Int. J. Nonlinear Anal. Appl. Volume 12, Special Issue, Winter and Spring 2021, 2403-2412 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.6293

Some sandwich theorems for meromorphic univalent functions defined by Hadamard product of integral operators

Waggas Galib Atshan^a, Suad Hassan Mahdy^{b,*}

^aDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Al-Diwaniyah, Iraq ^bDepartment of Mathematics, College of Education for Girls, University of Kufa, Najaf, Iraq

(Communicated by Ehsan Kozegar)

Abstract

In the present paper, we obtain some subordination and superordination results, involving the operator T^a for functions of the form $f(z) = z^{-1} + \sum_{k=1}^{\infty} a_k z^k$, which are meromorphic univalent in the punctured open unit disk these results are applied to obtain sandwich results.

Keywords: Analytic function, Univalent subordination, Superordination Hadamard (convolution), Sandwich theorems. 2010 MSC: 30C45

1. Introduction

Let \sum denote the class of functions of the form:

$$f(z) = z^{-1} + \sum_{k=1}^{\infty} a_k z^k$$
(1.1)

which are meromorphic univalent in the punctured open unit disk $U^* = \{z : z \in \mathbb{C}, 0 < |Z| < 1\}$. Let R be the linear space of all analytic functions in U. For a positive integer number n and $a \in \mathbb{C}$, we let,

$$R[a,n] = \{ f \in R : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \}.$$

*Corresponding author

Email addresses: waggashnd@gmail.com, waggas.galib@qu.edu.iq (Waggas Galib Atshan), sadhsn380@gmail.com (Suad Hassan Mahdy)

Received: October 2021 Accepted: December 2021

For f and g analytic functions in R, we say that f is subordinate to g in U and write $f(z) \prec g(z)$, if there exists Schwars function μ , which is analytic in U with $\mu(0) = 0$ and $|\mu(z)| < 1$ ($z \in U$), such that $f(z) = g(\mu(z))$, ($z \in U$).

Furthermore, if the function g is univalent in U, we have the following equivalence relationship (c f., e.g. [12, 15, 16]),

$$f(z) \prec g(z) \leftrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U), \ (z \in U).$$

Definition 1.1. [15] Let $\phi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}$ and let h(z) be univalent in U. If p(z) is analytic in U and satisfies the second-order differential aubordination:

$$\phi(p(z), zp'(z), z^2 p''(z); z) \prec h(z), \tag{1.2}$$

then p(z) is called a solution of the differential subordination (1.2), and the univalent function q(z)is called a dominant of the solution of the differential subordination (1.2), or more simply dominant if $p(z) \prec q(z)$ for all p(z) satisfying (1.2). A univalent dominant $\tilde{q}(z)$ that satisfies $\tilde{q}(z) \prec q(Z)$ for all dominant q(z) of (1.2) is said to be the best dominant is unique up to a relation of U.

Definition 1.2. ([15]also see [13]) Let $\phi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}$ and let h(z) be analytic in U. If p and $\phi(p(z), zp'(z), z^2p''(z); z)$ are univalent in U and if P satisfies the second-order differential superordination,

$$h(z) \prec \phi(p(z), zp'(z), z^2 p''(z), z)$$
 (1.3)

then p(z) is called a solution of the differential superordination (1.3). An analytic function q(z) which is called a subordinant of the solutions of the differential superordination (1.3) or more simply a subordinant, if $q \prec p$ for all p satisfying (1.3). A univalent subordinant $\tilde{q}(z)$ that satisfies $q \prec \tilde{q}$ for all subordinants q of (1.3) is said to be the best subordinant.

Several authors [1, 2, 9, 13, 15, 17] obtained sufficient conditions on the functions h, p and ϕ for which the following implication holds

$$\phi(p(z), zp'(z), z^2p''(z); z)$$

Then

$$q(z) \prec p(z). \tag{1.4}$$

Using the results (see [3, 4, 5, 6, 10, 11, 16]) to obtain sufficient conditions for normalized analytic function to satisfy:

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$. Also, several authors (see [1, 3, 5, 6, 7, 8, 13]) derived some differential subordination and superordination results with some sandwich theorems.

Let $f \in \sum$ is given by (1.1) and $g \in \sum$, defined by

$$g(z) = z^{-1} + \sum_{k=1}^{\infty} b_k z^k, \ z \in U^*.$$

The convolution (or Hadamard product) of the functions f and g denoted by f * g is defined by

$$(f * g)(z) = z^{-1} + \sum_{k=1}^{\infty} b_k z^k, \ z \in U^*.$$

Lashin [14] found several properties of integeral operator:

$$P^{\alpha}_{\beta}: \sum \to \sum,$$

which defined as follows:

$$P^{\alpha}_{\beta}f(z) = \frac{\beta^{\alpha}}{\lceil (\alpha)} \frac{1}{z^{\beta+1}} \int_0^z t^{\beta} (\log \frac{z}{t})^{\alpha-1} f(t) dt (\alpha > 0, \beta > 0, z \in U^*)$$
$$= z^{-1} + \sum_{k=1}^\infty (\frac{\beta}{k+\beta+1})^{\alpha} a_k z^k, z \in U^*, (\alpha, \beta > 0; z \in U^*).$$

Atshan, Battor and Abaas [7] found some sandwich theorems for meromorphic univalent functions defined by the integral operator

$$R^{\eta}: \sum \rightarrow \sum,$$

which defined as follows:

$$R^{\eta}f(z) = \left(\frac{\lambda + \tau - 1}{\gamma + \delta - r}\right) z^{-1 - \frac{\lambda + \tau - 1}{\gamma + \delta - r}} \int_{0}^{z} t^{\left(\frac{\lambda + \tau - 1}{\gamma + \delta - r}\right)} f(t) dt,$$

$$(\lambda > 1, \gamma > 1, \delta > 0, \eta > 0, \tau > 0, 0 < r < 1; z \in U^{*}),$$

$$(1.5)$$

such that

$$R^{\eta}f(z) = z^{-1} + \sum_{k=1}^{\infty} \left(\frac{\lambda + \tau - 1}{\lambda + \tau - 1 + (k+1)(\gamma + \delta - r)}\right)^{\eta} a_k z^k.$$
 (1.6)

Define the convolution (or Hadamard product) $T^{\alpha,\eta}f(z)$ of the operators $P^{\alpha}_{\beta}f(z)$ and $R^{\eta}f(z)$ as followes:

$$T^{\alpha,\eta\lambda,\gamma}_{\beta,\delta,\tau,r}f(z) = z^{-1} + \sum_{k=1}^{\infty} \left[\frac{\beta}{k+\beta+1}\right]^{\alpha} \left[\frac{\lambda+\tau-1}{\lambda+\tau-1+(k+1)(\gamma+\delta-r)}\right]^{\eta} a_k z^k.$$
 (1.7)

In our paper, we will denote to the Hadamard product operator $T^{\alpha,\eta\lambda,\gamma}_{\beta,\delta,\tau,r}f(z)$ by $T^af(z)$. From (1.7), we note that

$$z(T^{a+1}f(z))' = \beta T^{\alpha}f(z) - (\beta+1)T^{\alpha+1}f(z).$$
(1.8)

The main object of this idea is to find sufficient conditions for certain analytic functions f in U^* satisfy:

$$q_1(z) \prec \left(\frac{(1-\rho)zT^a f(z) + \rho zT^{a+1} f(z)}{\rho}\right)^{\mu} \prec q_2(z),$$
$$q_1(z) \prec (zT^{a+1} f(z))^{\mu} \prec q_2(z).$$

2. Preliminaries

Lemma 2.1. [16] Let q be a convex univalent function in U and let $\alpha \in \mathbb{C}$, $\Psi \in \mathbb{C} \setminus \{0\}$ with q(0) = 1,

$$Re\left\{1+\frac{zq''(z)}{q'(z)}\right\} > \max\{0, -Re\{\frac{\alpha}{\Psi}\}\}.$$

If p is analytic in U and

$$\alpha p(z) + \Psi z p'(z) \prec \alpha q(z) + \Psi z q'(z), \qquad (2.1)$$

then $p \prec q$, and q is best dominant of (2.1).

Lemma 2.2. [4] Let q be univalent in the unit disk U and let θ and ϕ be analytic in the domain D containing q(U) with $\phi(w) \neq 1$, when $w \in q(U)$. Set

$$Q(z) = zq'(z)\phi(q(z) \text{ and } h(z) = \theta(q(z)) + Q(z))$$

Suppose that

- Q(z) is starlike univalent in U,
- $Re\left(\frac{zh'(z)}{Q(z)}\right) > 0$ for $z \in U$.

If p is analytic in U, with $p(0) = q(0); p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)),$$
(2.2)

then $p \prec q$ and q the best dominant of (2.2).

Lemma 2.3. [7] Let q be a convex univalent in U and let $\Psi \in \mathbb{C}$. Further assume that $Re(\Psi) > 0$. If $p \in H[q(0), 1] \cap Q$ and $p(z) + \Psi z p'(z)$ is univalent in U, then

$$q(z) + \Psi z q'(z) \prec p(z) + \Psi z p'(z),$$
 (2.3)

which implies then $q \prec p$ and q best subordinant of (2.3).

Lemma 2.4. [16] Let q be a convex univalent in U and let θ and ϕ be analytic in adomain D containing q(U), suppose that

- $Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} > 0 \text{ for } z \in U,$
- $Q(z) = zq'(z)\phi(q(z))$ is starlike univalent in U.

If $p \in H[q(0), 1] \cap Q$, with $p(U) \subset D$, $\theta(p(z)) + zp'(z)\phi(p(z))$ is univalent in U and

$$\theta(q(z)) + zq'(z)\phi(q(z)) \prec \theta(p(z)) + zp'(z)\phi(p(z)), \qquad (2.4)$$

then $q \prec p$ and q is the best subordinant of (2.4).

3. Differential Subordination Results

Here, we introduce some differential subordination results by using Hadamard product operator.

Theorem 3.1. Let q be univalent in unit disk U with q(0) = 1, $q'(z) \neq 0 \quad \forall z \in U$. Let μ , $\rho \in \mathbb{C}^*$, $s, t \in \mathbb{C}$ and $f \in \Sigma$. Suppose that f and q satisfy the conditions

$$\frac{(1-\rho)zT^{\alpha}f(z)+\rho zT^{\alpha+1}f(z)}{\rho} \neq 0,$$

and

$$Re\left(\frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + 1\right) > 0.$$
(3.1)

If

$$\left[1 + \mu st \frac{(1-\rho)T^{\alpha-1}f(z) + (2\rho-1)T^{\alpha}f(z) - \rho T^{\alpha+1}f(z)}{(1-\rho)T^{\alpha}f(z) + \rho T^{\alpha+1}f(z)}\right] \prec 1 + tz \frac{q'(z)}{q(z)},\tag{3.2}$$

then

$$\left[\frac{(1-\rho)zT^{\alpha}f(z)+\rho zT^{\alpha+1}f(z)}{\rho}\right]^{\mu} \prec q(z),$$
(3.3)

and q is the best dominant of (3.3).

Proof. Define the function p by

$$p(z) = \left[\frac{(1-\rho)zT^{\alpha}f(z) + \rho zT^{\alpha+1}f(z)}{\rho}\right]^{\mu},$$
(3.4)

then the function p is analytic in U and q(0) = 1, and differentiating (3.4) with respect to z, we get

$$z\frac{p'(z)}{p(z)} = \mu\left(\frac{(1-\rho)z(T^{\alpha}f(z))' + \rho z(T^{\alpha+1}f(z))'}{(1-\rho)T^{\alpha}f(z) + \rho T^{\alpha+1}f(z)} + 1\right).$$
(3.5)

Now, in view of (1.8), we obtain the following equation

$$z\frac{p'(z)}{p(z)} = \mu s \left(\frac{(1-\rho)T^{\alpha-1}f(z) + (2\rho-1)T^{\alpha}f(z) - \rho T^{\alpha+1}f(z)}{(1-\rho)T^{\alpha}f(z) + \rho T^{\alpha+1}f(z)}\right).$$

Therefore,

$$z\frac{p'(z)}{p(z)} = S\left(\frac{(1-\rho)zT^{\alpha}f(z) + \rho zT^{\alpha+1}f(z)}{\rho}\right) \left[\frac{(1-\rho)T^{\alpha-1}f(z) + (2\rho-1)T^{\alpha}f(z) - \rho T^{\alpha+1}f(z)}{(1-\rho)T^{\alpha}f(z) + \rho T^{\alpha+1}f(z)}\right].$$

The subordination (3.2) from hypothesis becomes

$$p(z) + s\mu z p'(z) \prec q(z) + s\mu z q'(z)$$

by setting $\theta(w) = 1$ and $\phi(w) = \frac{\gamma}{w}$, it can easily observed that $\theta(w)$ is analytic in \mathbb{C} and $\phi(w) \neq 0$ is an analytic in \mathbb{C}^* . Moreover, we let

$$Q(z) = zq'(z)\phi(z) = \frac{tzq'(z)}{q(z)},$$
(3.6)

and

2408

$$h(z) = \theta(q(z)) + Q(z) = 1 + \frac{tzq'(z)}{q(z)}.$$
(3.7)

We find that Q(z) is starlike univalent in U, and from (3.1)

$$Re\left\{\frac{zh'(z)}{Q(z)}\right\} = Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0,$$
(3.8)

and by using Lemma 2.2, we deduce the subordination (3.3) implies $p(z) \prec q(z)$ and the function q is the best dominant of (3.3). \Box

Corollary 3.2. Putting $q(z) = \left(\frac{1+z}{1-z}\right)^{\rho}$, $0 < \rho \leq 1$ and $f \in \sum$ satisfies the following subordination condition:

$$1 - \mu s \left(1 - \frac{(T^{\alpha+1} f(z))'}{T^{\alpha+1} f(z)} \right) \prec 1 + 2\rho \frac{tz}{1 - z^2},$$
(3.9)

then

$$(zT^{\alpha+1}f(z))^{\mu} \prec \left(\frac{1+z}{1-z}\right)^{\rho} \tag{3.10}$$

and $\left(\frac{1+z}{1-z}\right)^{\rho}$ is the best dominant.

Theorem 3.3. Let q be a convex univalent function in U with q(0) = 1, Let Y > 0, $\mu \in \mathbb{C}^*$, ℓ , $\varepsilon \in \mathbb{C}$, $f \in \sum$ and suppose f and q satisfy the following conditions:

$$zT^{\alpha+1}f(z) \neq 0 \tag{3.11}$$

and

$$Re\left\{1 + \frac{6\varepsilon\ell q^2(z)}{Y} + \frac{2\ell^2 q(z)}{Y} + \frac{4\varepsilon^2 q^3(z)}{Y} + z\frac{q''(z)}{q'(z)}\right\} > 0.$$
(3.12)

If

$$\phi(z) \prec (\varepsilon q^2(z) + \ell q(z))^2 + Y z q'(z), \qquad (3.13)$$

where

$$\phi(z) = (zT^{\alpha+1}f(z))^{\mu} \left[\varepsilon^2 (zT^{\alpha+1}f(z))^{3\mu} + 2\varepsilon\ell(zT^{\alpha+1}f(z))^{2\mu} + \ell^2 (zT^{\alpha+1}f(z))^{\mu} + Y\mu s \left(\frac{T^{\alpha}f(z)}{T^{\alpha+1}f(z)} - 1\right) \right]$$
(3.14)

then

$$(zT^{\alpha+1}f(z))^{\mu} \prec q(z),$$
 (3.15)

and q is the best dominant of (3.15)

 \mathbf{Proof} . Let

$$p(z) = (zT^{\alpha+1}f(z))^{\mu}.$$
(3.16)

According to (3.11) the function p(z) is analytic in U with p(0) = 1. A simple computation shows that

$$\phi(z) = (zT^{\alpha+1}f(z))^{\mu} \left[\varepsilon^2 (zT^{\alpha+1}f(z))^{3\mu} + 2\varepsilon\ell(zT^{\alpha+1}f(z))^{2\mu} + \ell^2 (zT^{\alpha+1}f(z))^{\mu} + Y\mu s \left(\frac{T^{\alpha}f(z)}{T^{\alpha+1}f(z)} - 1\right) \right]$$

= $(\varepsilon p^2(z) + \ell p(z))^2 + Yzp'(z),$ (3.17)

to prove our result by Lemma 2.2. Consider in this lemma $\theta(w) = (\varepsilon w^2 + \ell w)^2$, and $\phi(w) = Y$, then θ is analytic in \mathbb{C} and ϕ is analytic in \mathbb{C}^* . Also, if we let

$$Q(z) = zq'(z)\phi(q(z)) = Yzq'(z),$$
(3.18)

and

$$h(z) = \theta(q(z)) + Q(z) = (\varepsilon(q^2(z) + \ell q(z))^2 + Yzq'(z),$$
(3.19)

then the assumptation q is convex would yield Q is starlike function in U. From (3.12), we have

$$Re\left(\frac{zh'(z)}{Q(z)}\right) = Re\left\{1 + \frac{6\varepsilon\ell}{Y}q^2(z) + \frac{2\ell^2}{Y}q(z) + \frac{4\varepsilon^2}{Y}q^3(z) + Z\frac{q(z)''(z)}{q'(z)}\right\} > 0,$$
(3.20)

by using Lemma 2.2, we deduce the subordination (3.13) implies that $p(z) \prec q(z)$, and the function q is the best dominant. \Box

Corollary 3.4. Let $q(z) = \frac{1+AZ}{1-AZ}$ with $A \in (-1,0) \cup (0,1), \ \varepsilon, \ell > 0, \ Y \in (0,1)$

$$Re\left(\frac{6\varepsilon\ell}{Y}\left(\frac{1+AZ}{1-AZ}\right)^2 + \frac{2\ell^2}{Y}\left(\frac{1+AZ}{1-AZ}\right) + \frac{4\varepsilon^2}{Y}\left(\frac{1+AZ}{1-AZ}\right)^3 + \frac{1+AZ}{1-AZ}\right) > 0.$$
(3.21)

If $f \in \sum$ satisfies the subordination

$$\phi(z) \prec \left(\varepsilon \left(\frac{1+AZ}{1-AZ}\right)^2 + \ell \frac{1+AZ}{1-AZ}\right)^2 + Yz \frac{2Az}{(1-Az)^2},\tag{3.22}$$

where

$$\phi(z) = (zT^{\alpha+1}f(z))^{\mu} [\varepsilon^2 (zT^{\alpha+1}f(z))^{3\mu} + 2\varepsilon\ell (zT^{\alpha+1}f(z))^{2\mu} + \ell^2 (zT^{\alpha+1}f(z))^{\mu} + Y\mu s \left(\frac{T^{\alpha}f(z)}{T^{\alpha+1}f(z)} - 1\right),$$
(3.23)

then

$$(zT^{\alpha+1}f(z))^{\mu} \prec \frac{1+AZ}{1-AZ},$$
(3.24)

and q is the best dominant.

4. Differential Superordination Results

Theorem 4.1. Let q be convex univalent function in U with q(0) = 1, $s \in \mathbb{C}$, $Re\{s\} > 0$, $\mu, \rho \in \mathbb{C}^*$, $\gamma \in \mathbb{C}^*$, $z \in U$, if $f \in \Sigma$. Suppose that

$$\frac{(1-\rho)zT^{\alpha}f(z)+\rho zT^{\alpha+1}f(z)}{\rho} \neq 0,$$
(4.1)

and

$$\left(\frac{(1-\rho)zT^{\alpha}f(z)+\rho zT^{\alpha+1}f(z)}{\rho}\right)^{\mu} \in H[q(0),1] \cap Q.$$

$$(4.2)$$

If the function

$$K(z) = \left[\frac{(1-\rho)zT^{\alpha}f(z) + \rho zT^{\alpha+1}f(z)}{\rho}\right]^{\mu} \left(1 + \mu s \frac{(1-\rho)T^{\alpha-1}f(z) + (2\rho-1)T^{\alpha}f(z) - \rho T^{\alpha+1}f(z)}{(1-\rho)T^{\alpha}f(z) + \rho T^{\alpha+1}f(z)}\right)$$
(4.3)

is univalent and the following superordination condition:

$$q(z) + \mu s q'(z) \prec K(z), \tag{4.4}$$

holds, then

$$q(z) \prec \left[\frac{(1-\rho)zT^{\alpha}f(z) + \rho zT^{\alpha+1}f(z)}{\rho}\right]^{\mu},$$
(4.5)

and q(z) is the best subordinant.

Proof. Consider a function p(z) by

$$p(z) = \left[\frac{(1-\rho)zT^{\alpha}f(z) + \rho zT^{\alpha+1}f(z)}{\rho}\right]^{\mu}.$$
(4.6)

Then the function p is analytic in U and q(0) = 1, and differentiating (4.6) with respect to z, we get

$$z\frac{p'(z)}{p(z)} = \mu\left(\frac{(1-\rho)z(T^{\alpha}f(z))' + \rho z(T^{\alpha+1}f(z))'}{(1-\rho)T^{\alpha}f(z) + \rho T^{\alpha+1}f(z)} + 1\right).$$
(4.7)

After some computations and using (1.8), from (4.7), we obtain

$$\left(\frac{(1-\rho)zT^{\alpha}f(z)+\rho zT^{\alpha+1}f(z)}{\rho}\right)^{\mu} + \mu s \left(\frac{(1-\rho)zT^{\alpha}f(z)+\rho zT^{\alpha+1}f(z)}{\rho}\right)^{\mu} \left(\frac{(1-\rho)T^{\alpha-1}f(z)+(2\rho-1)T^{\alpha}f(z)-\rho T^{\alpha+1}f(z)}{(1-\rho)T^{\alpha}f(z)+\rho T^{\alpha+1}f(z)}\right) = p(z) + \mu szp'(z) + \mu szp'($$

and now, by using Lemma 2.4 we get the desired result. \Box

Corollary 4.2. taking
$$q(z) = \left(\frac{1+z}{1-z}\right)^{b}, \ 0 < b \leq 1, \ \rho = 1.$$

If $f \in \sum$ is satisfies $(zT^{\alpha+1}f(z))^{\mu} \in H[q(0), 1] \cap Q$ and
 $[zT^{\alpha+1}f(z)]^{\mu} \left(1 + \mu s \frac{(1-\rho)T^{\alpha-1}f(z) + (2\rho-1)T^{\alpha}f(z) - \rho T^{\alpha+1}f(z)}{(1-\rho)T^{\alpha}f(z) + \rho T^{\alpha+1}f(z)}\right)$ is univalent in U and
 $\left(\frac{1+z}{1-z}\right)^{b} [1 + \mu s \frac{2bz}{1-z^{2}}] \prec (zT^{\alpha+1}f(z))^{\mu} \left[1 + \mu s \frac{z(T^{\alpha+1}f(z))'}{T^{\alpha+1}f(z)}\right],$
(4.8)
then

then

$$\left(\frac{1+z}{1-z}\right)^b < (zT^{\alpha+1}f(z))^{\mu}.$$
(4.9)

Theorem 4.3. Let q be convex univalent in U with q(0) = 1, let Y > 0, $\mu \in \mathbb{C}^*$, $\varepsilon, \ell \in \mathbb{C}$, and $f \in \sum$. Suppose that

$$Re\left\{\left(\frac{6\varepsilon\ell}{Y}q^2(z) + \frac{2\ell^2}{Y}q(z) + \frac{4\varepsilon^2}{Y}q^3(z)\right)q'(z)\right\} > 0,$$
(4.10)

and f satisfies the next conditions

$$zT^{\alpha+1}f(z) \neq 0, \quad (\alpha > 0, \ z \in U),$$
(4.11)

and

$$(zT^{\alpha+1}f(z))^{\mu} \in H[q(z),1] \cap Q,$$
(4.12)

also, if the function $\phi(z)$ defined by (3.14) is univalent in U and the following superordination condition

$$(\varepsilon q^2(z) + \ell q(z))^2 + Y z q'(z) \prec \phi(z), \qquad (4.13)$$

holds, then

$$q(z) \prec (zT^{\alpha+1}f(z))^{\mu},$$
 (4.14)

and q is the best subordination.

Proof. Let the function g(z) defined as:

$$g(z) = (zT^{\alpha+1}f(z))^{\mu}, \qquad (4.15)$$

after some computations, we get

$$(\varepsilon g^{2}(z) + \ell g(z))^{2} + Yzg'(z) = \phi(z), \qquad (4.16)$$

this implies

$$(\varepsilon q^2(z) + \ell q(z))^2 + Yzq'(z) \prec (\varepsilon g^2(z) + \ell g(z))^2 + Yzg'(z).$$
 (4.17)

By setting

$$\theta(w) = (\varepsilon w^2 + \ell w)^2$$
, and $\varphi(w) = Y$

It can be easily observe that $\theta(w)$ is analytic in \mathbb{C} , and $\varphi(w) \neq 0$ is an analytic in U^* . Also, we obtain

$$Re\left\{\frac{\theta'(q(z))}{\varphi(z)}\right\} = Re(q'(z))\left(\frac{4\varepsilon^2}{Y}q^3(z) + \frac{6\varepsilon\ell}{Y}q^2(z) + \frac{2\ell^2}{Y}q(z)\right) > 0.$$
(4.18)

Therefore by Lemma 2.3, we have

$$q(z) \prec (zT^{\alpha+1}f(z))^{\mu}.$$
 (4.19)

Corollary 4.4. Let $q(z) = e^{dz}$, $|d| \leq 1$, $Re\left\{\left(\frac{6\varepsilon\ell}{Y}e^{2dz} + \frac{2\ell^2}{Y}e^{dz} + \frac{4\varepsilon^2}{Y}e^{3dz}\right)de^{dz}\right\} > 0$ and $f \in \sum$, such that $(zT^{\alpha+1}f(z))^{\mu} \in H[q(0),1] \cap Q.$

If function $\phi(z)$ defined by (3.14) is univalent in U and satisfied the following superordination condition

$$(\varepsilon e^{2dz} + \ell e^{dz})^2 + Y dz e^{dz} \prec \phi, \tag{4.20}$$

then

$$e^{dz} \prec (zT^{\alpha+1}f(z))^{\mu} \tag{4.21}$$

and e^{dz} is the best subordinant.

5. Sandwich Results

Combining Theorem 3.3 with Theorem 4.3, we obtain the following sandwich Theorem.

Theorem 5.1. Let q_1, q_2 be convex univalent in U, $q_1(0) = 1$ and satisfies (3.13) with $q_2(0) = 1$ and satisfies (4.13), respectively. If $f \in \sum$ and suppose that f satisfies the next conditions:

 $(zT^{\alpha+1}f(z))^{\mu} \in H[q(0),1] \cap Q, \text{ and } zT^{\alpha+1}f(z) \neq 0.$

 $If \phi(z) = (zT^{\alpha+1})^{\mu} [\delta^2 (zT^{\alpha+1})^{3\mu} + 2\delta\eta (zT^{\alpha+1})^{2\mu} + \eta^2 (zT^{\alpha+1})^{\mu} + Y\mu\beta \left(\frac{T^{\alpha,\eta}_{\beta}f(z)}{T^{\alpha+1,\eta}_{\beta}f(z)} - 1\right), is univalent$

in U, then

$$(\varepsilon q_1^2(z) + \ell q_1(z))^2 Y z q_1'(z) \prec \phi(z) \prec (\varepsilon q_2^2(z) + \ell q_2(z))^2 Y z q_2'(z),$$
(5.1)

then

$$q_1(z) \prec (zT^{\alpha+1}f(z))^{\mu} \prec q_2(z),$$

and q_1 and q_2 are the best subordinant and the best dominant respectively.

References

- S.A. Al-Ameedee, W.G. Atshan and F.A. Al-Maamori, On sandwich results of univalent functions defined by a linear operator, J. Interdiscip. Math. 23(4) (2020) 803–809.
- [2] S.A. Al-Ameedee, W.G. Atshan and F.A. Al-Maamori, Some new results of differential subordinations for higherorder derivatives of multivalent functions, J. Phys.: Conf. Ser. 1804 (2021) 012111.
- [3] R.M. Ali, V. Ravichandran, M.H. Khan and K.G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004) 87–94.
- F.M. Al-Oboudi and H.A. Al-Zkeri, Applications of Briot-Bouquet differential subordination to some classes of meromorphic functions, Arab J. Math. Sci. 12(1) (2006) 17–30.
- W.G. Atshan and A.A.R. Ali, On some sandwich theorems of analytic functions involving Noor-Sălăgean operator, Adv. Math.: Sci. J. 9(10) (2020), 8455–8467.
- [6] W.G. Atshan and A.A.R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operators, Iraqi J. Sci. 62(7) (2021) 2376–2383.
- W.G. Atshan, A.H. Battor and A.F. Abaas, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, J. Interdiscip.Math. 24(3) (2021) 579–591.
- [8] W.G. Atshan and R.A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, J. Phys.: Conf. Ser. 1664 (2020) 012043.
- [9] W.G. Atshan and S.R. Kulkarni, On application of differential subordination for certain subclass of Meromorphically p-valent functions with positive coefficients defined by linear operator, J. Inequal. Pure Appl. Math. 10(2) (2009).
- [10] W.G. Atshan, I.A.R. Rahman and A.A. Lupas, Some results of new subclasses for bi-univalent functions using quasi-subordination, Symmetry 13(9) (2021) 1653.
- [11] T. Bulboacă, Classes of first-order differential superordinations, Demonstration Math. 35(2) (2002) 287–292.
- [12] T. Bulboacă, Differential subordinations and superordinations, Recent Results, House of Scientific Book Publ. Cluj-Napoca, 2005.
- [13] R.M. El-Ashwah and M.K. Aouf, Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput. Model. 51(5-6) (2010) 349–360.
- [14] A.Y. Lashin, On certain subclass of meromorphic functions associated with certain integral operators, Comput. Math. Appl. 59 (2010) 524–531.
- [15] S.S. Miller and P.T. Mocanu, Differential subordinations: Theory and applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc. New York and Basel, 2000.
- [16] S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex Var. 48(10) (2003) 815–826.
- [17] T.N. Shanmugam, S. Shivasubramaniam and H. Silverman, On sandwich theorems for classes of analytic functions, Int. J. Math. Sci. 2006 (2006) 1–13.