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Abstract

This work proposes a new metaheuristic technique that combines Differential evolution (DE) with gravity search in a
consistent manner. Swarm intelligence benefits and the concept of tensile strength between two particles are combined
to suggest superior meta-heuristic approaches for limitless optimization issues. The goal of this paper is to create a
new algorithm that overcomes the shortcomings of the Gravitational search algorithm by leveraging the advantages of
the Differential evolution algorithm in expanding search areas, overcoming early convergence problems, and improving
the attractive algorithm’s ability to converge towards the optimum. The GSA algorithm has been utilized in a search-
oriented algorithm, whereas the Differential evolution algorithm is causing a high level of diversification in society,
which leads to the establishment of search regions for the GSA algorithm. The effectiveness of the suggested approach
was evaluated by solving a collection of 30 Real-Parameter Numerical Optimization problems that were presented at
IEEE-CEC 2014. The findings are compared to 5 state-of-the-art unconstrained problem algorithms and 6 state-of-
the-art unconstrained problem algorithms. The winner methods were also deduced from the results using the Wilcoxon
signed test.
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1 Introduction

In the modern day, meta-heuristic algorithms have taken over as the primary method for solving optimization issues.
As a whole, meta-heuristics may be broken down into three primary categories: physics-based, SI, and Evolutionary
approaches (EAs).

In physics-based procedures, for example. Such optimization methods are often modeled after physical laws and
principles. The algorithms Simulated Annealing, Harmony search, Big-Bang Big-Crunch (BBBC)[5, 29, 15, 7, 2, 10,
14, 34] and Curved The mechanism of these algorithms differs from that of EAs in that a random group of search

∗Corresponding author
Email addresses: hasanien.1975@uoitc.edu.iq (Hasanain Jalil Neamah ), alialmobarqaa@yahoo.com (Ali M. Almobarqaa),

zainabalsaedi1983@gmail.com (Zainab Ali Abdulhusien)

Received: December 2021 Accepted: February 2022

http://dx.doi.org/10.22075/ijnaa.2022.6248


346 Neamah, Almobarqaa, Abdulhusien

agents interact with one another and move about in the search space according to physical laws rather than using a
computer algorithm. This movement is accomplished by the use of several forces, such as gravity force, ray casting,
electromagnetic force, inertia force, and weights, among others. For example, the BBBC algorithm was influenced
by the hypotheses of the big bang and the big crunch. According to the concepts of the big bang theory, the search
agents of BBBC are dispersed over a search space in random directions starting from a single point in the search space.
According to the ideas of the big crunch theory, they seek at random and then congregate around a final location
(which is the best spot they have found so far). GSA is another another algorithm that is based on physics. Newton’s
law of universal gravitation is the fundamental scientific theory from which GSA draws its inspiration. The GSA
method searches for a solution by deploying a collection of agents with masses proportionate to the value of a fitness
function in order to find it. When the masses are drawn to one other by the gravitational forces that exist between
them, this is known as iteration. The attracting force increases in proportion to the mass of the object. The most
massive mass draws the other masses in proportion to their distances from it, indicating that it is probably near to
finding the global optimum.

In the case of SI algorithms. They are primarily designed to imitate natural swarming, herding, flocking, or school-
ing behavior in animals and other organisms. Even though the technique is very identical to that of a physics-based
algorithm, the search agents move around the environment utilizing the simulated collective and social intelligence of
animals. The PSO approach is the most often used SI technique. In their paper [16], Kennedy and Eberhart suggest
a PSO algorithm that is based on the social behavior of flocking birds. The PSO algorithm makes use of numerous
particles that pursue the location of the best particle as well as their own best positions earned so far in the game.
In other words, a particle gets relocated based on the best solution it has found for itself as well as the best solution
the swarm has found for itself. Dorigo et al. introduced the ACO algorithm in 2006 [4], which is another prominent
SI technique. The social behavior of ants in an ant colony served as inspiration for the design of this program. It is
in fact the social intelligence of ants in determining the shortest route between their colony and a food supply that
has served as the primary inspiration for ACO. Candidate solutions are responsible for the evolution of a pheromone
matrix during the duration of iteration. The ABC algorithm is another widely used algorithm that is based on the
collective behavior of bees in their search for food sources. In ABS, there are three categories of bees: scout bees,
observer bees, and hired bees, to name a few. The scout bees are in charge of investigating the search area, whilst
the spectator and hired bees are in charge of capitalizing on the potential solutions discovered by the scout bees. The
Bat-inspired Algorithm (BA), which is based on the echolocation activity of bats, was recently suggested [37], and it is
a last alternative. In the wild, there are many different kinds of bats. They are all distinct in terms of size and weight,
but when it comes to navigation and hunting, they all behave in a very similar manner. In order to do this, bats make
use of their inherent sonar. The two most important traits of bats while hunting for prey have been included into the
development of the BA algorithm. When chasing prey, bats have a tendency to reduce the volume of the ultrasonic
sound they make while increasing the pace at which it is produced. The BA method has been theoretically developed
to account for this tendency. More importantly, there have been other EA strategies presented to date, many of which
are influenced by hunting and seeking behaviors, such as In 2001, the Honey Bees Optimization Algorithm (MBO) was
modified to allow for marriage [1]. The Artificial Fish-Swarm Algorithm (AFSA) was developed in 2003 [20], while
the Termite Algorithm was developed in 2005 [31]. In 2007, the Wasp Swarm Algorithm was developed [28]. In 2007,
there was a monkey search [26]. In 2008, the Bee Collecting Pollen Algorithm (BCPA) was developed [21]. Cuckoo
Search (CS) was first used in 2009 [38]. Dolphin Partner Optimization (DPO) was first implemented in 2009 [33]. The
Firefly Algorithm (FA) was first used in 2010 [39]. In 2012, the Bird Mating Optimizer (BMO) was introduced [3]. In
2012, the Krill Herd (KH) was discovered [9]. In 2012, the Fruit Fly Optimization Algorithm (FOA) was developed
[27]. In 2006, the Group Search Optimizer (GSO) was introduced [12, 13], in 2014, the A. Grey wolf optimizer [22], in
2015, the Moth-Flame Optimization (MFO) algorithm [23], and in 2016, the Whale Optimization Algorithm (WOA).

The notions of evolution in nature are often used as inspiration in EAs. The GA algorithm is the most widely used
algorithm in this field. Holland invented this method in 1992 [35], and it is based on Darwinian evolution ideas and
replicates them. EAs seek for the global optimum in a search space by generating one or more random solutions for a
given issue [36], which are then evaluated. This collection of solutions is referred to as the set of candidate solutions.
The pool of candidates is then refined repeatedly until it meets the requirements of a termination condition. A more
precise estimate of the global optimal than the initial random guesses might be deemed to constitute the increase
in performance. This method provides evolutionary algorithms with a number of fundamental benefits, including
problem independence, derivation independence, avoidance of local optima, simplicity, and derivation independence.
In general, optimization is accomplished by the evolution of an initial random solution in evolutionary algorithms.
In each new generation, a new population is formed by the combination and mutation of the individuals from the
preceding generation. Because the best people have a greater likelihood of participating in the formation of the new
population, the new population is more likely to be superior to the preceding generation in quality (s). This has the
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potential to ensure that the original random population is optimized over the course of many generations of evolution.
Differential evolution (DE) [8], Evolutionary Programming (EP) [11, 30], and Evolution Strategy (ES) [17, 18], Genetic
Programming (GP) [32], Biogeography-Based Optimizer (BBO) [6], and Teaching learning based optimization (TLBO)
[19] are examples of EAs (TLBO). An example of this would be the BBO algorithm, which was initially suggested
in 2008 [19] by Simon. Biological geography, which is the study of biological species in terms of their geographic
distribution, served as the inspiration for the fundamental concept of this method (over time and space). There might
be many case studies covering various islands, regions, and even continents over the course of decades, centuries, or
millennia. It is the goal of this area of research to explore the relationships between various species (inhabitants)
in terms of immigration, emigration, and mutation by investigating diverse ecosystems (habitats or territories). The
fundamental idea for the BBO algorithm came from the development of ecosystems (taking into account various sorts
of species such as predator and prey) through time via migration and mutation to achieve a stable state.

It is the notion of issues as ”black boxes” that leads to the independencies between problems and derivations.
Evolutionary algorithms only make use of the issue formulation in the context of assessing a collection of potential
solution alternatives. The basic process of optimization is carried out fully independently of the issue and on the
basis of the inputs and outputs that have been supplied by the user. As a result, the nature of the issue is not a
worry while using evolutionary algorithms, but the representation is a critical stage in the process of using them.
This is the same reason why evolutionary algorithms do not need the derivation of the issue in order to find the
global optimum in their solutions. Another benefit of evolutionary algorithms is that they have a high degree of
local optima avoidance because of their stochastic character. An evolutionary algorithm stuck in a local optimality is
subjected to a stochastic operator, which results in a random change in the solution and, ultimately, an escape from
the local optimality. Although there is no certainty that this problem will be totally resolved, stochastic algorithms
have a far better possibility of escaping from local optima when compared to deterministic approaches. It is also not
guaranteed that an evolutionary algorithm would provide an extremely exact approximation of the global optimum,
but by repeating the process numerous times, the possibility of discovering a better solution increases. Last but not
least, the simplicity of evolutionary algorithms is another trait that distinguishes them. Natural evolutionary notions
or social behaviors serve as the primary sources of inspiration for the vast majority of algorithms in this subject,
despite the fact that they are quite straightforward. Furthermore, evolutionary algorithms adhere to a broad and
universal structure, in which a collection of randomly generated solutions is repeatedly improved or developed. The
way of improving this set is what distinguishes algorithms in this subject from other approaches.

The motivation of this paper to get new algorithm combining between the advantage of Gravitational search
algorithm and the advantage of differential evolution algorithm (DE) to balancing between the diversity and the
convergence rate for solving the global optimization problem.

The paper is organized as follows. Section 2 introduces the GSA, whereas Section 3 introduces the DE. Section 4
presents the proposed GSA-DE, while Section 5 provides a full theoretical and experimental study. Section 6 discusses
the findings of the experiments before concluding.

2 Gravtional Search Algorithm

Newton’s laws of motion and gravity are used in GSA. It is used in different applications [29]. Nevertheless, the
algorithm is yet unknown in the study. In GSA, each mass (agent) has four specifications: inertial, location, active and
passive gravity masses. The mass location is (b) to enhance bat-algorithm behavior for higher dimensional situations.
And (c) to prevent trapping into local optima by increasing population variety. The low algorithm intensity relative
to the diversity is also a drawback.

The GSA’s physics may be defined using the definitions above. for i = 1, . . . , n let the ith particle’s location in
the D-dimensional search space be, P t

i (p
t
i1, p

t
i2, . . . , p

t
id) The attraction force (F t

ijD) between the ith agent and the jth
agent is defined as follows:
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The passive gravitational mass associated with the ith agent at time t, M t
pi.the active gravitational mass associated

with the jth particle at time t, Gt.is the gravitational constant at the current time, and, Rt
ij is the Euclidean distance

between the two particles i and j at the current time are all defined as d = 1, . . . , D and the Euclidean distance as
following equation.
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The formula for determining the gravitational constant, Gt, is as follows:

Gt = Gt0 × e−α iteration
max iteration (2.3)

where α and Gt0 are descending coefficient and initial value ,respectively.

Ith agent’s total force of attraction at each time t in a D-dimensional space is represented by the equation:

F t
id =

ng∑
i=1 ,i̸=j

rand× F t
ijd (2.4)

Agent number ng is the uniform random number generator (rand) in [0,1]. This introduces the algorithm’s stochastic
character. The ith particle’s acceleration is determined by the equation:

actid =
F t
id

M t
ii

(2.5)

Where M t
iit is the inertial mass of the ith agent .The velocity and position of particles are calculated as follows:

V t+1
id = rand× V t

id + actid (2.6)

xt+1
id = xt

id + V t+1
id (2.7)

To generate random numbers in the range [0,1], use rand. To determine the gravitational and inertial masses, the
fitness tests are used. If the particle has more mass, it might be considered a better particle and therefore have a
greater degree of attraction, which can impact other particles with a high level of attraction. The following equations
will be used to update the gravitational and inertial mass:

Mai = Mpi = Mii for i = 1, . . . , ng (2.8)

mt
i =

fitnessti − bestt

bestt − worstt
(2.9)

M t
i =

mt
i∑ng

i=1 m
t
i

(2.10)

where fitnessti represents the fitness value of the ith particle at time t. And bestt,worstt is the best and worst agent
in the population.

The procedure of GSA is explained in Algorithm 1.

Algorithm 1. Gravitational Search Algorithm.

Initialization and generation and evaluation initial population
T=1;
While t< maximum of iterations;
Evaluate each particle’s fitness.
Recalculate the mass of the particles in motion.
Update the acceleration of the particle.
Update the velocity of the particles.
Mutate and update the locations of particles.
T= t +1;
End while;

3 Differential evaluation algorithm

D-dimensional parameter vectors (NG D-dimensional parameter vectors) are used in the DE search, which is
population-based stochastic search [35].

P t
i (p

t
i1, pti2, . . . , p

t
id) for i = 1, . . . , n

Experimental vectors are generated in the present population by the application of mutations and crossings for each
generation. Once the election process is complete, it is determined which vector will be passed down to the next
generation of creatures.

When random elements in the population are perturbed to discover a better solution, it is called a ”mutation.” One
or more vector differences may be used by DE to make mutants known as donor vectors V⃗i,G. And here’s a brand-new
answer thanks to the equation:

V⃗i,G = P t
a + F ×

(
P t
b − P t

c

)
(3.1)
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a,b,c are three random solutions from the population, and F is a random vector generated by using a uniform distri-
bution in [0,1].

Differential evolution develops a new solution U⃗i,G. through crossover operation to increase the population’s
diversity. This is the simplest way to generalize the crossover operation of Differential evolution:

U⃗i,G =

{
V⃗i,G if rand < CR or (j = j0)

P t
i Otherwise

(3.2)

The [0, 1] range is represented by the random number generator’s notation. To regulate the percentage of variables
that are copied from the donor vector, the CR crossover rate is a real number between 0 and 1.

Finally, the new approach will be put to the test. This is the first step, which is termed the process of success, and
it involves comparing the new solution’s goal to the present solution’s target function.

P t
i =

{
U⃗i,G if f

(
U⃗i,G

)
≤ f(P t

i )

P t
i Otherwise

(3.3)

Algorithm 2. Differential evolution Algorithm.

Initialization and generation and evaluation initial population
T=1;
While t< maximum of iterations;
Evaluate each particle’s fitness
for i = 1 to NP do
Randomly select a ̸= b ̸= c from the set I = {1, 2, . . . , NP}.
Generate a donor vector V⃗i,G = Pt

a + F ×
(
Pt
b − Pt

c

)
Generate new Solution by using crossover (V⃗i,G, Pt

i )

If
(
U⃗i,G

)
≤ f

(
Pt
i

)
pti = U⃗i,G
Else
pti = Pt

i ;
End if
End For
T=t+1;
End while;

4 Gravtional evolution algorithm (GEA)

Global optimization issues have been solved using a novel technique called Gravitational evolution algorithm (GEA).
Gravitational search and differential evolution are now combined in a new algorithm that relies on the behavior of the
new algorithms to achieve its goals.

Building the algorithm was motivated by the goal of creating a new algorithm that can solve global optimization
issues by integrating two fundamental methods.

It starts with establishing an initial population and then evaluating its fitness before creating a new population uti-
lizing Gravitational search method stages. Finally, random numbers are generated by employing uniform distribution
in the interval [0,1].

Afterwards, we perform a random number comparison with the control parameter and use the differential evolution
algorithm to generate new populations from the current population; if the number is greater than the control parameter,
we update the control parameter in order to help the algorithm that uses the control parameter to achieve its goal.
To prevent algorithms from appearing in local optimums, use the following procure to describe the algorithm step:

Algorithm 3. Pseudo-code of Gravitational Evolution Algorithm.

Initialization and generation and evaluation initial population
T=1;
While t< maximum of iterations;
Evaluate each particle’s fitness
Update the particle mass ();
Particle acceleration update ();
Particle velocity update ();
Mutate and update the locations of particles
Generating random number r by using uniform distribution
If r > β
Generate new population by using DE
Else
β = λ β
End If
T=t+1;
End while;



350 Neamah, Almobarqaa, Abdulhusien

5 Performance evaluation

5.1 Benchmark problem and comparative algorithms

The CEC2014 [19] benchmark tasks include 10 and 30 variables, respectively, and are used to assess GEA. Addi-
tional algorithms that are used as comparisons include the GSA, DE/rand/1, DE/best/1 [35], GWO [22], and WOA
[24]. Each algorithm’s parameters are exactly the same as the original paper’s settings. The CEC2014 benchmark
suit’s optimization problems may be divided into four types: unimodal functions (F1-F3), simple multimodal functions
(F4-F16), hybrid functions (F17-F22), and composition functions (F17-F22). All four types of optimization problems
are included in the benchmark suit (F23-F30).

Table 1: Result of comparative between GEA and other 5 algorithms in cec2014 benchmark problem in 10 dimensional

Problem Statistics GEA GSA DE/best/1 DE/rand/1 WOA GWO

F1

Mean 3.85E+02 463869.2 1106812 32606.1 3890473 8.15E+06
STD 5.52E+02 879712.5 4719003 34246.62 3553463 5.11E+06
Best 3.01E-01 6387.598 3.919661 949.2715 343649.8 193264.6

p-value 8.86E-05 0.247145 8.86E-05 8.86E-05 8.86E-05
H + + + + +

F2

Mean 0.663629 1511.576 497.6204 2824.918 104654.6 13311771
STD 0.86589 1657.083 2203.1 3431.44 72028.82 59520266
Best 0.00158 6.177039 0.003318 0.217371 9563.852 247.981

p-value 8.86E-05 0.006425 8.86E-05 8.86E-05 8.86E-05
H + + + + +

F3

Mean 8.48E-02 16881.1 1421.934 133.9318 31919.05 5.13E+03
1.37E-01 6452.203 3579.571 264.9373 20346.63 3.90E+03

Best 3.07E-05 4665.932 4.37E-05 4.16E-05 5242.159 598.5873
p-value 8.86E-05 0.000103 3.90E-04 8.86E-05 8.86E-05

H + + + + +

F4

Mean 25.38853 32.73411 22.88489 27.58266 21.7603 29.62865
STD 15.63968 10.46249 16.65576 13.31403 24.7378 15.63753
Best 0.014752 0.131943 0.000485 0.454419 1.013873 6.210831

p-value 0.007189 0.116888 0.370261 0.455273 0.20433
H + = - + +

F5

Mean 1.90E+01 16.99962 2.02E+01 20.17736 20.07501 2.03E+01
STD 4.47E+00 7.33E+00 7.27E-02 0.059387 0.06418 1.12E-01
Best 1.52E-09 3.14E-09 20.02695 20.07036 20.00778 20.057

p-value 1.56E-01 8.86E-05 8.86E-05 8.86E-05 8.86E-05
H + + + + +

F6

Mean 2.078706 3.222534 2.861052 0.32762 6.943859 1.459603
STD 1.921019 1.422662 1.657056 0.58719 1.902649 0.944804
Best 6.30E-09 1.27E-07 0.303479 0 4.272517 0.464084

p-value 0.025094 0.108427 0.000681 0.00012 0.295878
H + + - + +

F7

Mean 3.52E-02 0.014283 2.152793 0.035744 0.939322 9.62E-01
STD 2.43E-02 0.014301 8.716378 0.054179 0.579672 7.67E-01
Best 0.00E+00 0 0.022151 0 0.264915 0.072006

p-value 3.59E-03 0.000219 3.32E-01 8.86E-05 8.86E-05
H - + + + +

F8

Mean 16.31729 23.63023 12.74981 1.695541 42.21536 12.89865
STD 10.75675 7.806794 4.706167 2.106128 12.52399 6.641443
Best 4.974795 10.94454 2.984877 0 22.89269 3.985396

p-value 0.020633 0.16711 8.86E-05 0.000254 0.411465
H + + - + +

F9

Mean 1.79E+01 22.93375 15.19005 9.273538 42.1206 1.57E+01
STD 7.15E+00 9.767079 4.675335 4.895965 16.22071 8.12E+00
Best 8.95E+00 10.94454 7.959667 0.994959 20.03892 4.976026

p-value 6.45E-02 0.167147 5.93E-04 8.86E-05 2.18E-01
H + + - + +

F10

Mean 613.9967 822.8948 296.3796 67.46152 462.0718 332.6139
STD 216.8621 253.8105 171.1789 47.44162 227.8012 158.8374
Best 342.4704 457.6187 7.079739 27.23255 21.85193 61.14805

p-value 0.052222 0.000593 8.86E-05 0.056915 0.000189
H + - - + -

Continued on next page
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Table 1 – Continued from previous page
problem Statistics GEA GSA DE/best/1 DE/rand/1 WOA GWO

F11

Mean 7.01E+02 855.9786 341.0562 374.8357 966.4483 3.70E+02
STD 2.89E+02 271.7638 227.0596 233.9324 295.3582 2.30E+02
Best 2.46E+02 350.8849 26.88665 18.65945 314.5692 15.26307

p-value 5.69E-02 0.001162 4.49E-04 1.69E-02 1.32E-03
H + - - + -

F12

Mean 0.014386 4.75E-09 0.203613 0.487978 0.684653 0.749078
STD 0.018264 9.83E-10 0.198809 0.163472 0.276335 0.554753
Best 1.38E-09 2.82E-09 0.037463 0.132112 0.2463 0.022385

p-value 0.061953 8.86E-05 8.86E-05 8.86E-05 8.86E-05
H + + + + +

F13

Mean 9.02E-02 0.043607 0.203499 0.132899 0.437103 1.61E-01
STD 3.94E-02 0.022913 0.054227 0.033255 0.175125 5.73E-02
Best 1.95E-02 0.013099 0.115449 0.073057 0.182339 0.072148

p-value 8.92E-04 8.86E-05 3.59E-03 8.86E-05 1.71E-03
H - + + + +

F14

Mean 0.292428 0.468725 0.25276 0.168248 0.305449 0.267501
STD 0.08811 0.025568 0.131733 0.068658 0.19155 0.206424
Best 0.107322 0.398221 0.094256 0.084795 0.090195 0.064516

p-value 8.86E-05 1.67E-01 0.000681 0.736875 3.70E-01
H + = - + +

F15

Mean 9.37E-01 1.168924 1.725484 1.686619 7.38372 1.70E+00
STD 1.89E-01 0.404312 2.626247 0.234089 3.531207 9.87E-01
Best 6.90E-01 0.601433 0.277532 1.29579 1.886543 0.216893

p-value 7.31E-02 0.390533 8.86E-05 8.86E-05 8.97E-03
H + + + + +

F16

Mean 3.045887 3.906425 2.555709 2.276467 3.18786 2.550387
STD 0.498835 0.228766 0.35986 0.386315 0.349926 0.52636
Best 1.853671 3.533899 1.821683 1.517101 2.618621 1.270299

p-value 0.00014 0.002821 0.000338 0.2322267 0.012374
H + - - + -

F17

Mean 7.03E+02 230510.5 858.10267 2983.075 79187.567 3.36E+04
STD 5.02E+02 134394.1 605.7743 5014.965 119085.4 1.25E+05
Best 1.03E+02 41659.25 12.66251 58.55799 1832.235 1094.91

p-value 8.86E-05 0.331723 4.55E-01 8.86E-05 1.03E-04
H + + + + +

F18

Mean 1949.28 7795.5 3014.055 5027.793 11045.69 7655.239
STD 1459.8 6504.794 3219.054 8177.103 11957.66 6896.576
Best 62.79862 1313.06 70.3685 2.294568 112.3256 342.2171

p-value 0.000163 0.501591 0.331723 0.016881 0.002495
H + + + + +

F19

Mean 2.61E+00 2.875193 3.066475 0.852347 5.389349 2.59E+00
STD 1.13E+00 0.977112 1.523437 0.623679 1.298181 9.76E-01
Best 1.43E+00 1.560957 0.305825 0.026828 3.318074 1.223434

p-value 3.13E-01 0.108427 2.93E-04 8.86E-05 9.70E-01
H + + - + +

F20

Mean 28.47036 10949.5 1972.176 1230.428 5486.235 4023.204
STD 15.61367 9294.014 1562.594 2339.985 4358.713 3400.187
Best 4.401841 1436.47 29.48037 0.009246 67.70872 98.63171

p-value 8.86E-05 0.000103 0.007189 8.86E-05 8.86E-05
H + + + + +

F21

Mean 2.88E+02 7740.598 179644.1 261.2517 19806.86 6.39E+03
STD 1.55E+02 2958.713 788583.4 633.2085 18243.08 4.65E+03
Best 8.10E-01 3424.554 0.336544 0.37314 1689.866 218.1373

p-value 8.86E-05 0.765198 7.31E-02 8.86E-05 1.03E-04
H + + - + +

F22

Mean 166.995 219.1806 135.2963 10.50327 70.07111 97.25276
STD 125.4289 77.7014 119.1683 31.49959 53.67533 58.48716
Best 20.33763 135.5189 8.495923 8.63E-05 23.76806 21.42924

p-value 0.135357 0.411465 8.86E-05 0.012374 0.100458
H + + - - +

F23

Mean 3.29E+02 290.6202 329.4575 329.4575 310.8089 3.33E+02
STD 1.75E-13 60.86603 2.32E-12 1.75E-13 47.76279 5.11E+00
Best 3.29E+02 200 329.4575 329.4575 200 329.459

p-value 3.13E-02 0.000244 1.00E+00 7.31E-02 8.86E-05
H - + = + +

Continued on next page
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Table 1 – Continued from previous page
problem Statistics GEA GSA DE/best/1 DE/rand/1 WOA GWO

F24

Mean 142.8404 199.6945 142.0038 118.601 175.3054 147.6158
STD 26.941 8.824695 31.51826 20.41209 24.92134 35.54399
Best 115.7576 162.6706 111.0595 106.7013 125.0573 114.452

p-value 0.00014 0.736875 0.001162 0.001944 0.654159
H + + - + +

F25

Mean 1.98E+02 199.1443 194.7637 186.7806 190.9998 1.98E+02
STD 4.23E+00 1.780228 18.30307 30.26616 14.02922 7.20E+00
Best 1.89E+02 192.0321 142 112.1846 164.7425 175.533

p-value 9.11E-01 0.247145 9.70E-01 4.79E-02 7.37E-01
H + + + = +

F26

Mean 100.0949 126.1873 100.2166 100.1478 100.3463 105.1335
STD 0.039607 42.0694 0.133601 0.030311 0.186161 22.32929
Best 100.0184 100.023 100.0966 100.0935 100.1722 100.069

p-value 0.001944 0.000189 0.002204 8.86E-05 0.003185
H + + + + +

F27

Mean 2.56E+02 359.2686 355.0081 288.5103 309.9264 3.38E+02
STD 1.56E+02 120.708 124.3 104.5875 179.5254 8.56E+01
Best 8.53E-01 4.025149 2.901943 1.62175 6.613538 5.654857

p-value 1.24E-02 0.008968 8.52E-01 1.17E-01 5.22E-02
H + + + + +

F28

Mean 552.6827 942.8052 524.1853 388.7098 562.5016 454.4154
STD 119.7546 374.3374 101.2692 24.41232 119.6309 64.02529
Best 372.3805 442.6589 380.8277 368.8503 383.4287 368.9162

p-value 0.000189 0.20433 0.000219 0.97022 0.003185
H + + - + -

F29

Mean 6.17E+05 813502.2 659955.8 189955.1 1414.783 6.79E+05
STD 1.29E+06 2761047 1042441 582018.6 1720.433 9.54E+05
Best 2.42E+02 200.0432 292.6526 275.8483 451.2893 288.4881

p-value 7.31E-02 0.411465 4.55E-01 2.47E-01 1.67E-01
H + + + + +

F30

Mean 1718.427 2508.615 1285.303 498.4708 1413.566 1264.045
STD 541.3451 395.6997 552.5531 34.23181 502.7726 633.1467
Best 818.7443 1910.478 521.2681 459.6285 905.9334 640.2725

p-value 8.86E-05 0.022769 8.86E-05 0.092963 0.018675
H + = - + =

+/ =/- 27/ 0/3 24/ 3/3 15/ 1/14 28/ 1/1 25/ 1/4

5.2 Parameter setting

The population size for all algorithms 20 and the number of function evaluation 5000. the results obtained over 30
simulation runs on 10 and 30 dimensional problems. The parameter of algorithms in the following table :

Table 2: Parameter setting for comparative algorithms

Algorithm Parameter

GEA G0 = 100 , α = 20, CR = 0.5 , β0 = 0.95 λ = 0.01

GSA [29] G0 = 100 , α = 20,

DE/best/1 CR = 0.5,

DE/rand/1 CR = 0.5,

Table 3: Result of comparative between GEA and other 5 algorithms in cec2014 benchmark problem in 30 dimensional

Problem Statistics GEA GSA DE/best/1 DE/rand/1 WOA GWO

F1

Mean 667627.8 6237614 1684684 40841834 67949082 89518032
STD 563181.1 7987349 1093151 18232274 36405413 73100381
Best 127891.1 1309033 308883 14434354 21173958 9614474

p-value 8.86E-05 0.001507 8.86E-05 8.86E-05 8.86E-05
H + + + + +

Continued on next page
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Table 3 – Continued from previous page
problem Statistics GEA GSA DE/best/1 DE/rand/1 WOA GWO

F2

Mean 0.001308 11058.18 7.91E+08 7862.934 1.72E+08 4.5E+09
STD 0.003504 6849.6 2.93E+09 10878.39 80545169 3.56E+09
Best 2.99E-07 2974.755 1.10E-07 0.044694 58161744 2.8E+08

p-value 8.86E-05 0.016881 8.86E-05 8.86E-05 8.86E-05
H + + + + +

F3

Mean 2.52E+01 10144.89 3049.66 978.4523 62492.37 3.51E+04
STD 7.16E+01 6824.924 11578.22 2596.34 31496.26 8.66E+03
Best 1.51E-01 3064.247 4.12E-03 8.15E-04 27403.6 22053.16

p-value 8.86E-05 0.82276 3.04E-02 8.86E-05 8.86E-05
H + + + + +

F4

Mean 109.95 137.4525 155.2774 73.75978 258.1728 283.4716
STD 74.9823 57.00341 176.7873 33.49893 72.13673 94.15227
Best 0.000328 62.91509 72.40274 3.944113 93.64468 143.0072

p-value 0.370261 0.575486 0.085924 8.86E-05 0.000254
H + + = + +

F5

Mean 2.00E+01 19.99943 2.09E+01 20.91175 20.48712 2.10E+01
STD 4.02E-05 7.54E-04 6.73E-02 0.05758 0.109876 8.04E-02
Best 2.00E+01 2.00E+01 20.75556 20.79444 20.29949 20.78932

p-value 1.03E-04 8.86E-05 8.86E-05 8.86E-05 8.86E-05
H - + + + +

F6

Mean 14.12128 17.69086 16.53511 6.263875 36.15582 16.09415
STD 3.224036 3.513745 2.226101 6.144979 3.82999 2.063827
Best 9.66E+00 1.15E+01 12.57151 0.784998 29.67258 12.7874

p-value 0.001944 0.016881 0.001944 8.86E-05 0.061953
H + + - + +

F7

Mean 6.40E-03 0.000986 1.53842 0.00074 2.29165 3.04E+01
STD 7.38E-03 0.003137 3.42429 0.002276 0.754443 2.42E+01
Best 1.14E-13 1.14E-13 2.03E-08 1.14E-13 1.172086 3.821705

p-value 2.54E-02 0.00014 4.88E-03 8.86E-05 8.86E-05
H + + - + +

F8

Mean 94.96847 141.2836 77.500057 51.62525 194.0107 96.10558
STD 22.34932 19.63808 18.28073 21.0799 34.16896 16.89391
Best 61.68736 99.49566 53.7277 5.969772 145.0126 76.32618

p-value 0.000103 0.008968 1.40E-04 8.86E-05 0.575486
H + - - + +

F9

Mean 1.04E+02 159.9886 87.90236 176.3461 250.3255 1.13E+02
STD 1.89E+01 20.39191 20.5653 10.16481 50.93287 1.77E+01
Best 7.16E+01 119.3946 45.76806 162.7904 173.6467 76.95122

p-value 8.86E-05 0.025094 8.86E-05 8.86E-05 1.67E-01
H + - + + +

F10

Mean 2832.649 3263.908 1581.316 955.1262 4580.143 2394.668
STD 676.7583 496.5074 457.1767 500.7177 820.325 567.1696
Best 1809.324 2416.296 838.4113 34.43011 3454.864 1402.165

p-value 0.056915 0.00014 1.03E-04 0.000103 0.125859
H + - - + +

F11

Mean 3.33E+03 3642.088 2813.785 6612.077 5540.301 2.94E+03
STD 7.45E+02 682.8017 1192.513 330.7355 1092.479 7.99E+02
Best 1.90E+03 2441.607 1263.659 5968.36 4058.298 1537.54

p-value 2.79E-01 0.052222 8.86E-05 8.86E-05 2.32E-01
H + = + + +

F12

Mean 0.015133 4.17E-03 2.090195 2.215647 1.979992 1.518394
STD 0.010377 2.87E-03 0.322131 0.290287 0.480952 1.444104
Best 3.92E-03 3.41E-04 1.481114 1.703721 1.179206 0.071706

p-value 8.86E-05 8.86E-05 8.86E-05 8.86E-05 8.86E-05
H - + + + +

F13

Mean 4.47E-01 0.278702 0.524991 0.390819 0.577794 5.89E-01
STD 1.11E-01 0.079026 0.139065 0.044452 0.114017 4.22E-01
Best 2.80E-01 0.164599 0.278518 0.288831 0.376517 0.308242

p-value 3.38E-04 6.74E-02 7.31E-02 1.32E-03 3.70E-01
H - + + + +

F14

Mean 0.285315 0.291366 3.426109 0.486107 0.269097 9.886986
STD 0.051464 0.059272 10.26294 0.205593 0.041448 14.45088
Best 0.181788 0.1829 0.209979 0.225442 0.204717 0.185635

p-value 7.37E-01 1.71E-03 0.001713 0.217957 1.94E-03
H + + + + +

Continued on next page
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Table 3 – Continued from previous page
problem Statistics GEA GSA DE/best/1 DE/rand/1 WOA GWO

F15

Mean 3.77E+00 3.392776 74.75662 16.59824 81.24459 2.65E+02
STD 8.24E-01 0.466447 68.00072 1.11895 24.27719 5.75E+02
Best 2.76E+00 2.616831 13.21259 14.63464 27.16183 6.579439

p-value 1.00E-01 8.86E-05 8.86E-05 8.86E-05 8.86E-05
H + + + + +

F16

Mean 12.60043 13.56877 11.5602 12.7341 12.81127 11.65923
STD 0.639314 0.454536 0.540247 0.244046 0.535354 0.53497
Best 11.44622 12.6254 10.17982 12.32336 11.66388 10.50938

p-value 0.00012 0.000293 0.370261 0.247145 0.001019
H + - + + -

F17

Mean 2.14E+05 437368.2 416759 1603947 8167213 2.62E+06
STD 1.75E+05 306026.3 829178.8 830035 5329622 2.50E+06
Best 4.27E+04 82570.6 36482.56 519222.8 1207766 205632

p-value 3.19E-03 0.940481 8.86E-05 8.86E-05 8.86E-05
H + + + + +

F18

Mean 43484.83 914.7734 64369.31 2731.222 16075.35 15395195
STD 176119.9 772.1582 261851.5 4205.749 12907.87 25781415
Best 91.27151 192.6129 126.5056 71.85256 1536.526 1054.713

p-value 0.011129 0.910825 0.247145 0.005111 0.001507
H = + + + +

F19

Mean 2.71E+01 61.74118 23.03501 7.935345 60.70276 5.26E+01
STD 2.70E+01 30.17722 21.90087 1.306813 46.59386 3.00E+01
Best 7.47E+00 12.54163 8.236851 6.610922 21.67442 13.03359

p-value 4.55E-03 0.525653 3.90E-04 5.73E-03 2.28E-02
H + + - + +

F20

Mean 5660.579 30074.82 721.4711 2855.205 52897.56 21310.66
STD 6272.075 9271.806 762.3886 2340.64 35267.76 10962.08
Best 743.8283 18119.01 218.2495 586.572 8992.888 8398.697

p-value 1.03E-04 0.000189 0.030365 8.86E-05 8.92E-04
H + - - + +

F21

Mean 3.68E+04 180005 42881.64 289741.3 2975122 1.55E+06
STD 3.56E+04 101263.7 35646.96 246128.5 2896806 2.56E+06
Best 6.75E+03 48352.5 5095.031 66279.93 258855.6 126458

p-value 1.63E-04 0.501591 8.86E-05 8.86E-05 8.86E-05
H + + + + +

F22

Mean 724.3076 994.9896 466.1796 224.1792 773.8759 365.5827
STD 197.3793 244.8511 260.9867 141.8209 255.7901 150.5611
Best 299.8226 592.5554 22.44461 3.66E+01 332.782 163.4354

p-value 0.006425 0.005734 1.03E-04 0.681322 0.000254
H + - - - +

F23

Mean 3.16E+02 317.7301 318.8699 315.2441 332.4548 3.41E+02
STD 3.62E-01 1.554507 6.63E+00 1.20E-09 46.44225 1.62E+01
Best 3.15E+02 315.4597 315.2441 315.2441 200 323.6844

p-value 1.03E-04 0.178956 8.86E-05 1.37E-02 8.86E-05
H + + - + +

F24

Mean 229.9085 202.3923 250.1204 228.9086 205.437 200.0049
STD 7.760945 6.640863 4.794322 5.304299 3.990782 0.002684
Best 221.4875 200.1777 243.1871 223.0381 200.5205 200.0022

p-value 8.86E-05 8.86E-05 0.575486 8.86E-05 8.86E-05
H - + + - -

F25

Mean 2.16E+02 203.175 208.6594 212.51 206.5557 2.12E+02
STD 4.08E+00 4.20437 3.881211 4.41234 11.80739 6.56E+00
Best 2.10E+02 200 204.1836 206.166 200 200

p-value 8.86E-05 0.000449 3.66E-02 2.20E-03 1.52E-02
H - - = + +

F26

Mean 165.2026 200.0332 111.2348 110.5036 105.4485 180.1364
STD 48.72286 0.012524 30.44398 45.18269 22.255527 40.83523
Best 100.2377 200.0162 100.4497 100.2886 100.2494 100.4172

p-value 0.135357 0.016881 0.002821 8.92E-04 0.82276
H + - - - +

F27

Mean 6.54E+02 1389.785 633.6296 434.1811 1168.279 6.36E+02
STD 1.93E+02 807.1348 222.2086 74.34489 315.909 1.54E+02
Best 4.01E+02 403.2864 402.0386 300 436.5972 425.0887

p-value 1.94E-03 0.97022 8.92E-04 3.38E-04 8.23E-01
H + + - + +

F28

Mean 2391.824 3739.562 1362.61 873.1818 2325.205 1408.449
Continued on next page
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Table 3 – Continued from previous page
problem Statistics GEA GSA DE/best/1 DE/rand/1 WOA GWO

STD 851.4217 1084.972 357.2145 45.55553 746.7455 381.4609
Best 1171.148 1914.937 909.0175 804.8997 200 960.5843

p-value 0.000892 0.00039 8.86E-05 0.940481 0.00014
H + - - + -

F29

Mean 5.15E+06 5425.771 2294129 1576351 6584511 2.37E+06
STD 1.27E+07 1711.749 4203688 3206355 5539303 5.90E+06
Best 1.06E+03 2795.072 1448.382 1397.66 19230.08 4431.213

p-value 7.31E-02 0.085924 2.04E-01 7.31E-02 7.31E-02
H + + + + +

F30

Mean 23354.46 8896.285 23445.46 4737.893 167573.9 73249.14
STD 37823.8 4969.024 40837.24 1561.962 94872.32 42881.62
Best 2033.09 4328.352 2153.431 3471.821 44943.22 18499.75

p-value 4.55E-01 0.575486 2.06E-02 0.00012 0.003592
H + + + + +

+/=/- 24/1/5 20/1/9 17/2/11 27/0/3 25/0/5

5.3 Evaluation metric

We use five metric for comparative between after solve each benchmark function we will compute the error rate
between fitness function of algorithms and optimal solution for each benchmark problem and then we compute the
three statistical measurement (mean ,standard deviation and best (minimum value )) also we use Wilcoxon sign rank
test for comparing between GEA and other comparative algorithms if the sign of test (H) is ”+” that mean outperforms
GEA on other algorithm and if sign ”-” that mean outperforms other algorithm on GEA while no different between
GEA and other algorithm if the sign of test is ”=”. Also we compute the p-value for Wilcoxon test if the p-value is
near of zero that mean different between GEA and other algorithm and no different if the p-value near of 1.

6 Result and discussion result

6.1 Result of comparative between the algorithms

Figure 1: Benchmark function Figure 2: Benchmark function Figure 3: Benchmark function

Figure 4: Benchmark function Figure 5: Benchmark function Figure 6: Benchmark function

6.2 Discussion Result

For 10 dimensional problems table 2 shown outperforms GEA on all other algorithms in function

(F1, F2, F3, F6, F12, F15, F17, F18, F20, F25, F26, F27, F29)
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Figure 7: Benchmark function Figure 8: Benchmark function Figure 9: Benchmark function

Figure 10: Benchmark function Figure 11: Benchmark function Figure 12: Benchmark function

Figure 13: Benchmark function Figure 14: Benchmark function Figure 15: Benchmark function

Figure 16: Benchmark function Figure 17: Benchmark function Figure 18: Benchmark function

and we can see outperforms GEA on original GSA in 27 functions ,and outperform DE/best/1 in 24 function and
outperforms DE/rand/1 algorithm in 15 functions and with comparative with WOA, Table 2 shown superior GEA in
28 functions and 25 functions with GWO.

For 10 dimensional problems, Table 2 shows outperforms GEA on all other algorithms in functions (F1, F2, F3,
F6, F12, F15, F17, F18, F20, F25, F26, F27, F29) and we can see that it outperforms GEA on the original GSA in 27
functions, and outperforms DE/best/1 in 24 functions and outperforms DE/rand/1 algorithm in 15 functions. With
comparative with WOA, Table 2, it shows superior GEA in 28 functions and 25 functions with GWO.
Overall the final rank for algorithms in 10-dimensional problems:

GEA −→ DE/rand/1 −→ DE/best/1 −→ GWO −→ WOA

In 30-dimensional problems Table 3 outperforms GEA on original GSA in 24 functions, and outperforms DE/best/1
in 20 function and outperforms DE/rand/1 algorithm in 17 functions and with comparative with WOA table 2 shown



Gravitational evaluation algorithm for global optimization problem 357

Figure 19: Benchmark function Figure 20: Benchmark function Figure 21: Benchmark function

Figure 22: Benchmark function Figure 23: Benchmark function Figure 24: Benchmark function

Figure 25: Benchmark function Figure 26: Benchmark function Figure 27: Benchmark function

Figure 28: Benchmark function Figure 29: Benchmark function Figure 30: Benchmark function

superior GEA in 27 functions and 25 functions with GWO.
Finally GEA algorithm shown the outperforms on other algorithms when increasing the dimensional of variable we
getting the best result comparing with others algorithms.

7 Conclusion

GSA and DE are combined to develop a new hybrid algorithm in this paper. Combining GSA’s convergence
capabilities with DE’s variety is the primary goal of this project. For the purpose of validating the GEA’s performance
against the standard GSA, thirty benchmark functions are employed, as well as two methods for DE and WOA, as
well as GWO, which use CEC2014. In most functions minimizing, GEA surpasses all other algorithms, according to
the findings. GEA’s exploitation speed is also shown to be quicker than that of other algorithms.
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