ISOMORPHISMS IN UNITAL C^{*}-ALGEBRAS

C. PARK ${ }^{1 *}$ AND TH. M. RASSIAS ${ }^{2}$
Dedicated to the 70th Anniversary of S.M.Ulam's Problem for Approximate Homomorphisms

Abstract

It is shown that every almost linear bijection $h: A \rightarrow B$ of a unital C^{*}-algebra A onto a unital C^{*}-algebra B is a C^{*}-algebra isomorphism when $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all unitaries $u \in A$, all $y \in A$, and all $n \in \mathbb{Z}$, and that almost linear continuous bijection $h: A \rightarrow B$ of a unital C^{*}-algebra A of real rank zero onto a unital C^{*}-algebra B is a C^{*}-algebra isomorphism when $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in\left\{v \in A \mid v=v^{*},\|v\|=1, v\right.$ is invertible $\}$, all $y \in A$, and all $n \in \mathbb{Z}$.

Assume that X and Y are left normed modules over a unital C^{*}-algebra A. It is shown that every surjective isometry $T: X \rightarrow Y$, satisfying $T(0)=0$ and $T(u x)=u T(x)$ for all $x \in X$ and all unitaries $u \in A$, is an A-linear isomorphism. This is applied to investigate C^{*}-algebra isomorphisms in unital C^{*}-algebras.

1. Introduction

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Th.M. Rassias [11] introduced the following inequality that is called Cauchy-Rassias inequality: Assume that there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$. Th.M. Rassias [11] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. The above inequality has provided a a lot of influence in the development of what is called Hyers-Ulam-Rassias stability or generalized Hyers-Ulam stability of functional equations. Beginning around the year 1980 the topic of approximate homomorphisms, or the stability of the equation of homomorphism, was

[^0]studied by a number of mathematicians. Jun and Lee [5] proved the following: Denote by $\varphi: X \times X \rightarrow[0, \infty)$ a function such that
$$
\widetilde{\varphi}(x, y)=\sum_{j=0}^{\infty} \frac{1}{3^{j}} \varphi\left(3^{j} x, 3^{j} y\right)<\infty
$$
for all $x, y \in X$. Suppose that $f: X \rightarrow Y$ is a mapping satisfying $f(0)=0$ and
$$
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leq \varphi(x, y)
$$
for all $x, y \in X$. Then there exists a unique additive mapping $T: X \rightarrow Y$ such that
$$
\| f(x)-T(x) \left\lvert\, \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x))\right.
$$
for all $x \in X$. C. Park and W. Park [10] applied the Jun and Lee's result to the Jensen's equation in Banach modules over a C^{*}-algebra. Various functional equations have been investigated by several authors ([13]-[16], [18]).

Throughout this paper, let A be a unital C^{*}-algebra with norm $\|\cdot\|$ and unit e, and B a unital C^{*}-algebra with norm $\|\cdot\|$. Let $U(A)$ be the set of unitary elements in $A, A_{s a}=\left\{x \in A \mid x=x^{*}\right\}$, and $I_{1}\left(A_{s a}\right)=\left\{v \in A_{s a} \mid\|v\|=1, v\right.$ is invertible $\}$.

In Section 2, we prove that every almost linear bijection $h: A \rightarrow B$ is a C^{*} algebra isomorphism when $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in U(A)$, all $y \in A$, and all $n \in \mathbb{Z}$, and that for a unital C^{*}-algebra A of real rank zero (see [3]), every almost linear continuous bijection $h: A \rightarrow B$ is a C^{*}-algebra isomorphism when $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in I_{1}\left(A_{s a}\right)$, all $y \in A$, and all $n \in \mathbb{Z}$. In Section 3, we moreover prove that every surjective isometry, satisfying some conditions, is a C^{*}-algebra isomorphism.

2. C^{*}-ALGEBRA ISOMORPHISMS IN UNITAL C^{*}-ALGEBRAS

We investigate C^{*}-algebra isomorphisms in unital C^{*}-algebras.
Theorem 2.1. Let $h: A \rightarrow B$ be a bijective mapping satisfying $h(0)=0$ and $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in U(A)$, all $y \in A$, and all $n \in \mathbb{Z}$, for which there exists a function $\varphi: A \times A \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}(x, y):=\sum_{j=0}^{\infty} \frac{1}{3^{j}} \varphi\left(3^{j} x, 3^{j} y\right)<\infty \tag{2.1}\\
& \left\|2 h\left(\frac{\mu x+\mu y}{2}\right)-\mu h(x)-\mu h(y)\right\| \leq \varphi(x, y), \tag{2.2}\\
& \left\|h\left(3^{n} u^{*}\right)-h\left(3^{n} u\right)^{*}\right\| \leq \varphi\left(3^{n} u, 3^{n} u\right) \tag{2.3}
\end{align*}
$$

for all $\mu \in S^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$, all $u \in U(A)$, all $n \in \mathbb{Z}$, and all $x, y \in A$. Assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{h\left(3^{n} e\right)}{3^{n}} \tag{2.4}
\end{equation*}
$$

is invertible. Then the bijective mapping $h: A \rightarrow B$ is a C^{*}-algebra isomorphism.

Proof. Put $\mu=1 \in S^{1}$. It follows from the Jun and Lee's theorem [5] that there exists a unique additive mapping $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|h(x)-H(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x)) \tag{2.5}
\end{equation*}
$$

for all $x \in A$. The additive mapping $H: A \rightarrow B$ is given by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} h\left(3^{n} x\right)
$$

for all $x \in A$.
By the assumption, for each $\mu \in S^{1}$,

$$
\frac{1}{3^{n}}\left\|2 h\left(\frac{3^{n} \mu x}{2}\right)-\mu h\left(3^{n} x\right)\right\| \leq \frac{1}{3^{n}} \varphi\left(3^{n} x, 0\right)
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in A$. Hence

$$
2 H\left(\frac{\mu x}{2}\right)=\lim _{n \rightarrow \infty} \frac{2 h\left(\frac{3^{n} \mu x}{2}\right)}{3^{n}}=\lim _{n \rightarrow \infty} \frac{\mu h\left(3^{n} x\right)}{3^{n}}=\mu H(x)
$$

for all $\mu \in S^{1}$ and all $x \in A$. Since $H: A \rightarrow B$ is additive,

$$
\begin{equation*}
H(\mu x)=2 H\left(\frac{\mu x}{2}\right)=\mu H(x) \tag{2.6}
\end{equation*}
$$

for all $\mu \in S^{1}$ and all $x \in A$.
Now let $\lambda \in \mathbb{C}(\lambda \neq 0)$ and M an integer greater than $4|\lambda|$. Then, we have $\left|\frac{\lambda}{M}\right|<\frac{1}{4}<1-\frac{2}{3}=\frac{1}{3}$. By [6], there exist three elements $\mu_{1}, \mu_{2}, \mu_{3} \in S^{1}$ such that $3 \frac{\lambda}{M}=\mu_{1}+\mu_{2}+\mu_{3}$. So by (2.6)

$$
\begin{aligned}
H(\lambda x) & =H\left(\frac{M}{3} \cdot 3 \frac{\lambda}{M} x\right)=M \cdot H\left(\frac{1}{3} \cdot 3 \frac{\lambda}{M} x\right)=\frac{M}{3} H\left(3 \frac{\lambda}{M} x\right) \\
& =\frac{M}{3} H\left(\mu_{1} x+\mu_{2} x+\mu_{3} x\right)=\frac{M}{3}\left(H\left(\mu_{1} x\right)+H\left(\mu_{2} x\right)+H\left(\mu_{3} x\right)\right) \\
& =\frac{M}{3}\left(\mu_{1}+\mu_{2}+\mu_{3}\right) H(x)=\frac{M}{3} \cdot 3 \frac{\lambda}{M} H(x) \\
& =\lambda H(x)
\end{aligned}
$$

for all $x \in A$. Hence

$$
H(\zeta x+\eta y)=H(\zeta x)+H(\eta y)=\zeta H(x)+\eta H(y)
$$

for all $\zeta, \eta \in \mathbb{C}(\zeta, \eta \neq 0)$ and all $x, y \in A$. And $H(0 x)=0=0 H(x)$ for all $x \in A$. So the unique additive mapping $H: A \rightarrow B$ is a \mathbb{C}-linear mapping.

By (2.1) and (2.3), we get

$$
\begin{aligned}
H\left(u^{*}\right) & =\lim _{n \rightarrow \infty} \frac{h\left(3^{n} u^{*}\right)}{3^{n}}=\lim _{n \rightarrow \infty} \frac{h\left(3^{n} u\right)^{*}}{3^{n}}=\left(\lim _{n \rightarrow \infty} \frac{h\left(3^{n} u\right)}{3^{n}}\right)^{*} \\
& =H(u)^{*}
\end{aligned}
$$

for all $u \in U(A)$. Since H is \mathbb{C}-linear and each $x \in A$ is a finite linear combination of unitary elements (see [7]), i.e., $x=\sum_{j=1}^{m} \lambda_{j} u_{j}\left(\lambda_{j} \in \mathbb{C}, u_{j} \in U(A)\right)$,

$$
\begin{aligned}
H\left(x^{*}\right) & =H\left(\sum_{j=1}^{m} \overline{\lambda_{j}} u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} H\left(u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} H\left(u_{j}\right)^{*}=\left(\sum_{j=1}^{m} \lambda_{j} H\left(u_{j}\right)\right)^{*} \\
& =H\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right)^{*}=H(x)^{*}
\end{aligned}
$$

for all $x \in A$.
Since $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in U(A)$, all $y \in A$, and all $n \in \mathbb{Z}$,

$$
\begin{equation*}
H(u y)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} h\left(3^{n} u y\right)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} h\left(3^{n} u\right) h(y)=H(u) h(y) \tag{2.7}
\end{equation*}
$$

for all $u \in U(A)$ and all $y \in A$. By the additivity of H and (2.7),

$$
3^{n} H(u y)=H\left(3^{n} u y\right)=H\left(u\left(3^{n} y\right)\right)=H(u) h\left(3^{n} y\right)
$$

for all $u \in U(A)$ and all $y \in A$. Hence

$$
\begin{equation*}
H(u y)=\frac{1}{3^{n}} H(u) h\left(3^{n} y\right)=H(u) \frac{1}{3^{n}} h\left(3^{n} y\right) \tag{2.8}
\end{equation*}
$$

for all $u \in U(A)$ and all $y \in A$. Taking the limit in (2.8) as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
H(u y)=H(u) H(y) \tag{2.9}
\end{equation*}
$$

for all $u \in U(A)$ and all $y \in A$. Since H is \mathbb{C}-linear and each $x \in A$ is a finite linear combination of unitary elements, i.e., $x=\sum_{j=1}^{m} \lambda_{j} u_{j}\left(\lambda_{j} \in \mathbb{C}, u_{j} \in U(A)\right)$, it follows from (2.9) that

$$
\begin{aligned}
H(x y) & =H\left(\sum_{j=1}^{m} \lambda_{j} u_{j} y\right)=\sum_{j=1}^{m} \lambda_{j} H\left(u_{j} y\right)=\sum_{j=1}^{m} \lambda_{j} H\left(u_{j}\right) H(y) \\
& =H\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right) H(y)=H(x) H(y)
\end{aligned}
$$

for all $x, y \in A$.
By (2.7) and (2.9),

$$
H(e) H(y)=H(e y)=H(e) h(y)
$$

for all $y \in A$. Since $\lim _{n \rightarrow \infty} \frac{h\left(3^{n} e\right)}{3^{n}}=H(e)$ is invertible,

$$
H(y)=h(y)
$$

for all $y \in A$.
Therefore, the bijective mapping $h: A \rightarrow B$ is a C^{*}-algebra isomorphism.
Corollary 2.2. Let $h: A \rightarrow B$ be a bijective mapping satisfying $h(0)=0$ and $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in U(A)$, all $y \in A$, and all $n \in \mathbb{Z}$, for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\left\|2 h\left(\frac{\mu x+\mu y}{2}\right)-\mu h(x)-\mu h(y)\right\| & \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right), \\
\left\|h\left(3^{n} u^{*}\right)-h\left(3^{n} u\right)^{*}\right\| & \leq 2 \cdot 3^{n p} \theta
\end{aligned}
$$

for all $\mu \in S^{1}$, all $u \in U(A)$, all $n \in \mathbb{Z}$, and all $x, y \in A$. Assume that $\lim _{n \rightarrow \infty} \frac{h\left(3^{n} e\right)}{3^{n}}$ is invertible. Then the bijective mapping $h: A \rightarrow B$ is a C^{*}-algebra isomorphism.

Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ to be Th.M. Rassias upper bound in the Cauchy-Rassias inequality, and apply Theorem 2.1.

Theorem 2.3. Let $h: A \rightarrow B$ be a bijective mapping satisfying $h(0)=0$ and $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in U(A)$, all $y \in A$, and all $n \in \mathbb{Z}$, for which there exists a function $\varphi: A \times A \rightarrow[0, \infty)$ satisfying (2.1), (2.3), and (2.4) such that

$$
\begin{equation*}
\left\|2 h\left(\frac{\mu x+\mu y}{2}\right)-\mu h(x)-\mu h(y)\right\| \leq \varphi(x, y) \tag{2.10}
\end{equation*}
$$

for $\mu=1, i$, and all $x, y \in A$. If $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then the bijective mapping $h: A \rightarrow B$ is a C^{*}-algebra isomorphism.

Proof. Put $\mu=1$ in (2.10). By the same reasoning as in the proof of Theorem 2.1, there exists a unique additive mapping $H: A \rightarrow B$ satisfying (2.5). By the same reasoning as in the proof of [11], the additive mapping $H: A \rightarrow B$ is \mathbb{R}-linear.

Put $\mu=i$ and $y=0$ in (2.10). By the same method as in the proof of Theorem 2.1, one can obtain that

$$
H(i x)=2 H\left(\frac{i x}{2}\right)=\lim _{n \rightarrow \infty} \frac{2 h\left(\frac{3^{n} i x}{2}\right)}{3^{n}}=\lim _{n \rightarrow \infty} \frac{i h\left(3^{n} x\right)}{3^{n}}=i H(x)
$$

for all $x \in A$.
For each element $\lambda \in \mathbb{C}, \lambda=s+i t$, where $s, t \in \mathbb{R}$. So

$$
\begin{aligned}
H(\lambda x) & =H(s x+i t x)=s H(x)+t H(i x)=s H(x)+i t H(x) \\
& =(s+i t) H(x)=\lambda H(x)
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$ and all $x \in A$. So

$$
H(\zeta x+\eta y)=H(\zeta x)+H(\eta y)=\zeta H(x)+\eta H(y)
$$

for all $\zeta, \eta \in \mathbb{C}$, and all $x, y \in A$. Hence the additive mapping $H: A \rightarrow B$ is \mathbb{C}-linear.

The rest of the proof is the same as in the proof of Theorem 2.1.
From now on, assume that A is a unital C^{*}-algebra of real rank zero, where "real rank zero" means that the set of invertible self-adjoint elements is dense in the set of self-adjoint elements (see [3]).

Now we investigate continuous C^{*}-algebra isomorphisms in unital C^{*}-algebras.
Theorem 2.4. Let $h: A \rightarrow B$ be a continuous bijective mapping satisfying $h(0)=0$ and $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in I_{1}\left(A_{\text {sa }}\right)$, all $y \in A$, and all $n \in \mathbb{Z}$, for which there exists a function $\varphi: A \times A \rightarrow[0, \infty)$ satisfying (2.1), (2.2), (2.3) and (2.4). Then the bijective mapping $h: A \rightarrow B$ is a C^{*}-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique \mathbb{C}-linear involution $H: A \rightarrow B$ satisfying (2.5).

Since $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in I_{1}\left(A_{\text {sa }}\right)$, all $y \in A$, and all $n \in \mathbb{Z}$,

$$
\begin{equation*}
H(u y)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} h\left(3^{n} u y\right)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} h\left(3^{n} u\right) h(y)=H(u) h(y) \tag{2.11}
\end{equation*}
$$

for all $u \in I_{1}\left(A_{s a}\right)$ and all $y \in A$. By the additivity of H and (2.11),

$$
3^{n} H(u y)=H\left(3^{n} u y\right)=H\left(u\left(3^{n} y\right)\right)=H(u) h\left(3^{n} y\right)
$$

for all $u \in I_{1}\left(A_{s a}\right)$ and all $y \in A$. Hence

$$
\begin{equation*}
H(u y)=\frac{1}{3^{n}} H(u) h\left(3^{n} y\right)=H(u) \frac{1}{3^{n}} h\left(3^{n} y\right) \tag{2.12}
\end{equation*}
$$

for all $u \in I_{1}\left(A_{s a}\right)$ and all $y \in A$. Taking the limit in (2.12) as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
H(u y)=H(u) H(y) \tag{2.13}
\end{equation*}
$$

for all $u \in I_{1}\left(A_{s a}\right)$ and all $y \in A$.
By (2.11) and (2.13),

$$
H(e) H(y)=H(e y)=H(e) h(y)
$$

for all $y \in A$. Since $\lim _{n \rightarrow \infty} \frac{h\left(3^{n} e\right)}{3^{n}}=H(e)$ is invertible,

$$
H(y)=h(y)
$$

for all $y \in A$. So $H: A \rightarrow B$ is continuous. But by the assumption that A has real rank zero, it is easy to show that $I_{1}\left(A_{s a}\right)$ is dense in $\left\{x \in A_{s a} \mid\|x\|=1\right\}$. So for each $w \in\left\{z \in A_{s a} \mid\|z\|=1\right\}$, there is a sequence $\left\{\kappa_{j}\right\}$ such that $\kappa_{j} \rightarrow w$ as $j \rightarrow \infty$ and $\kappa_{j} \in I_{1}\left(A_{s a}\right)$. Since $H: A \rightarrow B$ is continuous, it follows from (2.13) that

$$
\begin{align*}
H(w y) & =H\left(\lim _{j \rightarrow \infty} \kappa_{j} y\right)=\lim _{j \rightarrow \infty} H\left(\kappa_{j} y\right)=\lim _{j \rightarrow \infty} H\left(\kappa_{j}\right) H(y) \\
& =H\left(\lim _{j \rightarrow \infty} \kappa_{j}\right) H(y)=H(w) H(y) \tag{2.14}
\end{align*}
$$

for all $w \in\left\{z \in A_{s a} \mid\|z\|=1\right\}$ and all $y \in A$.
For each $x \in A, x=\frac{x+x^{*}}{2}+i \frac{x-x^{*}}{2 i}$, where $x_{1}:=\frac{x+x^{*}}{2}$ and $x_{2}:=\frac{x-x^{*}}{2 i}$ are self-adjoint.
First, consider the case that $x_{1} \neq 0, x_{2} \neq 0$. Since $H: A \rightarrow B$ is \mathbb{C}-linear, it follows from (2.14) that

$$
\begin{aligned}
H(x y) & =H\left(x_{1} y+i x_{2} y\right)=H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|} y+i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|} y\right) \\
& =\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|} y\right)+i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|} y\right) \\
& =\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right) H(y)+i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right) H(y) \\
& =\left\{H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right)+i H\left(\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right)\right\} H(y)=H\left(x_{1}+i x_{2}\right) H(y) \\
& =H(x) H(y)
\end{aligned}
$$

for all $y \in A$.
Next, consider the case that $x_{1} \neq 0, x_{2}=0$. Since $H: A \rightarrow B$ is \mathbb{C}-linear, it follows from (2.14) that

$$
\begin{aligned}
H(x y) & =H\left(x_{1} y\right)=H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|} y\right)=\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|} y\right) \\
& =\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right) H(y)=H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right) H(y)=H\left(x_{1}\right) H(y) \\
& =H(x) H(y)
\end{aligned}
$$

for all $y \in A$.

Finally, consider the case that $x_{1}=0, x_{2} \neq 0$. Since $H: A \rightarrow B$ is \mathbb{C}-linear, it follows from (2.14) that

$$
\begin{aligned}
H(x y) & =H\left(i x_{2} y\right)=H\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|} y\right)=i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|} y\right) \\
& =i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right) H(y)=H\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right) H(y)=H\left(i x_{2}\right) H(y) \\
& =H(x) H(y)
\end{aligned}
$$

for all $y \in A$. Hence

$$
H(x y)=H(x) H(y)
$$

for all $x, y \in A$.
Therefore, the bijective mapping $h: A \rightarrow B$ is a C^{*}-algebra isomorphism.
Corollary 2.5. Let $h: A \rightarrow B$ be a continuous bijective mapping satisfying $h(0)=0$ and $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in I_{1}\left(A_{\text {sa }}\right)$, all $y \in A$, and all $n \in \mathbb{Z}$, for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\left\|2 h\left(\frac{\mu x+\mu y}{2}\right)-\mu h(x)-\mu h(y)\right\| & \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \\
\left\|h\left(3^{n} u^{*}\right)-h\left(3^{n} u\right)^{*}\right\| & \leq 2 \cdot 3^{n p} \theta
\end{aligned}
$$

for all $\mu \in S^{1}$, all $u \in I_{1}\left(A_{\text {sa }}\right)$, all $n \in \mathbb{Z}$ and all $x, y \in A$. Assume that $\lim _{n \rightarrow \infty} \frac{h\left(3^{n} e\right)}{3^{n}}$ is invertible. Then the bijective mapping $h: A \rightarrow B$ is a C^{*}-algebra isomorphism.

Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ to be Th.M. Rassias upper bound in the Cauchy-Rassias inequality, and apply Theorem 2.4.

Theorem 2.6. Let $h: A \rightarrow B$ be a continuous bijective mapping satisfying $h(0)=0$ and $h\left(3^{n} u y\right)=h\left(3^{n} u\right) h(y)$ for all $u \in I_{1}\left(A_{\text {sa }}\right)$, all $y \in A$, and all $n \in \mathbb{Z}$, for which there exists a function $\varphi: A \times A \rightarrow[0, \infty)$ satisfying (2.1), (2.3), (2.4), and (2.10). Then the bijective mapping $h: A \rightarrow B$ is a C^{*}-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.3, there exists a unique \mathbb{C}-linear mapping $H: A \rightarrow B$ satisfying (2.5).

The rest of the proof is the same as in the proofs of Theorems 2.1 and 2.4.

3. On the Mazur-Ulam theorem in modules over C^{*}-algebras

Surjective isometries between normed vector spaces have been investigated by several authors ([1], [2], [8], [9], [12], [17]). We apply the results to investigate C^{*}-algebra isomorphisms in unital C^{*}-algebras.

Lemma 3.1. ([4]) If T is an isometry from a normed vector space X onto a normed vector space Y, then

$$
\begin{aligned}
& T(x+y)=T(x)+T(y)-T(0), \\
& T(r x)=r T(x)+(1-r) T(0), \quad \forall r \in \mathbb{R}
\end{aligned}
$$

Corollary 3.2. ([4]) If T is an isometry from a normed vector space X onto a normed vector space Y and if $T(0)=0$, then T is \mathbb{R}-linear

Theorem 3.3. Let X and Y be left normed modules over a unital C^{*}-algebra A. If $T: X \rightarrow Y$ is a surjective isometry with $T(0)=0$ and $T(u x)=u T(x)$ for all $u \in U(A)$ and all $x \in X$, then $T: X \rightarrow Y$ is an A-linear isomorphism.

Proof. By Corollary 3.2, $T: X \rightarrow Y$ is a \mathbb{R}-linear.
Since $i \in U(A), T(i x)=i T(x)$ for all $x \in X$. For each $\lambda \in \mathbb{C}, \lambda=\lambda_{1}+$ $i \lambda_{2}\left(\lambda_{1}, \lambda_{2} \in \mathbb{R}\right)$. So

$$
\begin{aligned}
T(\lambda x) & =T\left(\lambda_{1} x+i \lambda_{2} x\right)=T\left(\lambda_{1} x\right)+T\left(i \lambda_{2} x\right)=\lambda_{1} T(x)+i T\left(\lambda_{2} x\right) \\
& =\left(\lambda_{1}+i \lambda_{2}\right) T(x)=\lambda T(x)
\end{aligned}
$$

for all $x \in X$.
Since each $a \in A$ is a finite linear combination of unitary elements, i.e., $a=$ $\sum_{j=1}^{n} \lambda_{j} u_{j} \quad\left(\lambda_{j} \in \mathbb{C}, u_{j} \in U(A)\right)$,

$$
T(a x)=T\left(\sum_{j=1}^{n} \lambda_{j} u_{j} x\right)=\sum_{j=1}^{n} \lambda_{j} T\left(u_{j} x\right)=\sum_{j=1}^{n} \lambda_{j} u_{j} T(x)=a T(x)
$$

for all $x \in X$. So

$$
T(a x+b y)=T(a x)+T(b y)=a T(x)+b T(y)
$$

for all $a, b \in A$ and all $x, y \in X$, as desired.
Now we investigate C^{*}-algebra isomorphisms in unital C^{*}-algebras.
Theorem 3.4. If $T: A \rightarrow B$ is a surjective isometry with $T(0)=0, T(i u)=i T(u)$, $T\left(u^{*}\right)=T(u)^{*}$, and $T(u v)=T(u) T(v)$ for all $u, v \in U(A)$, then $T: A \rightarrow B$ is a C^{*}-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.3, $T: A \rightarrow B$ is \mathbb{R}-linear and

$$
T(\lambda u)=\lambda T(u)
$$

for all $\lambda \in \mathbb{C}$ and all $u \in U(A)$.
Since each $a \in A$ is a finite linear combination of unitary elements, i.e., $a=$ $\sum_{j=1}^{n} \lambda_{j} u_{j} \quad\left(\lambda_{j} \in \mathbb{C}, u_{j} \in U(A)\right)$,

$$
\begin{aligned}
T(\lambda a) & =T\left(\sum_{j=1}^{n} \lambda \lambda_{j} u_{j}\right)=\sum_{j=1}^{n} \lambda \lambda_{j} T\left(u_{j}\right)=\lambda\left(\sum_{j=1}^{n} \lambda_{j} T\left(u_{j}\right)\right) \\
& =\lambda T\left(\sum_{j=1}^{n} \lambda_{j} u_{j}\right)=\lambda T(a)
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$ and all $a \in A$. So $T: A \rightarrow B$ is \mathbb{C}-linear. Furthermore,

$$
\begin{aligned}
T\left(a^{*}\right) & =T\left(\sum_{j=1}^{n} \overline{\lambda_{j}} u_{j}^{*}\right)=\sum_{j=1}^{n} \overline{\lambda_{j}} T\left(u_{j}^{*}\right)=\sum_{j=1}^{n} \overline{\lambda_{j}} T\left(u_{j}\right)^{*} \\
& =T\left(\sum_{j=1}^{n} \lambda_{j} u_{j}\right)^{*}=T(a)^{*}
\end{aligned}
$$

for all $a \in A$. And

$$
\begin{aligned}
T(a v) & =T\left(\sum_{j=1}^{n} \lambda_{j} u_{j} v\right)=\sum_{j=1}^{n} \lambda_{j} T\left(u_{j} v\right)=\sum_{j=1}^{n} \lambda_{j} T\left(u_{j}\right) T(v) \\
& =T\left(\sum_{j=1}^{n} \lambda_{j} u_{j}\right) T(v)=T(a) T(v)
\end{aligned}
$$

for all $a \in A$ and all $v \in U(A)$. Since each $b \in A$ is a finite linear combination of unitary elements, i.e., $b=\sum_{j=1}^{m} \nu_{j} v_{j} \quad\left(\nu_{j} \in \mathbb{C}, v_{j} \in U(A)\right)$,

$$
\begin{aligned}
T(a b) & =T\left(\sum_{j=1}^{m} \nu_{j} a v_{j}\right)=\sum_{j=1}^{m} \nu_{j} T\left(a v_{j}\right)=\sum_{j=1}^{m} \nu_{j} T(a) T\left(v_{j}\right) \\
& =T(a) T\left(\sum_{j=1}^{m} \nu_{j} v_{j}\right)=T(a) T(b)
\end{aligned}
$$

for all $a, b \in A$. So $T: A \rightarrow B$ is multiplicative.
Therefore, $T: A \rightarrow B$ is a C^{*}-algebra isomorphism.

References

1. J. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655-658.
2. J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc. 96 (1986), 221-226.
3. L. Brown and G. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
4. R.J. Fleming and J.E. Jamison, Isometries on Banach Spaces: Function Spaces, Monographs and Surveys in Pure and Applied Mathematics Vol. 129, Chapman \& Hall/CRC, Boca Raton, London, New York and Washington D.C., 2003.
5. K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
6. R.V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
7. R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras: Elementary Theory, Academic Press, New York, 1983.
8. N. Kalton, An elementary example of a Banach space not isomorphic to its complex conjugate, Canad. Math. Bull. 38 (1995), 218-222.
9. S. Mazur and S. Ulam, Sur les transformation d'espaces vectoriels normé, C.R. Acad. Sci. Paris 194 (1932), 946-948.
10. C. Park and W. Park, On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), 523-531.
11. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
12. Th.M. Rassias, Properties of isometic mappings, J. Math. Anal. Appl. 235 (1997), 108-121.
13. Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (1998), 89-124.
14. Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
15. Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
16. Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
17. Th.M. Rassias and P. Semrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping, Proc. Amer. Math. Soc. 118 (1993), 919-925.
18. Th.M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
${ }^{1}$ Department of Mathematics, Hanyang University,, Seoul 133-791, Republic of Korea, .

E-mail address: baak@@hanyang.ac.kr
${ }^{2}$ Department of Mathematics, National Technical University of Athens,, Zografou Campus, 15780 Athens, Greece

E-mail address: trassias@@math.ntua.gr

[^0]: Date: Received: January 2010; Revised: May 2010.
 2000 Mathematics Subject Classification. Primary 39B52,39B82; Secondary 47B48, 46L05.
 Key words and phrases. generalized Hyers-Ulam stability, C^{*}-algebra isomorphism, real rank zero, isometry.
 *: Corresponding author.

