9926
20 78.3559 110.8119 175.2090 323.0695
30 34.9237 49.3895 78.0917 143.9940
40 19.6641 27.8093 43.9704 81.0774
50 12.5909 17.8062 28.1540 51.9135

Mindlin plate
10 289.5156 592.8023 988.5087 1223.2879
20 76.9722 158.2169 280.4153 492.9660
30 34.6425 71.3140 128.0217 237.9174
40 19.5743 40.3193 72.7219 137.8488
50 12.5539 25.8663 46.7575 89.4593

Third-order shear deformation plate
10 289.9375 420.6563 674.3836 1250.9755
20 77.0069 109.6563 174.0385 321.4395
30 34.6497 49.1546 77.8533 143.6613
40 19.5766 27.7342 43.8941 80.9709
50 12.5548 17.7753 28.1226 51.8696
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Table 9: Comparison of the frequency ω22 for different nanoplates (MHZ)(a/b = 1)

a/h
l/h

0 0.5 1 2
Kirchhoff plate

10 488.2420 690.4785 1091.7424 2013.0735
20 124.9884 176.7603 279.4825 515.3403
30 55.8018 78.9157 124.7766 230.0767
40 31.4385 44.4607 70.2985 129.6241
50 20.1355 28.4759 45.0243 83.0207

Mindlin plate
10 443.6884 908.3644 1444.5250 1088.1654
20 121.5505 249.5297 436.5378 722.2379
30 55.0918 113.3246 202.1703 365.8010
40 31.2102 64.2570 115.4757 215.5686
50 20.0412 41.2804 74.4444 141.0270

Third-order shear deformation plate
10 444.5855 653.6982 1055.3211 1963.4588
20 121.6342 173.8911 276.5826 511.3107
30 55.1098 78.3225 124.1752 229.2384
40 31.2161 44.2699 70.1049 129.3539
50 20.0437 28.3971 44.9443 82.9090

10 Conclusion

This paper addressed the vibrations of an nth order nanoplate using the modified couple stress theory. As observed
in the tables and figures, the frequencies of the different modes of the nth order nanoplate decrease with an increase
in the length-to-thickness ratio of the nanoplate. Moreover, the frequency is the smallest when the effect of the size
parameter is not considered (classical theory), and it increases with an increase in the size effect. Also, the frequency
is smallest for the first mode and increases for the subsequent modes. Finally, the vibrational frequency increases with
an increase in the order of the nanoplate.
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