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Abstract

In the present paper, we obtain some subordination and superordination results, involving the oper-
ator T a for functions of the form f(z) = z−1 +

∑∞
k=1 akz

k, which are meromorphic univalent in the
punctured open unit disk these results are applied to obtain sandwich results.
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1. Introduction

Let
∑

denote the class of functions of the form:

f(z) = z−1 +
∞∑
k=1

akz
k (1.1)

which are meromorphic univalent in the punctured open unit disk U∗ = {z : z ∈ C, 0 < |Z| < 1}.
Let R be the linear space of all analytic functions in U . For a positive integer number n and

a ∈ C, we let,
R[a, n] = {f ∈ R : f(z) = a+ anz

n + an+1z
n+1 + ...}.
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For f and g analytic functions in R, we say that f is subordinate to g in U and write f(z) ≺ g(z),
if there exists Schwars function µ, which is analytic in U with µ(0) = 0 and |µ(z)| < 1 (z ∈ U), such
that f(z) = g(µ(z)), (z ∈ U).

Furthermore, if the function g is univalent in U , we have the following equivalence relationship
(c f., e.g. [12, 15, 16]),

f(z) ≺ g(z) ↔ f(0) = g(0) and f(U) ⊂ g(U), (z ∈ U).

Definition 1.1. [15] Let ϕ(r, s, t; z) : C3×U → C and let h(z) be univalent in U . If p(z) is analytic
in U and satisfies the second-order differential aubordination:

ϕ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (1.2)

then p(z) is called a solution of the differential subordination (1.2), and the univalent function q(z)
is called a dominant of the solution of the differential subordination (1.2), or more simply dominant
if p(z) ≺ q(z) for all p(z) satisfying (1.2). A univalent dominant q̃(z) that satisfies q̃(z) ≺ q(Z) for
all dominant q(z) of (1.2) is said to be the best dominant is unique up to a relation of U .

Definition 1.2. ([15]also see [13]) Let ϕ(r, s, t; z) : C3 × U → C and let h(z) be analytic in U .
If p and ϕ(p(z), zp′(z), z2p′′(z); z) are univalent in U and if P satisfies the second-order differential
superordination,

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z), z) (1.3)

then p(z) is called a solution of the differential superordination (1.3). An analytic function q(z)
which is called a subordinant of the solutions of the differential superordination (1.3) or more simply
a subordinant, if q ≺ p for all p satisfying (1.3). A univalent subordinant q̃(z) that satisfies q ≺ q̃
for all subordinants q of (1.3) is said to be the best subordinant.

Several authors [1, 2, 9, 13, 15, 17] obtained sufficient conditions on the functions h, p and ϕ for
which the following implication holds

ϕ(p(z), zp′(z), z2p′′(z); z).

Then

q(z) ≺ p(z). (1.4)

Using the results (see [3, 4, 5, 6, 10, 11, 16]) to obtain sufficient conditions for normalized analytic
function to satisfy:

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1. Also, several authors (see
[1, 3, 5, 6, 7, 8, 13]) derived some differential subordination and superordination results with some
sandwich theorems.

Let f ∈
∑

is given by (1.1) and g ∈
∑

, defined by

g(z) = z−1 +
∞∑
k=1

bkz
k, z ∈ U∗.

The convolution (or Hadamard product) of the functions f and g denoted by f ∗ g is defined by
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(f ∗ g)(z) = z−1 +
∞∑
k=1

bkz
k, z ∈ U∗.

Lashin [14] found several properties of integeral operator:

Pα
β :
∑

→
∑

,

which defined as follows:

Pα
β f(z) =

βα

⌈(α)
1

zβ+1

∫ z

0

tβ(log
z

t
)α−1f(t)dt(α > 0, β > 0, z ∈ U∗)

= z−1 +
∞∑
k=1

(
β

k + β + 1
)αakz

k, z ∈ U∗, (α, β > 0; z ∈ U∗).

Atshan, Battor and Abaas [7] found some sandwich theorems for meromorphic univalent functions
defined by the integral operator

Rη :
∑

→
∑

,

which defined as follows:

Rηf(z) =

(
λ+ τ − 1

γ + δ − r

)
z−1−λ+τ−1

γ+δ−r

∫ z

0

t(
λ+τ−1
γ+δ−r )f(t)dt, (1.5)

(λ > 1, γ > 1, δ > 0, η > 0, τ > 0, 0 < r < 1; z ∈ U∗),

such that

Rηf(z) = z−1 +
∞∑
k=1

(
λ+ τ − 1

λ+ τ − 1 + (k + 1)(γ + δ − r)

)η

akz
k. (1.6)

Define the convolution (or Hadamard product) Tα,ηf(z) of the operators Pα
β f(z) and Rηf(z) as

followes:

Tα,ηλ,γ
β,δ,τ,r f(z) = z−1 +

∞∑
k=1

[
β

k + β + 1

]α [
λ+ τ − 1

λ+ τ − 1 + (k + 1)(γ + δ − r)

]η
akz

k. (1.7)

In our paper, we will denote to the Hadamard product operator Tα,ηλ,γ
β,δ,τ,r f(z) by T af(z). From

(1.7), we note that
z(T a+1f(z))′ = βTαf(z)− (β + 1)Tα+1f(z). (1.8)

The main object of this idea is to find sufficient conditions for certain analytic functions f in U∗

satisfy:

q1(z) ≺
(
(1− ρ)zT af(z) + ρzT a+1f(z)

ρ

)µ

≺ q2(z),

q1(z) ≺ (zT a+1f(z))µ ≺ q2(z).



2406 Atshan, Mahdy

2. Preliminaries

Lemma 2.1. [16] Let q be a convex univalent function in U and let α ∈ C, Ψ ∈ C\{0} with q(0) = 1,

Re

{
1 +

zq′′(z)

q′(z)

}
> max{0,−Re{α

Ψ
}}.

If p is analytic in U and

αp(z) + Ψzp′(z) ≺ αq(z) + Ψzq′(z), (2.1)

then p ≺ q, and q is best dominant of (2.1).

Lemma 2.2. [4] Let q be univalent in the unit disk U and let θ and ϕ be analytic in the domain D
containing q(U) with ϕ(w) ̸= 1, when w ∈ q(U). Set

Q(z) = zq′(z)ϕ(q(z) and h(z) = θ(q(z)) +Q(z).

Suppose that

� Q(z) is starlike univalent in U ,

� Re
(

zh′(z)
Q(z)

)
> 0 for z ∈ U .

If p is analytic in U , with p(0) = q(0); p(U) ⊆ D and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), (2.2)

then p ≺ q and q the best dominant of (2.2).

Lemma 2.3. [7] Let q be a convex univalent in U and let Ψ ∈ C. Further assume that Re(Ψ) > 0.
If p ∈ H[q(0), 1] ∩Q and p(z) + Ψzp′(z) is univalent in U , then

q(z) + Ψzq′(z) ≺ p(z) + Ψzp′(z), (2.3)

which implies then q ≺ p and q best subordinant of (2.3).

Lemma 2.4. [16] Let q be a convex univalent in U and let θ and ϕ be analytic in adomain D
contaning q(U), suppose that

� Re
{

θ′(q(z))
ϕ(q(z))

}
> 0 for z ∈ U ,

� Q(z) = zq′(z)ϕ(q(z)) is starlike univalent in U .

If p ∈ H[q(0), 1] ∩Q, with p(U) ⊂ D, θ(p(z)) + zp′(z)ϕ(p(z)) is univalent in U and

θ(q(z)) + zq′(z)ϕ(q(z)) ≺ θ(p(z)) + zp′(z)ϕ(p(z)), (2.4)

then q ≺ p and q is the best subordinant of (2.4).
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3. Differential Subordination Results

Here, we introduce some differential subordination results by using Hadamard product operator.

Theorem 3.1. Let q be univalent in unit disk U with q(0) = 1, q′(z) ̸= 0 ∀z ∈ U . Let µ, ρ ∈
C∗, s, t ∈ C and f ∈

∑
. Suppose that f and q satisfy the conditions

(1− ρ)zTαf(z) + ρzTα+1f(z)

ρ
̸= 0,

and

Re

(
zq′′(z)

q′(z)
− zq′(z)

q(z)
+ 1

)
> 0. (3.1)

If [
1 + µst

(1− ρ)Tα−1f(z) + (2ρ− 1)Tαf(z)− ρTα+1f(z)

(1− ρ)Tαf(z) + ρTα+1f(z)

]
≺ 1 + tz

q′(z)

q(z)
, (3.2)

then [
(1− ρ)zTαf(z) + ρzTα+1f(z)

ρ

]µ
≺ q(z), (3.3)

and q is the best dominant of (3.3).

Proof . Define the function p by

p(z) =

[
(1− ρ)zTαf(z) + ρzTα+1f(z)

ρ

]µ
, (3.4)

then the function p is analytic in U and q(0) = 1, and differentiating (3.4) with respect to z, we get

z
p′(z)

p(z)
= µ

(
(1− ρ)z(Tαf(z))′ + ρz(Tα+1f(z))′

(1− ρ)Tαf(z) + ρTα+1f(z)
+ 1

)
. (3.5)

Now, in view of (1.8), we obtain the following equation

z
p′(z)

p(z)
= µs

(
(1− ρ)Tα−1f(z) + (2ρ− 1)Tαf(z)− ρTα+1f(z)

(1− ρ)Tαf(z) + ρTα+1f(z)

)
.

Therefore,

z
p′(z)

p(z)
= S

(
(1− ρ)zTαf(z) + ρzTα+1f(z)

ρ

)[
(1− ρ)Tα−1f(z) + (2ρ− 1)Tαf(z)− ρTα+1f(z)

(1− ρ)Tαf(z) + ρTα+1f(z)

]
.

The subordination (3.2) from hypothesis becomes

p(z) + sµzp′(z) ≺ q(z) + sµzq′(z)

by setting θ(w) = 1 and ϕ(w) = γ
w
, it can easily observed that θ(w) is analytic in C and ϕ(w) ̸= 0 is

an analytic in C∗. Moreover, we let

Q(z) = zq′(z)ϕ(z) =
tzq′(z)

q(z)
, (3.6)
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and

h(z) = θ(q(z)) +Q(z) = 1 +
tzq′(z)

q(z)
. (3.7)

We find that Q(z) is starlike univalent in U , and from (3.1)

Re

{
zh′(z)

Q(z)

}
= Re

{
1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)

}
> 0, (3.8)

and by using Lemma 2.2, we deduce the subordination (3.3) implies p(z) ≺ q(z) and the function q
is the best dominant of (3.3). □

Corollary 3.2. Putting q(z) =
(
1+z
1−z

)ρ
, 0 < ρ ≤ 1 and f ∈

∑
satisfies the following subordination

condition:

1− µs

(
1− (Tα+1f(z))′

Tα+1f(z)

)
≺ 1 + 2ρ

tz

1− z2
, (3.9)

then

(zTα+1f(z))µ ≺
(
1 + z

1− z

)ρ

(3.10)

and
(
1+z
1−z

)ρ
is the best dominant.

Theorem 3.3. Let q be a convex univalent function in U with q(0) = 1, Let Y > 0, µ ∈ C∗, ℓ, ε ∈
C, f ∈

∑
and suppose f and q satisfy the following conditions:

zTα+1f(z) ̸= 0 (3.11)

and

Re

{
1 +

6εℓq2(z)

Y
+

2ℓ2q(z)

Y
+

4ε2q3(z)

Y
+ z

q′′(z)

q′(z)

}
> 0. (3.12)

If
ϕ(z) ≺ (εq2(z) + ℓq(z))2 + Y zq′(z), (3.13)

where

ϕ(z) = (zTα+1f(z))µ
[
ε2(zTα+1f(z))3µ + 2εℓ(zTα+1f(z))2µ + ℓ2(zTα+1f(z))µ + Y µs

(
Tαf(z)

Tα+1f(z)
− 1

)]
,

(3.14)
then

(zTα+1f(z))µ ≺ q(z), (3.15)

and q is the best dominant of (3.15)

Proof . Let
p(z) = (zTα+1f(z))µ. (3.16)

According to (3.11) the function p(z) is analytic in U with p(0) = 1. A simple computation shows
that

ϕ(z) = (zTα+1f(z))µ
[
ε2(zTα+1f(z))3µ + 2εℓ(zTα+1f(z))2µ + ℓ2(zTα+1f(z))µ + Y µs

(
Tαf(z)

Tα+1f(z)
− 1

)]
= (εp2(z) + ℓp(z))2 + Y zp′(z), (3.17)
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to prove our result by Lemma 2.2. Consider in this lemma θ(w) = (εw2 + ℓw)2, and ϕ(w) = Y , then
θ is analytic in C and ϕ is analytic in C∗. Also, if we let

Q(z) = zq′(z)ϕ(q(z)) = Y zq′(z), (3.18)

and
h(z) = θ(q(z)) +Q(z) = (ε(q2(z) + ℓq(z))2 + Y zq′(z), (3.19)

then the assumptation q is convex would yield Q is starlike function in U . From (3.12), we have

Re

(
zh′(z)

Q(z)

)
= Re

{
1 +

6εℓ

Y
q2(z) +

2ℓ2

Y
q(z) +

4ε2

Y
q3(z) + Z

q(z)′′(z)

q′(z)

}
> 0, (3.20)

by using Lemma 2.2, we deduce the subordination (3.13) implies that p(z) ≺ q(z), and the function
q is the best dominant. □

Corollary 3.4. Let q(z) = 1+AZ
1−AZ

with A ∈ (−1, 0) ∪ (0, 1), ε, ℓ > 0, Y ∈ (0, 1)

Re

(
6εℓ

Y

(
1 + AZ

1− AZ

)2

+
2ℓ2

Y

(
1 + AZ

1− AZ

)
+

4ε2

Y

(
1 + AZ

1− AZ

)3

+
1 + AZ

1− AZ

)
> 0. (3.21)

If f ∈
∑

satisfies the subordination

ϕ(z) ≺

(
ε

(
1 + AZ

1− AZ

)2

+ ℓ
1 + AZ

1− AZ

)2

+ Y z
2Az

(1− Az)2
, (3.22)

where

ϕ(z) = (zTα+1f(z))µ[ε2(zTα+1f(z))3µ+2εℓ(zTα+1f(z))2µ+ℓ2(zTα+1f(z))µ+Y µs

(
Tαf(z)

Tα+1f(z)
− 1

)
,

(3.23)
then

(zTα+1f(z))µ ≺ 1 + AZ

1− AZ
, (3.24)

and q is the best dominant.

4. Differential Superordination Results

Theorem 4.1. Let q be convex univalent function in U with q(0) = 1, s ∈ C, Re{s} > 0, µ, ρ ∈
C∗, γ ∈ C∗, z ∈ U , if f ∈

∑
. Suppose that

(1− ρ)zTαf(z) + ρzTα+1f(z)

ρ
̸= 0, (4.1)

and (
(1− ρ)zTαf(z) + ρzTα+1f(z)

ρ

)µ

∈ H[q(0), 1] ∩Q. (4.2)

If the function

K(z) =

[
(1− ρ)zTαf(z) + ρzTα+1f(z)

ρ

]µ(
1 + µs

(1− ρ)Tα−1f(z) + (2ρ− 1)Tαf(z)− ρTα+1f(z)

(1− ρ)Tαf(z) + ρTα+1f(z)

)
,

(4.3)
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is univalent and the following superordination condition:

q(z) + µsq′(z) ≺ K(z), (4.4)

holds, then

q(z) ≺
[
(1− ρ)zTαf(z) + ρzTα+1f(z)

ρ

]µ
, (4.5)

and q(z) is the best subordinant.

Proof . Consider a function p(z) by

p(z) =

[
(1− ρ)zTαf(z) + ρzTα+1f(z)

ρ

]µ
. (4.6)

Then the function p is analytic in U and q(0) = 1, and differentiating (4.6) with respect to z, we
get

z
p′(z)

p(z)
= µ

(
(1− ρ)z(Tαf(z))′ + ρz(Tα+1f(z))′

(1− ρ)Tαf(z) + ρTα+1f(z)
+ 1

)
. (4.7)

After some computations and using (1.8), from (4.7), we obtain

(
(1 − ρ)zTαf(z) + ρzTα+1f(z)

ρ

)µ

+ µs

(
(1 − ρ)zTαf(z) + ρzTα+1f(z)

ρ

)µ (
(1 − ρ)Tα−1f(z) + (2ρ − 1)Tαf(z) − ρTα+1f(z)

(1 − ρ)Tαf(z) + ρTα+1f(z)

)
= p(z) + µszp

′
(z)

and now, by using Lemma 2.4 we get the desired result. □

Corollary 4.2. taking q(z) =
(
1+z
1−z

)b
, 0 < b ≤ 1, ρ = 1.

If f ∈
∑

is satisfies (zTα+1f(z))µ ∈ H[q(0), 1] ∩Q and

[zTα+1f(z)]µ
(
1 + µs (1−ρ)Tα−1f(z)+(2ρ−1)Tαf(z)−ρTα+1f(z)

(1−ρ)Tαf(z)+ρTα+1f(z)

)
is univalent in U and(

1 + z

1− z

)b

[1 + µs
2bz

1− z2
] ≺ (zTα+1f(z))µ

[
1 + µs

z(Tα+1f(z))′

Tα+1f(z)

]
, (4.8)

then (
1 + z

1− z

)b

< (zTα+1f(z))µ. (4.9)

Theorem 4.3. Let q be convex univalent in U with q(0) = 1, let Y > 0, µ ∈ C∗, ε, ℓ ∈ C, and
f ∈

∑
. Suppose that

Re

{(
6εℓ

Y
q2(z) +

2ℓ2

Y
q(z) +

4ε2

Y
q3(z)

)
q′(z)

}
> 0, (4.10)

and f satisfies the next conditions

zTα+1f(z) ̸= 0, (α > 0, z ∈ U), (4.11)

and

(zTα+1f(z))µ ∈ H[q(z), 1] ∩Q, (4.12)
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also, if the function ϕ(z) defined by (3.14) is univalent in U and the following superordination con-
dition

(εq2(z) + ℓq(z))2 + Y zq′(z) ≺ ϕ(z), (4.13)

holds, then
q(z) ≺ (zTα+1f(z))µ, (4.14)

and q is the best subordination.

Proof . Let the function g(z) defined as:

g(z) = (zTα+1f(z))µ, (4.15)

after some computations, we get

(εg2(z) + ℓg(z))2 + Y zg′(z) = ϕ(z), (4.16)

this implies
(εq2(z) + ℓq(z))2 + Y zq′(z) ≺ (εg2(z) + ℓg(z))2 + Y zg′(z). (4.17)

By setting
θ(w) = (εw2 + ℓw)2, and φ(w) = Y.

It can be easily observe that θ(w) is analytic in C, and φ(w) ̸= 0 is an analytic in U∗. Also, we
obtain

Re

{
θ′(q(z))

φ(z)

}
= Re(q′(z))

(
4ε2

Y
q3(z) +

6εℓ

Y
q2(z) +

2ℓ2

Y
q(z)

)
> 0. (4.18)

Therefore by Lemma 2.3, we have

q(z) ≺ (zTα+1f(z))µ. (4.19)

□

Corollary 4.4. Let q(z) = edz, |d| ≤ 1, Re
{(

6εℓ
Y
e2dz + 2ℓ2

Y
edz + 4ε2

Y
e3dz
)
dedz

}
> 0 and f ∈

∑
,

such that
(zTα+1f(z))µ ∈ H[q(0), 1] ∩Q.

If function ϕ(z) defined by (3.14) is univalent in U and satisfied the following superordination
condition

(εe2dz + ℓedz)2 + Y dzedz ≺ ϕ, (4.20)

then
edz ≺ (zTα+1f(z))µ (4.21)

and edz is the best subordinant.
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5. Sandwich Results

Combining Theorem 3.3 with Theorem 4.3, we obtain the following sandwich Theorem.

Theorem 5.1. Let q1, q2 be convex univalent in U, q1(0) = 1 and satisfies (3.13) with q2(0) = 1 and
satisfies (4.13), respectively. If f ∈

∑
and suppose that f satisfies the next conditions:

(zTα+1f(z))µ ∈ H[q(0), 1] ∩Q, and zTα+1f(z) ̸= 0.

If ϕ(z) = (zTα+1)µ[δ2(zTα+1)3µ+2δη(zTα+1)2µ+η2(zTα+1)µ+Y µβ

(
Tα,η
β f(z)

Tα+1,η
β f(z)

− 1

)
, is univalent

in U , then
(εq21(z) + ℓq1(z))

2Y zq′1(z) ≺ ϕ(z) ≺ (εq22(z) + ℓq2(z))
2Y zq′2(z), (5.1)

then
q1(z) ≺ (zTα+1f(z))µ ≺ q2(z),

and q1 and q2 are the best subordinant and the best dominant respectively.
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