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Abstract

In this present article, the g-derivative operator and the subordination principle are use to define a class of functions
that are analytic and bi-univalent in the open unit disk. Our aim for this class is to obtain the upper bound for the
second Hankel determinant for functions in this new subclass of analytic and bi-univalent functions.
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1 Introduction, Definitions and Preliminaries

Here we let A represent the class of analytic functions having series representation
fz) =24 anz", f(0)=0, f(0)=1land z€ £:={z€C:|z[ <1}. (1.1)
n=2

Also let S C A denote the subclass of normalised analytic and univalent functions in £.

Let h(z) and H(z) be analytic functions. h(z) is said to be subordinate to H(z), represented as h(z) < H(z)
(z € £), if there is an analytic function w(z) (w(0) = 0 and |w(z)| < 1) such that h(z) = H(w(z)). If H(z) is univalent
in £, then
h<H < h(0)=H(0) and h(£)C H(L).

See [I9]. Let p(z) be an analytic function with positive real part in £ such that p(0) = 1, p/(0) > 0, and p(£) is
starlike with respect to 1 and symmetric with respect to the real axis. Thus u(z) has series representation

p(z) =143 Bpz" (B1>0, z€ £). (1.2)

n>1

Recently, the concept of quantum calculus (or g-calculus) has inspired many researchers in geometric function
theory. It was first introduced by Jackson [8, 0] and since then many researchers (for instance [4, [6], 10} 14}, [15]) have
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used it in various ways to define and establish some properties for some classes and subclasses of univalent functions
and bi-univalent functions. In [1L [8, @], 2] the g-derivative (0 < ¢ < 1) of functions f € A was defined by

D, f(0) = f'(0) when z =0 (if it exists)

D,f(z) = flaz)=f(z) when 2z #0 (1.3)

z(g—1)
D f(2) = Dy(Dy f(2))-

We remark that from (1.1) and (1.3]), we can formulate that

D,f(z) =1+ Z[n]qanzn_l and 2D f(z) = Z[n —1]4[n]ganz""t (1.4)
n=2 n=2

[n]y, = 111‘7: and note that if ¢ — 17, then [n], — n. For more information see [T}, 2] 12].

It is well-known by the Koebe one-quarter theorem (see [7]) that the range of every function f € S covers the disk
|w| < 0.25, thus, every f € S in the form (1.1) has inverse f~! where

FlfE) =2 (€ £)

and
FFHw) =w  (w:fw] <ro(f); ro(f) >0.25).

The inverse f~!(w) has series representation

F(w) = f_l(w) =w— asw? + (2a§ - a3)w3 - (5a§ — Sagasz + a4)w4 e (1.5)

In [16], Lewin introduced the class B of analytic and bi-univalent functions in £ and proved that the bound for
the second coefficient of every f € B satisfies the inequality |as| < 1.51. A function f € A is said to be bi-univalent
in £ if both f(2) and f~!(w) are univalent in £. See [14} 20} 24} 25] for more discussions, comprehensive history and
some properties of bi-univalent functions. Note that the class B is non-void. Instances of functions f € B are

f() =z [(z)=—log(l=2), f(z)=2/(1-2), f(z)=log[(1+2)/(1—2)]">

Note that the familiar Koebe function r(z) = > nz", its rotation function k(0;2) = 3. ne?™=V027 f(2) = z/(1—2?)
n=1 n=1
and f(z) = z — 2?/2 are non-members of B.

Represented by Hm »(f) is the m!* Hankel determinant whose elements are the coefficients of function f € S given
by (1.1). The determinant H,, ,(f) was defined by Pommerenke [22, 23] as

Qp Ap41 v Ap4+m—1
An+1 An42 oo Gn+m
Hmn(f) - . . . (m,n c N) (16)
Gn+m—1  OGn4+m coo Op42m—2

This determinant has been considered by several authors for various classes and subclasses of B mostly for a; = 1,m =
2,n=1and a; = 1,m = 2,n = 2, for instance see [3] [I5]. It is easy to see that for f € A,

1 as
a2 as

az as

= (a3 —a3) and Ha2(f) = a3 G

Ha1(f) = = (azaq — a3). (1.7)

Ho1(f) and Ho2(f) are well-known as Fekete-Szegé and second Hankel determinant functionals, respectively. In
particular, Noor [21] established the rate at which H, »(f) grows as n — oo for f in (L.I). In [22], Pommerenke
highlighted some of the applications of Hankel determinants which includes the study of singularities and the solution
of power series with integral coefficients of analytic functions. Junod [II] established that problems of orthogonal
polynomials can be solved by the use of Hankel determinants while Layman [I3] explained some fundamental notations
and properties of Hankel matrices and determinants.

Using the above discussions, the following subclass of analytic and bi-univalent functions was defined in [14] as
follows.
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Definition 1.1. Let 7 € C— {0}, 0 < A < 1 and p be as defined in (1.2)). A function f € B is said to be in the class
By (7, A, ) if the subordinations

1+%[qu(z)+)\zD2f(z) -1l =<pulz) (z€£) (1.8)
and
1+ %[DqF(w) + )\ngF(w) -1l < p(w) (weL) (1.9)

hold where F(w) = f~!(w) is defined by (1.5). Note that the class B(7, \, u) = ligl By(T, A, ) was studied in [25].
q

In this work, an upper bound for the second Hankel determinant Hs 2(f) for functions f € B, (7, A, 1) is investigated.

2 Relevant Lemmas
To establish our results, we shall need the following lemmas.

Let P be the class of analytic functions with positive real parts in £ such that p(0) = 1.

Lemma 2.1 ([5, [7]). If p(z) =1+ > p,z" € P, then |p,| <2, n € N.
n>1

Lemma 2.2 ([I7, A8]). If p(z) =1+ > pnz"™ € P, then

n>1
2py =pi + (4 —pi)x

and
4ps = p} +2(4 — pDpriz — (4 — p})pra” +2(4 — p) (1 — []?) 2

for some x, z with |z, |z] < 1.

Proposition 2.3. Let the functions b(z) = 1+ > b,2", ¢(z) = 1+ > ¢,2" belong to the class P and ¢; = —by,

n>1 n>=1
then .
2by = b} +2(4 — b}) } e =ty
2c0 = +y(4—cq) by + co = bi + 7(47blg(z+y)
and

4b3 = b} +2(4 — b3)brz — (4 — b3)bya? +2(4 — b3) (1 — |2]?) 2
des =c3+2(4—A)ery — (4—cA)ery? +2(4 — c2) (1 — |y\2) w
b bi(4=0))(z+y)  bi(4-b])(a® +y7) n (A=) = |zP)z = (A = |y[*)w]

= =g 2 - 4 2

for some w, x,y, z with |w/|, |x|, |y|, |z| < 1 and |by], |e1| € [0, 2].

The coefficients ay and az were found by Lasode and Opoola in [I4]. Now, we obtain the coefficient ay.

Lemma 2.4. Let f € B,(7, A\, p), then there exists the analytic functions b(z) = 1+ > b,2", c(z) =1+ > ¢pz" € P

n>1 n>1
such that
2 72 Bi (b2 + ¢2)
= W BIB], Qs + 2IEQUE: - B} 2
o T2B%b% TBl(bQ —Cg)
ARG T 43, (22)
s — T{%(Bl 72B2+Bg) b‘f* [(Bl 7BQ)(b2+02)]b1 +Bl(b3763)} 53%7’2[)1(()2—02) (2 3)
! 4[4],Qs 16[2],[3],Q1Qz ‘
where
Qn=>0+[n]gA)>1, neN, (2.4)

7€ C—{0},0< A< 1and B, are coefficients of u(z) in (1.2).
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Proof . Let f(z) € B and F(w) = f~!(w), then there are analytic functions u(z) and v(w) (u(0) = 0 = v(0),

|u(2)], |[v(w)] < 1) with w, z € £, such that
1
L+ —[Dyf(2) + A2Dgf(2) = 1] = p(u(z))
and )
1+ ;[DqF(w) + )\ngF(w) —1] = p(v(w)).
Now by using (2.4), LHS of (2.5)) simplifies to

[2]quCL2ZJr [3]4Q2a3 24 [4]:;@3@423
T T T

1
1+ ;[qu(z) +AzD2f(2) - 1] =1+
and by (1.5) the LHS of (2.6) simplifies to

1+ l[DqF(w) + AwD?F(w) — 1]
T

[Q]quaaw n
T T T

—1— [3](1@2(2&% — ag)w2 o [4](1@3(5(1% — 5(12(13 + CL4) 3

Define the analytic functions b(z) and c(w) as follows

b(z) = izgg and  c(w) = %
then u(z) = (ZEZ - 1) = % [blz+ (b2 - bj) 24 (gi ~ by +b3) 23 +]
and

v(w) = (ZEZ;;) =;[c1w+<cz—cj)w2+<£—c1<:2+c3)w3+-~-]

Now we have from RHS of (2.5)) that

(u(z)) =1+ 2Bibyz + = | B b 1) 1 Lppe] 2
plulz)) = 21122122 2212

2 22 2

and from RHS of (2.6) that

1 1 1
pwlo(w)) =1+ 53101’(11 + 5 [Bl <02 - 2) + QBQCf] w2
+

1 i i 1 3.3
5 Bl ?—61024-63 +3261 62—5 +ZBgcl w” -

Comparing coefficients in (2.7) and (2.11)) gives

[2]4Qia2  Biby

T 2

4 1 b3 b? 1
HaQsa =3 [31 (22 —biby + b3) + Boby (bz - 1) + 4335?] .

and

T 2

From (2.8) and (2.12)), we obtain
7[2]11621@2 _ Bicy

T 2

w4

1 b3 b? L3l 3
+-|B; biba + b3 | + Baby | ba — — +13351 2% 4

(2.5)

(2.6)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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and
[4],Qs(5a5 — basas +as) 1 c3 2 1.,
- =3P\ B — o)+ Bacl| . 2.1
p B 1 92 cica +c3 | + Bacy | co 5 + 1 3¢5 ( 6)
Adding (2.13) and (2.15)) and simplifying give
— b]_ = —C(C1, b% = C% and bzl)) = —c:f. (217)

Subtracting (2.14) from (2.16) and using (2.17)) leads to

—[4)4Q3{5(a3 — azaz) + 2a4}

— % {—; (By — 2By + Bs) b‘;’ + [(B1 — Ba)(ba + ¢2)]by — By(bs — 05)} (2.18)
and
yay — TAE(BL=2B2+ BBt = [(Bi = Bo)(bat co)lu+ Bilby — o)} g (2.19)

2[4]qQ3
Consider using as in ([2.13]) and a3 in Lemma and simplifying leads to (2.3)). O

3 Main Results

Unless otherwise mentioned in what follows, we assume that 7 € C — {0}, 0 < A < 1, p is defined by (1.2) and
f € B. With these, we establish the second Hankel determinant of functions f € By(7, A, u).

Theorem 3.1. Let B,(7, A, 1), then

D(2) for ¢1 >0, ¢2>0
B2|7|?
max q =m~7, 2 for ¢1>0, ¢y<0
[Ha2,2(f)] < {[S]QP2 d( )} . .

Brar for ¢1<0, ¢ <0

max{®(ty), ®(2)} for ¢1 <0, ¢2>0

where

¢1 =¢1(q, 7, Q1, Q2, Q3, B1, B2, B3)
=Bi|r[*{(2[213[3]3B1 — 2Bz + B3|Q7Q3) + (2[3];[4],Q3Q: BY|7[*) — (4[2]3[3]5Q7Q3B1)
+ (2[2]5[4]4B1Q1Qs) — (9[213[3]4[4]4 BY|7]) Q1 Q2Q3}
$2 =h1(q, 7, Q1, Q2, Q3, B1, B2, B3)
=B |7|*{(4[2]4[3]3|B1 — B2|Q1Q3) + (62)[3]381Q1Q3) + (9[3]4[4]4 BY|7|Q2Q5)
— (42]7[41,B:1Q7Q3)}
Bi|r]* 3[p2(q,7,Q1,Q2,Q3, B, Ba, By)]?
312Q3  32[3]2[4],Q3Q301(q, 7, Q1,Q2, Q3, B1, By, B3)

(to) =

and
Blw{ QL2821 — 2By + BalQ3Q2) + (232041,Q2Q B ?)

—(A2PBIQIQEB) + (2214, B:Q1Qs) - (9[2]3[3}q[4}q3fITI)Q?Qng}
T BT DR [A], QI Q3Qs
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Proof . Using Lemma [2.4]in (L.7)) leads to

oty — a2 :Blbzll’7'2(Bl — 232 —+ Bg) _ Blb%TQ(Bl — BQ)(bQ —+ CQ) + B%b1T2(b3 — Cg)
° 16[2]q[4]qQ1Q3 8[2}q[4]qQ1Q3 S[Q]q[4]qQ1Q3
5B?b%7’3(b2 — 02) . B%b%’rll . B%b%T?)(bQ — 02) _ B%Tz(bg — 02)2 (3 1)
32[223],Q7Q2  16[2]3Q7  8[2]2[3],Q7Q2 16[3]7Q3 ‘

so that by using Proposition in (3.1) leads to

24 — 0 _Bibir?(B1 — 2By + By)  Bibir*(Bi— Ba)  BibiT?(Bi — Bo)(4 — b})(z +y)
16[2]4[4]¢@1Qs 8[2]4[4]4@1Qs3 16[2]4[4],@1 Qs
Bibir? | BT -W(wty) B - b + )
16[2]q[4]qQ1Q3 16[ ] [ } QIQS 32[2}q[4]qQ1Q3
n Bibi (4 = 0})[(1 — [z]*)2 — (1 — [y*)w] | 5BIET3(4 — b3)(z — y)
16[2]4[4]41Qs 64[2]3(3],Q1Q2
Bivitt BT (4 -bi)(z —y) BiT*(4-b3)*(z —y)?

OiQf GRRELQIQ: oBR@ 2

Recall that for functions b(z) € P, |b1| < 2 (Lemma [2.1)). Now letting ¢ = by, we may assume without any restriction
that ¢t € [0,2]. Thus, using triangle inequality with o = |z] <1 and 8 = |y| < 1 in (3.2) we obtain

|azas — a3] <
{B1|7'2|B12Bg+83|t4 + Bl|T|2|Bl 7Bg|t4 + BQ|T|2t4 T B2|T‘2(47t2)t + B%T|4t4}
16[2]4[4],Q1@s 8(204[4]@1Qs  16[2]g[4]@1Qs  8[2][4],1 Qs  16[2]5Q1

Bi|T|?|By — Ba|(4 — )t Bi|T]*(4 —t*)t>  5BJTP(4—t3)t?  B|T]P(4 — t2)t2}
{ R, 00 162, @iQs | G2ERL @R 162, S Y
BiTP(4 -t Bilr|*(4 - t2)t} 2 | 52
{ 3202, [1,01Qs  1620,[4,0105 ) T
Bi|T]*(4 —t*)? 5
oippa; TP
which by equivalence we have
lazas — a3| < Vi(t) + Va(t) (o + B) + Va(t)(a® + B2) + Va(t) (e + B)* = F(a, B) (3.3)
where
{ |T‘ |B1 —2BQ+Bd|t4 Bl|T|2|Bl —Bg|t4 B%|T|2t4 + B%|T‘2(4—t2)t
4]4Q1Q3 8[2]4[4]4Q1Q3 16[2]4[4],Q:1Q3  8[2]4[4],@1Qs
+ B4|T|4t4} 0
6[2]2Q1
{B s |B1 Bo|(4—2)t*  Bi|r[P(4—t3)t*  5BYT]P(4— 1)t | B34 — t2)t2} -0
Q1Q3 16[2]q[4]qQ1Q3 64[2](21[3]qQ%Q2 16[2]3[3}11Q%Q2
{B2|T t2)(t — 2)t}
- <0
QlQB
_ Bi|r]P(4 - )2
Va(t) —W >0

Next is to maximize the function F'(a, ) in the closed square S = {(a, 8) : (e, 8) € [0,1] x [0,1]}. Since the
coefficients of the function F(«, ) have dependent variable ¢, then we need to maximize F(«, 3) in the cases t = 0,
t=2andte€(0,2).

Case 1: For ¢t = 0, then from (3.3]),
Bi|r* (o + B)?

) == e
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and since maximum of F(«, 8) occurs at « =1 = 3, then

max{F(a,B) : (o, ) € [0,1] x [0,1]} = F(1,1) = 5 - (3.4)

Case 2: For t = 2, then from (3.3))

Bi|r|*  Bi|7|?{|B1 — 2B2 + B3| + 2|B1 — Ba| + B1}
F — 1
(5= Baqr 2,00

which is purely a constant function.

Case 3: For t € (0,2), let a« + 8 =m and af = n, then (3.3]) can be expressed as:

F(a, B) = Vi(t) + Va(t)m + [Va(t) + Va(t)m? — 2V3(t)n = G(m,n), m € [0,2] and n € [0, 1]. (3.5)

Now to investigate the maximum of

G(m,n): (m,n) € T=10,2] x [0,1] (3.6)
consider the partial derivatives

oG

am Va(t) +2[Vs(t) + Va(t)m =0

oG

= —2V53(t) =0

It is clear from the above partial derivatives that the function G(m,n) has no critical point in T, hence, F(«, 8) has
no critical point in the square S. Thus, the function F'(«, 8) can not take a local maximum value in the interior of the
square S.

Now to investigate the maximum of F(«, 8) on the boundary of the square S.
Case 3a: Let a =0, 8 € [0,1] (or similarly, 8 =0, « € [0,1]), then from (3.5)),

F(0,8) = Vi(t) + Va(t)B + [Va(t) + Va(®)]6% = ¥1(B), (3.7)
then
P1(8) = Va(t) + 2[Va(t) + Va(1)]B.
Now, since [V5(t) + Va(t)] > 0, then
P1(B) = Va(t) + 2[Vs(t) + Va(t)]8 > O,

therefore, the function 1 () is an increasing function for all 8 € [0, 1] and that the maximum occurs at 8 = 1. Thus,

from ,
max{F(0,5): B € [0,1]} = F(0,1) = Vi(t) + Va(t) + Va(t) + Va(t). (3.8)

Case 3b: Let a =1, 8 € [0,1] (or similarly, 3 =1, o € [0,1]) then from (3.5),
F(1,8) = Vi(t) + Va(t) + Va(t) + Va(t) + [Va(t) + 2Va()]8 + [Va (1) + Va(1)]5% = ¢2(B), (3.9)

then
P5(B) = [Va(t) + 2Va(t)] + 2[Va(t) + Va(t)]B.

Now, since [V5(t) + V()] = 0, then ¢4(8) = [Va(t) + 2V4(t)] + 2[V5(¢) + Va(¢)]8 > 0. Therefore, the function ¥s(3) is
an increasing function for all 8 € [0,1] and the maximum occurs at 8 = 1. Thus, from (3.9),

max{F(1,B) : B € [0,1]} = F(1,1) = Vi(t) + 2[Va(t) + V3(t)] + 4Va(t). (3.10)
Hence, for every ¢ € (0,2), it can be concluded from (3.8)) and (3.10) that

VA(t) + 2[Va(t) + Va(0)] + 4Vi(t) > Vi() + Va(t) + Va(t) + Va(t)
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Therefore,
max{F(a,B) : « € [0,1],8 € [0,1]} = V1 (¢t) + 2[Va(t) + V3(t)] + 4V4(2). (3.11)

Now in conclusion, since (1) < ¢2(1) for ¢ € [0,2] then
max{F(a,3)} = F(1,1)

occurs on the boundary of square S. Thus, the maximum of F' occurs at « = 1 = 8 on the closed square S.
Also to consider the maximum point at (3.11)), let ® : (0,2) — R be defined as:

B(t) = max{F(a, B)} = F(1,1) = Vi(t) + 2[Va(t) + Va(t)] + 4V (t). (3.12)
Substituting the values of Vi (t), Va(t), V3(t) and V4(t) into (3.12) and simplifying give

(1) = Bf|r[? {Bl|T|231 —2B,+ B3| Bilr|' Bl Bir*  _ 9BjlrP }t4
- BlQ3 16[2]4[4]4@1 Qs 16[23Q1  8[2]4[4],@1Qs  16[33Q3  32[23[3],Q7 Q>
{Bl|T|231 — By 3Bilrl* 9Bl Bilr® }tz
2[2]g[4]q@1 Qs 4[2]4[4],Q:1Qs  8[23[3],Q1Q2  2[3]3Q3
or

B1|72{(2[2]2[3]§B1 — 2By + B3|Q1Q3) + (2[3]7[4]¢ BY |71 Q3Qs)
o p —(RIEBIEBIQIAS) + (2254, B1Q1Qs) — (9[2]2[3]&4}(13%T|Q?Q2Q3)}

Bi|7| 4

B(t) = =L+ t

BHes RIBEA,QI0%0
Bl|72{<4[21q[31§|31 B QiQ2) + (6120, 32B i)

(O3],[41 B 171Q2Qs) — <4[213[41q31cz%@3>}

2
8[2]2[312[4],Q1Q3Qs 2 (3.13)

which for convenience can be written as

_ B%|T|2 ¢1<Q7T7Q17Q23Q37B1532333) 4 ¢2(q77-aQlaQ27Q37Bl7BZ7B3) 2

- B33 RRIBEA,QI3Gs | SEPBEM.QI3Gs (3.14)

where ¢1(q, 7, Q1, Q2, Qs, B1, B2, B3) and ¢2(q, 7, Q1, Q2, @3, B1, B2, B3) are respectively the numerators of the second
and third fractions in (3.13]).
Now to investigate the maximum value of ®(t) in the interval (0,2), then from (3.13)),

&'(t) = 4¢1(Q7T7QhQQaQSaBlyBQ;BB)tg N 202(q, 7, Q1, Q2, Q3, By, By, Bs)
32[2J3[313[41,Q1Q5Qs 8[22[32[4],Q2Q2Q;

Let us examine the different results of ¢1(q, 7, Q1,Q2, Q3, B1, B, B3) and
¢2(q,7,Q1,Q2,Qs, B1, Ba, Bs) as it follows from (3.13]).
eResult 1: If ¢1(Q7 T, Qla Q27 Q3; Blv BQ7 B3) > 0 and

@2(q, 7,Q1,Q2,Qs3, B1, Ba, B3) > 0 then ®'(t) > 0. Hence the function ®(¢) is an increasing function, which means
the maximum point must be on the boundary of t € [0, 2], that is at ¢t = 2, therefore from (3.13)

(1)

max{F(«a,8) : a €[0,1],8 € [0,1]} = D(2)

_ By |r|? + $1(q, 7,Q1,Q2,Q3, By, By, Bs) n ¢2(q, 7, Q1,Q2,Q3, B1, By, B3)
3]2Q3 2[2]4[3]2[4],Q1Q3Qs 2[2]2[3]2[4],Q7Q3Qs

(3.15)

eResult 2: If ¢1(Q7T7Q17Q27Q37B17B27B3) > 0 and ¢2(q7TanaQQaQ?nBl)BQaBl’v) < 07 then for

(I)/(t) _ 4¢1(q7 T, Qla QZa Q37 Bl7 BZ; BS) t3 + 2¢2(q, T, Q17 QZ; QS; _B17 BQ, BS)
32(2]3(313(4],Q1Q5@s 8[22[3]2[4],Q2Q3Qs

t=20
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implies
b — _2[2]3Q%¢2(Q7T7Q17Q27Q37B15327B3) (3 16)
0 ¢1(qaTanaQ?aQ&BlaB%BZ}) .
is a critical point of ®(¢) and since
By, Bo, Bs)
q)ll t :7¢2(q,7—,Q17Q25Q33 1, D2, D3 >0,
o SRR, Qs
hence for ®”(tg) > 0, the maximum value of function ®(t) occurs at t = ¢y and (3.13)) simplifies to
@(to) _ B%|T|2 _ 3[¢2(Q7T7Q17Q27Q35313327B3)]2
812Q3  32(3]2[4],Q3Q3¢1(q, 7, Q1, Q2, @3, B1, Ba, Bs)
In this case,
B?|r]?
B(tg) < —
8503
and
BY|r|?
max{F(«, ) : @ €10,1],8 € [0,1]} = max BI2Q3” ®(2) (3.17)
qx2

eResult 3: If ¢1(q7 T, le Q27 Q31 B17 327 B3) < 0 and ¢2(q1 7, Qh QQ? Q37 Bla B27 BS) < 07 then
®'(t) < 0. The function ®(t) is a decreasing function which means maximum point must be on the boundary of
t € [0,2], that is at ¢ = 0, therefore, from (3.13]),

B?|r]?
max{F (e, 8) : a € 0,1], B € [0,1]} = ®(0) = L5 (3.18)
[3]qQ2
eResult 4: If ¢1 (Qv T, Ql, QQ, Q3a Blv BQ» B3) <0 and ¢2(qa T, Qla Q27 Q?n Bla BQa B3) > 07 then for

_ 4¢1(Q7T7 Qla QQa Q3a Bh BQa B3) 3 2¢2(Q7T7 Qh Q27 Q3a Bl7 BQy B3)

P'(t) = t + t=0
O = T sapEL Qi S22 BR 14,5030

implies

£ = _2[2]362%(;52(6177—7Q17Q2>Q37BDBQ>B3) (3 19)

! ¢1(q7TanaQQaQ?nBl)BQaBZi) '
is a critical point of ®(¢) and since

¢2(Qa 7, Qla Q2a Q3a Bly B25 B3)
D' (ty) = — <0
“ D[22 32 4], 250305
hence for ®”(¢1) < 0, the maximum value of function ®(t) occurs at ¢ = ¢; and from (3.13),
(I)(to) _ B%|T|2 o 3[¢2(q77—7QlaQQ»QZS;BlvBQ»B?))}Q

812Q3  32(3]2[4],Q5Q3¢1(q, 7, Q1, Q2, @3, B1, Ba, B3)

In this case,
B?|7|?
@(to) > 1
31303
and
Bi|r|?
max{F(«, ) :a €[0,1],5 € [0,1]} = max 3122 D(2) ¢. (3.20)
qx2

Hence from (3.15)), (3.17)), (3.18) and (3.20) the proof is complete. O]
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