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Abstract

A three-parameter discrete analogue of the Alpha-power Weibull distribution (DAPW) is provided in this study.
It has established some of its basic distributional and statistical properties. The probability mass function’s form,
moments, skewness, kurtosis, probability generating function, characteristic function, stress-strength reliability, and
order statistics are all examples of this. The unknown parameters are estimated using the maximum likelihood and
moments approaches. The bias and mean square error of the maximum likelihood are demonstrated via a simulated
exercise. Two datasets are used to demonstrate the model’s adaptability.
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1 Introduction

Many models have been developed to describe lifetime data using continuous lifetime distributions in many disci-
plines of life testing experiment and reliability analysis, for example, Kapur and Lamberson [13], Lawless [17], Sinha
[34], Gnedenko and Ushakou [8]. Estimating the life length of a device using continuous distributions poses derivational
challenges as closed forms for integration may not exist. There is a lot of technology is used to determine how long
someone lives. Even more so for a continuous procedure including a continuous measurement of longevity, a discrete
model, with recordings made at periodic time points, may be more appropriate.

Roy and Gupta [29] Recently highlighted the function that studies single-variable as well as multivariate treatments
in discrete distributions. Roy [30] defined the bivariate geometric distribution and found correlations among various
reliability measures . Roy [31] and [32] investigated analogues of the Rayleigh and Normal distributions as a novel
discrete alternative to the Rayleigh and Normal distributions, respectively. Krishna and Pundir [14] suggested discrete
BXII (Burr type XII) and Pareto distributions with two parameters. Jazi et al. [25] presented a discrete inverse Weibull
distribution recently. Para and Jan [11,12,13] discussed the discrete Burr type III distribution, a discrete version of
the three-parameter Burr type XII distribution, and the Lomax distribution as new discrete distributions to model
counts of kidney cysts using steroids, as well as the discrete inverse Weibull minimax distribution. Gomez-Deniz and
Calderin-Ojeda [9] discussed the discrete Lindely distribution. Nekoukhou et al. [23] looked at a discrete variant of the
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generalized Exponential distribution, which is a type of Geometric distribution. The discrete Lindely distribution was
proposed by Bakouch et al [12]. Abebe [1] discussed a discrete Lindely distribution having applications in biological
research. Munindra et al. [22] considered the derivatives of a discrete Lindley quasi distribution as the goal for his
research distribution with two parameters. The discrete modified Weibull distribution was proposed by Nooghabi et
al. [33]. In the collective risk model, Gomez-Deniz and Calderin-Ojeda [10] examined the compound DGL/Erlang
distribution. El-Morshedey et al. [6] proposed a new Exponentiated discrete Lindely distribution with two parameters.
A discrete variant of Logistic distribution was also introduced by Chakraborty and Chakraborty [5].

The Weibull distribution is a well-known distribution that has been employed in duration of life data analysis.
There have been numerous changes to the Weibull distribution in recent years. Flaih et al. [7], Bebbington et al.
[4], Ahmed and Iqpal [2], Pal et al. [28], Wagner Barreto-Souza et al. [35], and Aryal and Tsokos [3] are just a few
examples.

Nassar et al. [24] presented the Alpha-power Weibull distribution, a generalization case based on Mahdavu &
Kundu’s approach of Alpha-Power Transformation (APT). It can model monotone as well as non-monotone failure
rate functions. It also offers a different perspective on several known life distributions. These positive characteristics
of the Alpha-power Weibull distribution prompt us to consider its discrete analogue.

We propose a discrete Alpha-power Weibull (DAPW) with the same reliance as its continuous cousin and the same
data-analysis features.

2 Definition and Basic Properties

Roy [30] proposed a discretization method based on the model’s reliability function.

P (X = x) = S (x)− S (x+ 1) when x = 0, 1, 2, . . . . . . (2.1)

Roy [30] used this method to discretize Geometric distributions, with S(x) being the Exponential random variable’s
survival function.

Using the discretization method, the discrete Alpha-Power Weibull distribution can be defined as a non-negative
integer valued distribution with PMF, p(x).

p (x) =
α

α− 1

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]
x = 0, 1, 2, . . . (2.2)

Where θ = e−λ, 0 < θ < 1 , α, β > 0 and α ̸= 1 .
We denote this distribution as DAPW (α, θ, β)

Figure 1: PMF of DAPW (α, θ, β) for various values of (α, θ, β).
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The DAPW (α, θ, β) cumulative distribution function CDF is provided by

F (x, α, θ, β) ) = 1− S (x, α, θ, β) ) + P (X = x) = 1− α

α− 1

(
1− α−θ(x+1)β

)
(2.3)

Where θ = e−λ, 0 < θ < 1 , α, β > 0 and α ̸= 1 .
The closed form of the quantile function for the discrete alpha-power Weibull distribution with three parameters is
obtained by inverting (2.2) as follows:

xp =

⌈(
1

ln θ
ln[

1

lnα
ln (

pα− p+ 1

α
)]

) 1
β

− 1

⌉
(2.4)

Where θ = e−λ, 0 < θ < 1 , α, β > 0 and α ̸= 1 .
Where ⌈n⌉ stands for the largest integer value which is larger than or equal to n. Hence the median can be obtained
by putting p = 1

2 in (4)

Med (X) =

⌈(
1

ln θ
ln[

1

lnα
ln (

α+ 1

2α
)]

) 1
β

− 1

⌉
Where ⌈n⌉ denotes the greatest integer value which is greater than or equal to n. The survival function of the DAPW
(x, α, θ, β) distribution is given by the following formula.

S (x) = P (dX ≥ x) =
α

α− 1

(
1− α−θxβ

)
x = 0, 1, 2, . . . . . . (2.5)

Where θ = e−λ, 0 < θ < 1 and α, β > 0 .
The relevant h (x, α, θ, β) is given by the following formula

h (x, θ1, θ2) =
P (X = x)

S (x)
=

(1− α−θxβ

)− (1− α−θ(x+1)β

)

(1− α−θxβ

)
= 1−

(
1− α−θ(x+1)β

)
(2.6)

Hazard rate h (x, α, θ, β) is a 2nd failure rate function for discrete distributions.

h∗ (x, θ1, θ2) = log
S (x)

S (x+ 1)
= log

(1− α−θxβ

)

(1− α−θ(x+1)β )
(2.7)

Where θ = e−λ, 0 < θ < 1 , α, β > 0 and α ̸= 1.

3 Different Properties

3.1 Moments and dispersion index

The rth moment µ–
r of a Discrete Alpha-Power Weibull distribution DAPW (α, θ, β) about the origin is obtained

as follows

µ−
r = E[Xr] =

∞∑
x=0

xrP (X = x)

µ−
r =

α

α− 1

∞∑
x=0

xr

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]
The moment generating function (MGF) MX(t) of a DAPW (α, θ, β) distribution is computed as follows

MX (t) = E
[
etx
]
=

∞∑
x=0

etxP (X = x) =
α

α− 1

∞∑
x=0

etx
[(

1− α−θxβ
)
−
(
1− α−θ(x+1)β

)]
(3.1)
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Another use of the MGF calculates the rth moment about the origin. Using this method, you can also get the related
moments, means, variance, skewness, and kurtosis (3.1).
DAPW (α, θ, β) mean (µ) distribution is as follows

µ−
1 = µ = E [X] =

α

α− 1

∞∑
x=0

x

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]
The second moment is given by the following

µ−
2 = E

[
X2
]
=

α

α− 1

∞∑
x=0

x2

(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)
Following that, the variance (σ2) is calculated as follows:

var (X) = σ2 = µ–
2 − µ2 = E

[
X2
]
− (E [X])

2

=
α

α− 1

∞∑
x=0

x2[

(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)
−

(
α

α− 1

∞∑
x=0

x[

(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

))2

(3.2)

The 3rdand 4th moments are, respectively by the following

µ−
3 = E

[
X3
]
=

α

α− 1

∞∑
x=0

x3[

(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)
And

µ−
4 = E

[
X4
]
=

α

α− 1

∞∑
x=0

x4

(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)
The measure of skewness α3 of DAPW (α, θ, β) distribution is then obtained as follows

α3 =
µ−
3 − 2µ−

2 µ+ µ2

σ3
=

1

σ3

[
α

α− 1

∞∑
x=0

x2

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]]

− 2µ
α

α− 1

∞∑
x=0

x2

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]
+

µ3

σ3
.

(3.3)

The measure of kurtosis α4 of DAPW (α, θ, β) distribution is given by the following

α4 =
µ–
4 − 4µ–

3µ+ 6µ–
2µ

2 − 3µ4

σ4
=

1

σ4

{
[

α

α− 1

∞∑
x=0

x4

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]
−

4µ[
α

α− 1

∞∑
x=0

x3

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]

+ 6µ2

[
α

α− 1

∞∑
x=0

x2[

(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]}
− 3µ4

σ4

(3.4)

G(t), the probability generating function (PGF) of DAPW (α, θ, β) distribution, is calculated as follows

G (t) = E [tx] =

∞∑
x=0

txP (X = x) =
α

α− 1

∞∑
x=0

tx
[(

1− α−θxβ
)
−
(
1− α−θ(x+1)β

)]
(3.5)

Although obtaining a closed form expression for PGF is difficult, we can compute it numerically. In general, the
following gives the rthfactorial moment:

µ[r] = Gr (1) =
α

α− 1

∞∑
x=0

x (x− 1) . . . . . . . . . (x− r + 1)

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]
.
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The mean µ , can be calculated by taking the first derivative of the pgf, at t=1, as shown below.

µ = µ[1] = G`(1) =
α

α− 1

∞∑
x=0

x[

(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)
.

Take the second derivative of the pmgf, at t=1 to calculate the 2nd factorial moment.

µ[2] = Gr(1) =
α

α− 1

∞∑
x=0

x(x− 1)

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]
.

The variance, the variance (σ2) of DAPW (α, θ, β)distribution is given by the following

var (X) = σ2 = G̃ (1) +G
′
(1)−

(
G̃ (1)

)2
=

α

α− 1

∞∑
x=0

x2

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

) ]

−

(
α

α− 1

∞∑
x=0

x

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)])2 (3.6)

Characteristic function: The DAPW (x, α, θ, β) distribution ‘characteristic function (CF), ϕX (w) takes the form

ϕX (w) = E
[
eiwx

]
=

∞∑
x=0

eiwxP (X = x) =

∞∑
x=0

eiw
[(

1− α−θxβ
)
−
(
1− α−θ(x+1)β

) ]
(3.7)

Figure 2: The HRF plots of DAPW (α, θ, β) for various values of (α, θ, β)..

3.2 Stress-Strength (S-S∗)analysis

Stress-strength models are particularly important in reliability literature, engineering applications, and so on. The
parameters R = P (X > Y ) ,in reliability studies where it is assumed that force X and stress Y. This model is used
in engineering problems to compare the capabilities of two workers or the performances of two companies’ products,
among other things (Kotz et.al. [15],Marwa[34,35]).
The S-S* analysis is critical in technical systems. When strength falls below the stress, the likelihood of failure
increases. In this case,the value of mean reliability (R*) as follows:

R∗ = p [Xs ≤ Xs∗ ] =

∞∑
x=0

fXs
(x)RXs∗ (3.8)

If Xs ∼ DAPW (α1, θ1, β1)and Xs∗ ∼ DAPW (α2, θ2, β2) then R∗ can be written as follows

R∗ =
α1α2

(α1 − 1) (α2 − 1)

∞∑
x=0

(
1− α2

−θ2
xβ2

)[(
1− α1

−θ1
xβ1

)
−
(
1− α1

−θ1
(x+1)β1

)]
(3.9)
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Table 1: Mean (variance) of DAPW (x, α, θ, β) for various values of α, θ and β

β = 0.5

α/θ 0.1 1.5 2 3.5 5

.1 0.05077(0.1566) 0.22050(0.67833) 0.24899(0.7631) 0.30946(0.9399) 0.35101(1.0589)

.25 0.22871(1.46959) 0.90031(5.97586) 1.00761(6.6712) 1.23175(8.0935) 1.38320(9.0305)

.5 1.24009(22.0136) 4.30675(82.9752) 4.77367(91.859) 5.73583(109.66) 6.37698(121.12)

.75 5.77380(186.823) 15.3292(511.751) 16.5691(548.79) 18.9845(617.49) 20.4945(658.31)

.9 13.9443(522.09) 17.9319(769.630) 17.8924(784.71) 17.5276(804.66) 17.1126(810.39)

β = 1

.1 0.03164(0.03701) 0.13269(0.14507) 0.14928(0.1611) 0.18422(0.1933) 0.20801(0.2140)

.25 0.10908(0.1567) 0.38954(0.50593) 0.43175(0.5491) 0.51813(0.6298) 0.57518(0.6774)

.5 0.39736(0.82712) 1.13873(2.22133) 1.24080(2.3714) 1.44468(2.6387) 1.57613(2.7883)

.75 1.39653(5.33593) 3.35496(13.2131) 3.61402(14.028) 4.12715(15.464) 4.45534(16.259)

.9 4.53597(40.6239) 9.97849(98.8000) 10.6923(104.77) 12.1038(115.29) 13.0052(121.09)

β = 2

.1 0.02879(0.02801) 0.11932(0.10533) 0.13407(0.1163) 0.16502(0.1381) 0.18602(0.1518)

.25 0.08748(0.08183) 0.29394(0.21704) 0.32362(0.2297) 0.38328(0.2500) 0.42191(0.2596)

.5 0.25795(0.22783) 0.62797(0.39337) 0.67330(0.4005) 0.76055(0.4068) 0.81455(0.4061)

.75 0.65659(0.56478) 1.25092(0.84908) 1.32101(0.8612) 1.45556(0.8718) 1.53883(0.8703)

.9 1.41057(1.44196) 2.39324(2.18376) 2.50906(2.21536) 2.73140(2.24189) 2.86899(2.23647)

3.3 Mean Residual Lifetime (MRL) and Mean Past Lifetime (MPL)

To analyze the ageing behavior of the components, several reliability and survival analysis measures are offered.
MPL, say ς (i) is a useful tool for modelling and analyzing burn-in and maintenance plans, is one of these measurements.
The MRL is defined as follows in a discrete environment.

ς (i) = E

[
X − i

X
≥ i

]
=

1

R (j)

l∑
j=i+1

R (j) , i ∈ N0 (3.10)

if the RV X ∼ DAPW (x, α, θ, β), then the MPL is:

ς (i) =
1(

1− α−θiβ
) l∑

j=i+1

(
1− α−θjβ

)
(3.11)

3.4 Order statistics

Let X1, X2, . . . , Xn represent a r.s. from A DAPW (x, α, θ, β) distribution, and let X1:n, X2:n, . . . , Xn:n represent
their corresponding (OS). Then, for x , the CDF of the ith OS stated as follows:

Fi:n (x, α, θ, β) =

n∑
k=i

(n
k

)
[Fi (x, α, θ, β)]

k
[Fi (x, α, θ, β)]

n−k

=

n∑
k=i

k∑
m=0

(−1)
m

(
k

m

)
αn+m−k

(α− 1)
n+m−k

(
1− α−θ(x+1)β

)n+m−k
(3.12)

Moreover, the PMF of the kth O.S. stated as

fk:n (x, α, θ, β) =

k−1∑
m=0

Θ(n,k−1)
m

αn+m−k+1

(α− 1)
n+m−k+1

(
1− α−θ(x+1)β

)n+m−k

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)] (3.13)
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Where Θ
(n,k−1)
m = (−1)

m (k−1
m

)
n!

(k−1)!(n−k)! .

So, the qth moments of Xi:n can be given in terms

E [Xq
i:n ] =

∞∑
x=0

k−1∑
m=0

Θ(n,k−1)
m xq αn+m−k+1

(α− 1)
n+m−k+1

(
1− α−θ(x+1)β

)n+m−k

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)] (3.14)

4 Estimation

for unknown parameters of DAPW (x, α,Θ, β), some methods of estimation were used to find their values .

4.1 MLE Method.

let X1, X2, . . . .., Xn represent (n) units based on the DAPW (x, α, θ, β) distribution. Then the following is the
appropriate log-likelihood function:

p(x) =
α

α− 1

[(
1− α−θxβ

)
−
(
1− α−θ(x+1)β

)]
L [P (X = x)] =

n∏
i=1

p(xi) =
αn

(α− 1)
n

n∏
i=1

(
1− α−θxi

β
)
−
(
1− α−θ(xi+1)β

) (4.1)

l(x, α, θ, β) = n lnα− n ln (α− 1) +

n∑
i=1

ln

((
1− α−θxi

β
)
−
(
1− α−θ(xi+1)β

))
(4.2)

Likelihood equations are then obtained as follows:

δ1

δα
=

n

α
− n

α− 1
+

n∑
i=1

(
θxi

β

α−θxi
β
−1
)
−
(
θ(xi+1)βα−θ(xi+1)β−1

)
(
1− α−θxi

β
)
−
(
1− α−θ(xi+1)β

) (4.3)

δ1

δβ
=

n∑
i=1

θxi
β

α−θxi
β

(lnα)(lnθ)(lnxi)xi
β − θ(xi+1)βα−θ(xi+1)β

(lnα)(lnθ)(lnxi + 1)(xi + 1)
β(

1− α−θxi
β
)
−
(
1− α−θ(xi+1)β

)
It’s possible to write it as

δ1

δβ
=

n∑
i=0

(lnα) (ln θ) [θxi
β

α−θxi
β

(lnxi)xi
β − θ(xi+1)βα−θ(xi+1)β

(lnxi + 1)(xi + 1)
β
](

1− α−θxi
β
)
−
(
1− α−θ(xi+1)β

) = 0; (4.4)

δ1

δθ
=

n∑
i=0

α−θxi
β

(lnα)xi
βθxi

β−1 − α−θ(xi+1)β

(xi + 1)
β
θ(xi+1)β−1(

1− α−θxi
β
)
−
(
1− α−θ(xi+1)β

) = 0; (4.5)

can solve the above equations numerically because the equations do not have a final form.

4.2 Method of Moments Estimation

The following equations are used to calculate the moments estimates (MMEs) of (α, θ, β)

α

α− 1

∞∑
i=1

xi

[(
1− α−θxi

β
)
−
(
1− α−θ(xi+1)β

)]
= µ1

[1],

And
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α

α− 1

∞∑
i=1

x2
i

[(
1− α−θxi

β
)
−
(
1− α−θ(xi+1)β

)]
= µ2

[2],

α

α− 1

∞∑
i=1

x3
i

[(
1− α−θxi

β
)
−
(
1− α−θ(xi+1)β

)]
= µ3

[3],

Where µ1
[1], µ2

[2] andµ3
[3] imply the first, second, and third sample moments respectively.

5 Simulation Study

To evaluate the performance of the maximum-likelihood estimate, use simulation study:

1. Using Equation (2.3), generate 10000 samples of size n. To create samples, the inversion approach is employed;
that is, varites of the discrete exponentiated exponential distribution are obtained using this method.X ={

ln
(
1−u

1
α

)
ln θ − 1

}
; 0 < u < 1

Where U ∼ U(0, 1) is a variable with a uniform distribution on the unit interval;

2. Calculate the maximum-likelihood estimates for 10000 samples, say θ̂i for i = 1, 2, . . . ., 10000,

3. Determine the biases and mean-squared errors given by

bias (n) =
1

10000

10000∑
i=1

(θ̂i − θi), MSE (n) =
1

10000

10000∑
i=1

(θ̂i − θi)
2
.

Table 2: The averages bias and averages MSE in parenthesis for simulated results of ML estimates.

(α, θ, β) α̂ θ̂ β̂

n=10

(0.5, 0.2, 1) -0.477(0.694) -0.266 (0.127) 0.354 (1.839)

(0.5, 0.1, 1.5) -0.387 (0.173) -0.095 (0.012) 0.134 (0.783)

(0.5, 0.2, 2) -0.437 (0.207) -0.25 (0.073) -1.273 (2.938)

n=15

(0.5, 0.2, 1) -0.494 (0.263) -0.25 (0.071) 0.13 (0.914)

(0.5, 0.1, 1.5) -0.401 (0.18) -0.098 (0.012) 0.076 (0.616)

(0.5, 0.2, 2) -0.447 (0.215) -0.257 (0.076) -1.248 (2.837)

n=30

(0.5, 0.2, 1) -0.501 (0.256) -0.227 (0.055) -0.118 (0.228)

(0.5, 0.1, 1.5) -0.394 (0.166) -0.092 (0.009246) -0.162 (0.2)

(0.5, 0.2, 2) -0.446 (0.217) -0.274 (0.089) -1.192 (2.74)

n=50

(0.5, 0.2, 1) -0.497 (0.249) -0.224 (0.052) -0.17 (0.103)

(0.5, 0.1, 1.5) -0.397 (0.162) -0.091 (0.00847) -0.264 (0.14)

(0.5, 0.2, 2) -0.439 (0.24) -0.286 (0.102) -1.257 (2.667)

The following observations can be made based on Table 2:

� As n −→ ∞. increases, the magnitude of the bias decreases to zero.

� As n −→ ∞., the MSEs always decrease to zero. This demonstrates the estimators’ consistency.
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Table 3: Data set 1.

29 25 50 15 13 27

15 18 7 7 8 19

12 18 5 21 15 86

21 15 14 39 15 14

70 44 6 23 58 19

50 23 11 6 34 18

28 34 12 37 4 60

20 23 40 65 19 31

6 Real Data Example.

This section shows how DAPW Distribution outperforms traditional distributions such as Poisson and Geometric
besides the models we have recently obtained in different researches such as (Discrete Gamma, Discrete Weibull,
Discrete Logistic, and Discrete Lindely).
Table 3 contains the degrees of 48 students in mathematics at the Indian institute of technology in kampur. gupta
and kundu [11] provided the data set.

The MLE, of α, µ, β, and λ All of these values have been computed. In each case, the distance of (K-S) between
the CDF and the fitted distribution function is computed, as well as the associated P-value. Table 4 summarizes the
outcome.

Table 4: Shows the data set 1 fitted estimates.

Distribution p(x) Parameter Estimates p value K-S statistics

Discrete Alpha-power
Weibull Distribution

(2.2) α = 4.677, β = 1.248, θ = .978 .339044 .133417096

Poisson λxe−λ/x! λ = 25.8958 2.4013 × 10−7 .3998

Geometric p (1 − p)x p = .0372 .0145 .2223

Discrete Weibull qx
β

− q(x+1)β q = .6488, β = .6758 2.9221 × 10−24 .7419

Discrete Gamma γ(α,β(x+1))
Γ(α)

− γ(α,β(x))
Γ(α)

α = .8098, β = .0350 2.6082 × 10−4 .2993

Some summary statistics of this data: minimum is 4, maximum is 86, mean is 25.90, Std Deviation is 18.605,
Variance is 346.138, Skewness is 1.375 and Kurtosis is 1.608.
Dataset 2 Table 5 refers to the uncensored data set released by Maguire et al. [19] that corresponds to intervals in
days between 109 consecutive coal-mining tragedies in Great Britain from 1875 to 1951. Following is a list of the
sorted data:

Table 5: Data set 2.

1 4 4 7 11 13 15 15 17 18 19 19 20 20 22

23 28 29 31 32 36 37 47 48 49 50 54 54 55 59

59 61 61 66 72 72 75 78 78 81 93 96 99 108 113

114 120 120 120 123 124 129 131 137 145 151 156 171 176 182

188 189 195 203 208 215 217 217 224 228 233 255 271 275 275

275 286 291 312 312 312 315 326 326 329 330 336 338 345 348

354 361 364 369 378 390 457 467 498 517 566 644 745 871 1312

1357 1613 1630

In each of these examples, The MLE, of α, µ, β, and λ values has been computed. In each scenario, the Kolmogorov-
Smirnov (K-S) distance between the empirical cumulative distribution function and the fitted distribution function is
obtained, as well as the P-value. Table 6 summarizes the outcome
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Table 6: Shows the data set 2 fitted estimates.

Distribution p(x) Estimated value of parameter p value K-S statistics

Discrete Alpha-power
Weibull Distribution

(2.2) α = 4.792, β = .701, θ = .967 .5879822290 .07414

Geometric p (1 − p)x p = 3.992 ∗ 10−3 .2508886128 .09651

Discrete Lindely px

1+θ [θ (1 − 2p) + (1 −
p)(1 + θx)]

θ = 7.937 ∗ 10−3, p = .992 .000007113 0.237266

Discrete Logistic (1−p)py−µ

(1+py−µ)(1+py−µ+1)
p = 2.468 ∗ 10−9, µ = −6.67 ∗ 10−8 3.22657 ∗ 10−97 1

Some summary statistics of this data: minimum is 1, maximum is 1630, mean is 233.32, Std Deviation is 296.434,
Variance is 87873.331, Skewness is 2.999 and Kurtosis is 10.526.
Figures 3- 4 show a comparison between CDF graphs and the fitted and observed distribution functions.

Figure 3: Distribution plots for data set 1.
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Figure 4: Data set 2 distribution plots

For the 1st and 2nd data sets, the discrete alpha-power Weibull distribution yields acceptable p-values and is the
best fit between the competing distributions.

Relying on the results obtained, we deduce that the discrete Alpha-power Weibull distribution, when compared to
its sub models, provides the best fit.

7 Conclusion

In this paper, a new discrete distribution, the Alpha-power Weibull distribution, is presented. After obtaining it,
the probabilistic properties of the parameter are studied and its parameters are estimated. The reliability function
was also studied using the stress-strength model based on the new distribution, and during the review of the steps,
we studied the statistics arranged for the APW distribution.

It was also applied to the stress-strength model using data produced from a simulation model by the Monte-Carlo
method. Then we applied the proposed distribution to two sets of real data and found that the distribution would
be a strong competitor to known discrete distributions. It can be used in applications for materials that affect the
environment such as coal or in general, it can be used to study natural disasters, and the univariate case has been
presented. It is more important to show how it can be generalized to the multivariate case. More work is required in
this area in the future.
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