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Abstract

Cross efficiency evaluation of data envelopment analysis (DEA) is an effective tool in measuring
the performance of decision-making units. In general, in cross efficiency evaluation models, it is
assumed that decision makers are completely rational, in which case they refrain from considering
the risk attitude that plays an important role in the evaluation process. In order to fill this gap,
cross efficiency evaluation in DEA was performed based on prospect theory. In the real world, many
inputs and outputs are not known, which are called inaccurate data; what is expected is that even if
one of the data is not accurate, the answer will probably not be accurate. To solve this problem, the
present study presents models that are able to evaluate the prospect cross efficiency with interval
data and proves the feasibility of the models by proving the theorems.
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1. Introduction

Data envelopment analysis (DEA) is a mathematical programming technique proposed by Charnes
et al. [9] which was then developed by Banker et al. [4] to evaluate the relative efficiency of decision-
making units. Given that in the evaluation of DMUs by DEA models, more than one unit may
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be introduced as an efficient unit, numerous ranking models have been proposed by researchers,
each with its own strengths and weaknesses. One of the ranking methods is cross efficiency evalu-
ation, which was introduced by Sexton, Silkman, and Hogan [28] and has been widely accepted as
a tool to distinguish DEA decision-making units. In fact, it is generally used to identify efficient
decision-making units from among other units [10]. Unique ranking of decision-making units [12],
elimination of unrealistic weight adjustments without any predetermined weight limits [3], and ef-
fective distinction between strong and weak performances among decision-making units [8] are the
main advantages of cross efficiency evaluation. Given these advantages, cross efficiency evaluation
is used in various programs, such as project ranking, task performance measurement in a cellular
production system [14], sports ranking [31], and supplier selection in government procurement [15].
Despite the benefits listed, cross efficiency is not always applicable due to non-compliance of opti-
mal weights [16]. In particular, the probability of having several optimal weights in performance
evaluation leads to different sets of multiple efficiency values for each DMU. This may reduce the
ability to differentiate cross efficiency evaluation. To solve this problem, Sexton et al. [28] and Doyle
and Green [11] proposed well-known pessimistic and optimistic formulations as secondary goals for
selecting a single answer from several optimal weights. The main idea of pessimistic formulation is
to obtain an answer by minimizing the cross efficiency of other decision-making units, while keeping
the performance of the decision-making unit under evaluation at a predetermined optimal level. In
contrast, optimistic formulation maximizes the cross efficiency of other decision-making units, while
maintaining the performance of the unit under evaluation. Therefore, based on this idea, many
secondary objective models have been proposed for cross efficiency evaluation. For example, Liang
et al. [22] developed the optimistic and pessimistic models of Doyle and Green [11] by introducing
different secondary objective models based on deviations from the target output of each decision unit.
These models can be used in various practical situations. Wang and Chin [31, 32, 34] then proposed
alternative secondary objective models for fixed-scale efficiency by switching efficiency from the ideal
point, which was used by Liang et al. [22]. Similar ideas were presented in Lim [33], in which
a type of minimum or maximum secondary objective is included in the optimistic and pessimistic
formulation of cross efficiency. However, as noted in Wang and Chin [31, 32, 34], an optimistic and
pessimistic formulation does not guarantee a lasting result.

In fact, there is agreement that decision-making interactive theories play an important role in the
decision-making process [5, 7, 21, 29]. However, these cross efficiency evaluation models assume that
decision makers operate within the framework of the theory of expected utility. However, the theory
of expected utility has several unknown effects, including the Allais paradox [2] and Ellsberg paradox
[13]. Given the limitations of the theory of expected utility, Kahneman and Tversky [18] proposed
the prospect theory that could take into account the irrational theories of risky decision makers.
The prospect theory has three main conclusions: 1) decision makers show a risk-averse tendency for
profit and a risky tendency for loss; 2) decision makers usually perceive profit and loss according to
a reference point, and 3) decision makers are more sensitive to loss than profit. Since the prospect
theory is largely consistent with real human behavior, the decision-making method based on prospect
theory has recently become the focus of research [6, 7, 17, 19, 20, 25, 27, 30, 33, 35].

Moreover, given the world in which we live, most things that seem true are ”relatively” true, and
there are degrees of ”uncertainty” about the accuracy of real phenomena. In other words, the real
phenomena are not only black or white, but also somewhat ”gray”. As a result, real phenomena are
always fuzzy and inaccurate, so fuzzy logic has been invented and widely used.

The theory of fuzzy sets was first proposed in 1965 by Professor Lotfi Askarzadeh, an Iranian
scientist and professor at Berkeley University in the United States. Since its introduction, this theory
has been greatly expanded and deepened and has found various applications in various fields. One
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of the important steps in modeling of fuzzy concepts is performing defuzzification operations [26].
Its various applications in ranking include Malmquist and other applications of DEA, which is the
focus of a large volume of research. In the real world, many inputs and outputs are not known,
including periodic, sequential, probabilistic, qualitative and other data that are called inaccurate
data. What is expected is that if even one of the data is not accurate, the answer will probably not
be accurate. To solve this problem, this paper presents models that are able to evaluate the prospect
cross efficiency with interval data.

In the second part, a definition of prospect cross efficiency is provided. In the third part, the
definition and some theorems are given in relation to the interval model. The fourth section includes
a practical example in relation to the proposed model and the proposed method for ranking decision-
making units, and finally, its conclusions are discussed.

2. Prospect cross efficiency

In DEA model, the cross efficiency evaluation is done in two stages, which include self-evaluation
and congener evaluation. This method calculates the overall performance of each decision-making
unit by considering its own weights as well as the weights of all other decision-making units. Since
the prospect theory is presented as a descriptive theory for the decision-making behavior of a person
at risk, it is considered as one of the most effective behavioral decision-making theories and includes
the following important principles [18].

1. Obedience to the reference: The decision maker usually receives the results in the form of gain
or loss in relation to a reference point. Thus, the prospect value curve of a decision maker is
divided by the reference point into two parts of the gain and loss range.

2. Loss-aversion: The decision maker is more sensitive to loss than to gain [1]. In this case, the
loss prospect value curve is steeper than the gain range.

3. Sensitivity reduction: The decision maker shows a risk-averse desire for gain and a risk-taking
desire for loss. Correspondingly, the prospect value curve is concave in the gain range and
convex in the loss range.

The meaning of the above three principles can be described by an S-shaped symmetric value
curve [24]. The value function of this curve (prospect value function) is described as follows:

v(∆z) =

{
(∆z)α, ∆z ≥ 0
−θ(−∆z)β, ∆z < 0

Where, ∆z = z − z0 is used to measure the value of the deviation of z from the reference point
z0. If (∆z ≥ 0), then we will gain, otherwise we will lose (∆z < 0). The parameters α and β
represent the change in the direction of the value function in the gain and loss area, respectively,
where 0 < α < 1 and 0 < β < 1. The variable θ is the loss-aversion coefficient and θ > 1 indicates
that the value function has a greater slope in the loss area than in the gain area.

In fact, the prospect theory shows that decision makers reflect their sensitivity to the status of
the results in relation to the status quo (reference point). This means that they reflect whether the
results are better or worse than the current situation.

The reference point can be considered 1: zero point, 2: average value, 3: median value, 4: worst
value, and 5: best value. Liu et al. [24] used the worst and best values to obtain a cross efficiency
evaluation matrix based on prospect theory, which is further explained in the next section.

From the decision makers’ point of view, the worst DMU usually consumes the most input but
produces the least output, and the best DMU gets the most output using the least possible input.
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According to the prospect theory, a DMU is considered a gain if a DMU is higher than the worst
DMU, and a loss if a DMU is below the best DMU.

For further discussion, consider n decision-making units, each of which uses m inputs to generate
s outputs. Whenever the set of decision-making units is indexed as N = {1, 2, ..., n}, the set of input
values as M = {1, 2, ...,m}, and the set of output values as S = {1, 2, ..., s}, xik and yrk(r ∈ S, k ∈
N, i ∈ m) indicate the inputs and outputs of DMUk, respectively. Based on the above analysis, the
prospect values are defined as follows.

Definition 2.1. If the decision-making reference point is the worst DMU, then the gain value of
the prospect corresponding to the ith input and rth output of DMUk is defined as follows:

V +
Iik

= (x−
i − xik)

α, V +
Ork

= (yrk − y−r )
α (2.1)

Where, x−
i = maxk{xik} and y−r = mink{yrk} are the worst value of the I th input and the worst

value of the rth output of all DMUs, respectively.

Definition 2.2. If the decision-making reference point is the best DMU, then the loss value of the
prospect corresponding to the ith input and rth output of DMUk is defined as follows:

V −
Iik

= −θ(xik − x+
i )

β, V −
Ork

= −θ(y+r − yrk)
β, (2.2)

Where, x+
i = mink{xik} and y+r = maxk{yrk} are the best value of the ith input and the best value

of the rth output of all DMUs, respectively.

From the decision maker’s point of view, he/she always chooses a unique set of input and output
weights to maximize DMUk gain as much as possible, as shown below:

max
s∑

r=1

urkV
+
Ork

+
m∑
i=1

vikV
+
Iik

(2.3)

Therefore, the gain model for cross efficiency evaluation can be constructed as follows:

max
s∑

r=1

urk(yrk − y−r )
α +

m∑
i=1

vik(x
−
i − xik)

α (2.4)

s.t.
s∑

r=1

urkyrj −
m∑
i=1

vikxij ≤ 0, j ∈ N,

∑
vikxik = 1,

s∑
r=1

urkyrk = E∗
kk,

urk, vik ≥ 0, r ∈ s, i ∈ M.

Where, E∗
kk =

∑s
r=1 u

∗
rkyrk is known as CCR efficiency of DMUk, which represents the optimal

relative efficiency of DMUk through self-assessment. If E∗
kk = 1 and all optimal weights of u∗

rk and
v∗ik are positive, then DMUk is efficient. Otherwise it is inefficient.
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In general, the decision maker always selects a single set of input and output weights to minimize
DMUk losses as follows:

min
s∑

r=1

urkV
−
Ork

+
m∑
i=1

vikV
−
Iik

(2.5)

Subsequently, the loss model of cross efficiency evaluation can be defined as follows:

min
s∑

r=1

urkθ(y
+
r − yrk)

β +
m∑
i=1

vikθ(xik − x+
i )

β (2.6)

s.t.

s∑
r=1

urkyrj −
m∑
i=1

vikxij ≤ 0, j ∈ N,

∑
vikxik = 1,

s∑
r=1

urkyrk = E∗
kk,

urk, vik ≥ 0, r ∈ s, i ∈ M.

Gaining more profit or avoiding more loss, i.e. maximum utility, is achieved when the decision-
maker’s perspective is considered, so by combining the gain model (2.4) and the loss model (2.6), a
new model for cross efficiency evaluation is constructed as follows:

maxλ(
s∑

r=1

urk(yrk−y−r )
α+

m∑
i=1

vik(x
−
i −xik)

α)−(1−λ)(
s∑

r=1

urkθ(y
+
r −yrk)

β+
m∑
i=1

vikθ(xik−x+
i )

β) (2.7)

s.t.
s∑

r=1

urkyrj −
m∑
i=1

vikxij ≤ 0, j ∈ N,

∑
vikxik = 1,

s∑
r=1

urkyrk = E∗
kk,

urk, vik ≥ 0, r ∈ s, i ∈ M.

Which is called the prospect cross efficiency (PCE) model, and λ represents the relative impor-
tance of profit to loss and applies to 0 ≤ λ ≤ 1.

In this optimization model, different λ values can be used as an indicator of diverse decision-
making attitudes. For example, if 0 ≤ λ ≤ 0.5, then the decision maker will focus more on losses
than gains. If λ = 0.5, then the profit and loss factors are equally important to the decision maker.
If 0.5 ≤ λ ≤ 1, then the decision maker will focus his attention on profitable tendencies. During the
decision-making process, the decision-maker can choose the appropriate λ according to his desires.

Also, the parameter α shows the degree of concavity of the value function in the gain area, and
the large value of α indicates the steep slope of the gain curve; in such a case, the decision-maker
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tends to take risks. Thus, with a value of α tending to zero, the decision-maker’s risk attitude is
significantly risk-averted in the risk assessment process. Conversely, the parameter β indicates the
degree of convexity of the value function in the loss region, in which case the decision maker becomes
sensitive to losses and significantly conservative. Therefore, with a value of β that tends to zero, the
decision maker becomes risk-taker in the evaluation process.

3. PCE interval model

The models considered so far all assume that the data of each DMU is definite, but this assumption
is not always true; in the real world many inputs and outputs are not definite.

As a result, here, based on models (2.4) and (2.6), which are the gain and loss models, respectively,
as well as their combined model, which were discussed in the second section, we present interval
models that are able to calculate PCE in the interval form.

Assume that the number of DMUs in question is n, each consuming m distinct inputs to produce
s distinct outputs. Here inputs and outputs are considered as intervals. It is necessary to assume
on the basis that in practice there are many cases in which decision makers cannot determine the
amount of inputs and outputs decisively and accurately. In other words, if xL

ij and xU
ij are the lower

and upper bounds for the input i of DMUj, respectively, there will be x̃ij ∈ [xL
ij, x

U
ij]. If yLij and yUij

are the lower and upper bounds for the rth output of DMUj, respectively, we will have ỹij ∈ [yLij, y
U
ij ].

Note that we always have: xL
ij ≤ xU

ij and yLij ≤ yUij and if xL
ij = xU

ij, the result is that the ith input of
DMUj has a certain value. To evaluate DMUk with interval data, the CCR model can be written
as follows:

Ekk = max
s∑

r=1

urỹrk (3.1)

s.t.
m∑
i=1

vix̃ik = 1,

−
m∑
i=1

vix̃ij +
s∑

r=1

urỹrj ≤ 0, j = 1, ..., n,

ur ≥ 0 r = 1, ..., s,

vi ≥ 0 i = 1, ...,m.

Since the input and output values of the above model are interval, the value of the objective
function, which is the relative efficiency, is interval that is obtained as follows.

Suppose the values of inputs and outputs for each DMU are in a certain interval. To evaluate
DMUk with interval data, we will have:

Eu
kk = max

s∑
r=1

ury
u
rk (3.2)

s.t.
m∑
i=1

vix
l
ik = 1,
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−
m∑
i=1

vix
u
ij +

s∑
r=1

ury
l
rj ≤ 0, j = 1, ..., n and j ̸= k,

−vix
l
ik + ury

u
rk ≤ 0,

ur, vi ≥ 0 ∀r, i.

In other words, to calculate the upper bound of efficiency, we consider DMUK under evaluation
in the best conditions and all DMUs in the worst conditions. Also, to calculate the lower bound of
efficiency, we consider DMUK under evaluation in the best conditions and all DMUs in the worst
conditions.

El
kk = max

s∑
r=1

ury
l
rk (3.3)

s.t.
m∑
i=1

vix
u
ik = 1,

−
m∑
i=1

vix
l
ij +

s∑
r=1

ury
u
rj ≤ 0, j = 1, ..., n and j ̸= k,

−vix
u
ik + ury

l
rk ≤ 0,

ur, vi ≥ 0 ∀r, i.

In this case, there will always be: Ekk ∈ [El
kk, E

u
kk]

Now that we know the definitions of efficiency values in the case of interval data, we can calculate
the PCE as follows.

When the input and output values of the decision units are available not accurately but as values
in an interval, the definitions in section two will be as follows:

Definition 3.1. If the decision-making reference point is the worst DMU, then the gain value of
the prospect corresponding to the ith input and rth output of DMUK is defined as follows:

V +
Iik

= (x̃−
i − x̃ik)

α, V +
Ork

= (ỹrk − ỹ−r )
α, (3.4)

Where, x̃−
i = maxk{x̃ik} and ỹ−r = mink{ỹrk} are the worst interval of ith input and the worst

interval of rth output of all DMUs, respectively.

Definition 3.2. If the decision-maker’s reference point is the best DMU, then the loss value of
prospect corresponding to the ith input and rth output of DMUK is defined as follows:

V −
Iik

= −θ(x̃ik − x̃+
i )

β, V −
Ork

= −θ(ỹ+r − ỹrk)
β, (3.5)

Where, x̃+
i = mink{x̃ik} and ỹ+r = maxk{ỹrk} are the best interval of ith input and the best interval

of rth output of all DMUs, respectively.
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From the decision maker’s point of view, he/she always selects a unique set of input and output
weights to maximize the DMUk profits as follows:

max
s∑

r=1

urkV
+
Ork

+
m∑
i=1

vikV
+
Iik

(3.6)

Therefore, the gain model in cross efficiency evaluation for interval data can be constructed as
follows:

z = max
s∑

r=1

urk(ỹrk − ỹ−r )
α +

m∑
i=1

vik(x̃
−
i − x̃ik)

α (3.7)

s.t.

s∑
r=1

urkỹrj −
m∑
i=1

vikx̃ij ≤ 0, j ∈ N,

m∑
i=1

vikx̃ik = 1,

s∑
r=1

urkỹrk = E∗
kk,

urk, vik ≥ 0 r ∈ s, i ∈ M.

Because the inputs and outputs are intermittent, the value of the objective function of the model
(3.7) is obtained intermittently. With the help of the following models, the lower bound and the
upper bound can be found.

To find an upper bound of the objective function of the model (3.7), the objective function must
have its maximum value.

zu = max
s∑

r=1

urk(y
u
rk − ylr)

α +
m∑
i=1

vik(x
u
i − xl

ik)
α (3.8)

s.t.

s∑
r=1

urky
l
rj −

m∑
i=1

vikx
u
ij ≤ 0, j ∈ N, j ̸= k

s∑
r=1

urky
u
rk −

m∑
i=1

vikx
l
ik ≤ 0,

m∑
i=1

vikx
l
ik = 1,

s∑
r=1

urky
u
rk = E∗

kk,

urk, vik ≥ 0 r ∈ s, i ∈ M.

To find a lower bound of the objective function model (3.7), the objective function must have its
lowest value, so we have:
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zl = max
s∑

r=1

urk(y
l
rk − yur )

α +
m∑
i=1

vik(x
l
i − xu

ik)
α (3.9)

s.t.

s∑
r=1

urky
u
rj −

m∑
i=1

vikx
l
ij ≤ 0, j ∈ N, j ̸= k

s∑
r=1

urky
l
rk −

m∑
i=1

vikx
u
ik ≤ 0,

m∑
i=1

vikx
u
ik = 1,

s∑
r=1

urky
l
rk = E∗

kk,

urk, vik ≥ 0 r ∈ s, i ∈ M.

Theorem 3.3. Models (3.7), (3.8) and (3.9) are feasible.

Proof . We show here the existence of a solution for model (3.9), the existence of a solution for the
other two models is proved similarly:

Since we have E∗
kk =

∑s
r=1 u

∗
rkyrk, thus:

urk =
u∗
rkyrk
ylrk

, vik =
xu
ik

∥xu
ik∥2

, urk, vik ≥ 0

By substituting the above values in the constraints of model (3.9), we will have:

1.
∑m

i=1 vikx
u
ik =

xu
ik

∥xu
ik∥2

xu
ik = 1

2.
∑s

r=1 urky
l
rk =

∑s
r=1

u∗
rkyrk
ylrk

ylrk =
∑s

r=1 u
∗
rkyrk = E∗

kk

3.

s∑
r=1

urky
l
rk −

m∑
i=1

vikx
u
ik ≤ 0 ↔

s∑
r=1

u∗
rkyrk
ylrk

ylrk −
xu
ik

∥xu
ik∥2

xu
ik ≤ 0

↔
s∑

r=1

u∗
rkyrk − 1 ≤ 0

↔
s∑

r=1

u∗
rkyrk ≤ 1

The optimal value of the objective function E∗
kk is also limited for DMUk because:

ut
rkyrk − vtikxik ≤ 0 → ut

rkyrk ≤ vtikxik → ut
rkyrk ≤ 1

Where, (ut, vt) are weights of DMUk. Also, according to the above proof, the possible answers
were true in the constraints. Thus, it is observed that model (3.9) is possible. □

In general, the decision maker always selects a single set of input and output weights to minimize
DMUK losses as follows:
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min
s∑

r=1

urkV
−
Ork

+
m∑
i=1

vikV
−
Iik

(3.10)

Subsequently, the loss model of cross efficiency evaluation for interval data can be specified as
follows:

z = min
s∑

r=1

urkθ(ỹ
+
r − ỹrk)

β +
m∑
i=1

vikθ(x̃ik − x̃+
i )

β (3.11)

s.t.

s∑
r=1

urkỹrj −
m∑
i=1

vikx̃ij ≤ 0, j ∈ N,

∑
vikx̃ik = 1,

s∑
r=1

urkỹrk = E∗
kk,

urk, vik ≥ 0 r ∈ s, i ∈ M.

In model (3.11), since all inputs and outputs are interval, the value of the objective function of
model (3.11) is also obtained as an interval. With the help of the following models, one lower bound
and one upper bound can be found for the objective function of model (3.11).

To find the upper bound of the objective function of model (3.11), the objective function must
have its maximum value.

zu = min
s∑

r=1

urkθ(y
l
r − yurk)

β +
m∑
i=1

vikθ(x
l
ik − xu

i )
β (3.12)

s.t.
s∑

r=1

urky
l
rj −

m∑
i=1

vikx
u
ij ≤ 0, j ∈ N, j ̸= k

s∑
r=1

urky
u
rk −

m∑
i=1

vikx
l
ik ≤ 0,

∑
vikx

l
ik = 1,

s∑
r=1

urky
u
rk = E∗

kk,

urk, vik ≥ 0 r ∈ s, i ∈ M.

Also, to find the lower bound of the objective function of model (3.11), the objective function
must have its least value, so we have:

zl = min
s∑

r=1

urkθ(y
u
r − ylrk)

β +
m∑
i=1

vikθ(x
u
ik − xl

i)
β (3.13)
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s.t.

s∑
r=1

urky
u
rj −

m∑
i=1

vikx
l
ij ≤ 0, j ∈ N, j ̸= k

s∑
r=1

urky
l
rk −

m∑
i=1

vikx
u
ik ≤ 0,

∑
vikx

u
ik = 1,

s∑
r=1

urky
l
rk = E∗

kk,

urk, vik ≥ 0 r ∈ s, i ∈ M.

Theorem 3.4. Models (3.11), (3.12) and (3.13) are feasible.

Proof . A possible answer for model (3.13) is as follows:
Since we have E∗

kk =
∑s

r=1 u
∗
rkyrk, there will be:

urk =
u∗
rkyrk
ylrk

, vik =
xu
ik

∥xu
ik∥2

, urk, vik ≥ 0

By substituting the above values in the constraints of model (3.13), we will have:

1.
∑m

i=1 vikx
u
ik =

xu
ik

∥xu
ik∥2

xu
ik = 1

2.
∑s

r=1 urky
l
rk =

∑s
r=1

u∗
rkyrk
ylrk

ylrk =
∑s

r=1 u
∗
rkyrk = E∗

kk

3.

s∑
r=1

urky
l
rk −

m∑
i=1

vikx
u
ik ≤ 0 ↔

s∑
r=1

u∗
rkyrk
ylrk

ylrk −
xu
ik

∥xu
ik∥2

xu
ik ≤ 0

↔
s∑

r=1

u∗
rkyrk − 1 ≤ 0

↔
s∑

r=1

u∗
rkyrk ≤ 1

The optimal value of the objective function E∗
kk is also limited for DMUk because:

ut
rkyrk − vtikxik ≤ 0 → ut

rkyrk ≤ vtikxik → ut
rkyrk ≤ 1

Where, (ut, vt) are weights of DMUk. Also, according to the above proof, the possible answers
were true in the constraints. Similarly, the existence of feasible solutions for models (3.11) and (3.12)
can be shown. □

By combining the gain model (3.7) and the loss model (3.11), the following model is obtained:

z = maxλ(
s∑

r=1

urk(ỹrk− ỹ−r )
α+

m∑
i=1

vik(x̃
−
i − x̃ik)

α)− (1−λ)(
s∑

r=1

urkθ(ỹ
+
r − ỹrk)

β+
m∑
i=1

vikθ(x̃ik− x̃+
i )

β)

(3.14)
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s.t.

s∑
r=1

urkỹrj −
m∑
i=1

vikx̃ij ≤ 0, j ∈ N,

∑
vikx̃ik = 1,

s∑
r=1

urkỹrk = E∗
kk,

urk, vik ≥ 0 r ∈ s, i ∈ M.

Given that model (3.14) is expressed for interval data, therefore, with the help of the following
models, a lower bound and an upper bound can be found for the objective function of model (3.14).

zu = maxλ(
s∑

r=1

urk(y
u
rk− ylr)

α+
m∑
i=1

vik(x
u
i −xl

ik)
α)− (1−λ)(

s∑
r=1

urkθ(y
l
r− yurk)

β +
m∑
i=1

vikθ(x
l
ik−xu

i )
β)

(3.15)

s.t.
s∑

r=1

urky
l
rj −

m∑
i=1

vikx
u
ij ≤ 0, j ∈ N, j ̸= k

s∑
r=1

urky
u
rk −

m∑
i=1

vikx
l
ik ≤ 0,

∑
vikx

l
ik = 1,

s∑
r=1

urky
u
rk = E∗

kk,

urk, vik ≥ 0 r ∈ s, i ∈ M.

Its lower bound is:

zl = maxλ(
s∑

r=1

urk(y
l
rk − yur )

α+
m∑
i=1

vik(x
l
i−xu

ik)
α)− (1−λ)(

s∑
r=1

urkθ(y
u
r − ylrk)

β +
m∑
i=1

vikθ(x
u
ik −xl

i)
β)

(3.16)

s.t.

s∑
r=1

urky
u
rj −

m∑
i=1

vikx
l
ij ≤ 0, j ∈ N, j ̸= k

s∑
r=1

urky
l
rk −

m∑
i=1

vikx
u
ik ≤ 0,

∑
vikx

u
ik = 1,
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s∑
r=1

urky
l
rk = E∗

kk,

urk, vik ≥ 0 r ∈ s, i ∈ M.

Theorem 3.5. Models (3.14), (3.15) and (3.16) are feasible.

Proof . A possible answer for model (3.16) is as follows since E∗
kk =

∑s
r=1 u

∗
rkyrk.

urk =
u∗
rkyrk
ylrk

, vik =
xu
ik

∥xu
ik∥2

, urk, vik ≥ 0

To prove the claim, we just put the above answer in the model constraints as follows and show
that the constraints are true for them:

1.
∑m

i=1 vikx
u
ik =

xu
ik

∥xu
ik∥2

xu
ik = 1

2.
∑s

r=1 urky
l
rk =

∑s
r=1

u∗
rkyrk
ylrk

ylrk =
∑s

r=1 u
∗
rkyrk = E∗

kk

3.

s∑
r=1

urky
l
rk −

m∑
i=1

vikx
u
ik ≤ 0 ↔

s∑
r=1

u∗
rkyrk
ylrk

ylrk −
xu
ik

∥xu
ik∥2

xu
ik ≤ 0

↔
s∑

r=1

u∗
rkyrk − 1 ≤ 0

↔
s∑

r=1

u∗
rkyrk ≤ 1

The optimal value of the objective function E∗
kk is also limited for DMUk because:

ut
rkyrk − vtikxik ≤ 0 → ut

rkyrk ≤ vtikxik → ut
rkyrk ≤ 1

Where, (ut, vt) are weights of DMUk. Also, according to the above proof, the possible answers
were true in the constraints. Similarly, the existence of feasible solutions for models (3.14) and (3.15)
can be shown. □

Theorem 3.6. if (u∗, v∗), (û, v̂), and (ū, v̄) re optimal answers for models (3.14), (3.15) and (3.16),
we will have zl ≤ z ≤ zu.

Proof . For proving that zl ≤ z, it should be demonstrated that the optimal answer of model (3.16)
is a possible answer for model (3.14).

It is assumed that (ū, v̄) is the optimal answer for model (23), thus:

s∑
r=1

ūrkỹrj ≤
s∑

r=1

ūrky
u
rj ≤

m∑
i=1

v̄ikx
l
ij ≤

m∑
i=1

v̄ikx̃
l
ij

Therefore, according to the above relation,
∑s

r=1 ūrkỹrj ≤
∑m

i=1 v̄ikx̃
l
ij is established; therefore

(ū, v̄) is valid in the first constraint of model (3.14) and the other constraints are also similarly
established. Thus, the optimal value of the objective function of model (3.16) is smaller than model
(3.14). □
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According to what was said and considering that the efficiency of each DMU is in the same
interval, all DMUs can be divided into the following three categories:

Category 1: DMUs that are efficient in the best and worst evaluation conditions, in other words,

E++ = {DMUj|eLj = eUj = 1}

Category 2: DMUs that are efficient in the best evaluation conditions, but inefficient in the worst
evaluation conditions, in other words:

E+ = {DMUj|eLj < 1, eUj = 1}

Category 3: DMUs that are inefficient in the best evaluation conditions. Obviously, these DMUs

are inefficient even in the worst evaluation conditions, that is,

E− = {DMUj|eUj < 1}

DMUs belonging to E++ are efficient, DMUs belonging to E− are inefficient, and nothing can
be said about DMUs belonging to D+.

It is observed that the efficiency of DMUs is obtained as an interval.
To rank DMUs, we use the general idea of fuzzy number ranking presented by Rahmani et al.

[26] as follows:
First, two intervals of [a, b] and [á, b́] are considered, where a, á, b, b́ ∈ R and then placed in

m = a+b
2

and ḿ = á+b́
2
. After that, the following steps are taken:

Step 1: if m > ḿ, then [a, b] ≻ [á, b́].
Step 2: if m = ḿ and b > b́, then [a, b] ≻ [á, b́].
Step 3: if m = ḿ, b = b́, and a > á, then [a, b] ≻ [á, b́].
Step 4: if m = ḿ, b = b́, and a = á, then [a, b] ≈ [á, b́].
Note that we use the symbols ≻ and ≈ to indicate the relationship ”larger” and ”equality” of the

intervals, respectively.

4. Practical example

Consider a set of four DMUs that use 2 inputs to generate 2 outputs and the interval data related
to them as shown in Table 1.

Table 1: Data on interval inputs and outputs

DMUj xL
1j xU

1j xL
2j xU

2j yL1j yU1j yL2j yU2j
1 1 3 10 20 4 15 25 45
2 30 45 15 25 2 20 10 50
3 5 18 23 40 1 10 30 100
4 11 50 1 15 22 44 10 70

Using what has been said in Section 3, without losing generality, it is assumed that the decision
maker will argue that the importance of profit and loss factors is the same (i.e., λ = 0.5). The other
parameters α, β and θ in models (3.12) and (3.13) are 0.89, 0.92 and 2.25, respectively [18]. The
upper and lower bounds of the efficiency scores obtained from models (3.15) and (3.16) for each of
the DMUs are shown in Table 2.
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According to the data in Table 2, the lower and upper bounds of PCE are first determined for
the four DMUs. The lower bound is measured using model (3.16) and the upper bound is measured
using model (3.15). As can be seen in Table 2, using the proposed method, the upper and lower
bound sizes of efficiency were obtained and in the last column, the ranking results were calculated
according to the ranking method proposed in the previous section. Using this method and according
to what has been said, DMU4 has the highest rank because its m value is greater than ḿ of other
DMUs, and so DMU1, DMU2, and DMU3 are ranked 2, 4, and 3, respectively.

Table 2: Data on the upper and lower bounds of interval PCE

DMUj zlj zuj rank

1 0.5180 0.8667 2
2 0.02718 0.5818 4
3 0.1135 0.5125 3
4 0.9777 1 1

5. Conclusion

DEA is used to evaluate the performance of DMUs. In the evaluation of units using DEA models,
an efficiency score is assigned to each unit, which is a number between zero and one. An efficient unit
has an efficiency score of one, and the problem starts with more than one DMU having an efficiency
score of one. This led to the need to use models that can distinguish efficient DMUs. This concept
was introduced in DEA as ranking. We know that DMUs are rated according to the performance of
each DMU compared to others, and each DMU with a higher performance is ranked better. One of
the ranking methods of units under evaluation in DEA is cross efficiency evaluation method. In cross
efficiency evaluation, a cross efficiency table is obtained and after arithmetic averaging, each unit
with a higher average gets a better rank. Conventional cross efficiency evaluation models assume
that decision-makers are perfectly rational and usually avoid considering the risk-taking attitude of
the decision-maker, which plays an important role in the evaluation process. Given that the prospect
theory can take into account the irrational psychological aspects of risk-taking decision-makers, this
paper first examined PCE model, the most important advantage of which over other models is that it
calculates efficiency considering decision-makers’ risk attitude, which plays an important role in the
evaluation process. By presenting theorems, efficiency was calculated for interval data, and also a
numerical example was provided, in which four DMUs that used 2 inputs to generate 2 outputs were
studied. In this case, all inputs and outputs were included as values in an interval. Finally, using
the proposed method, a lower bound and an upper bound were obtained for the efficiency of each
of them, achieving more accurate results. Since the efficiency of DMUs was obtained intermittently,
a fuzzy number ranking method was used to rank the DMUs. Ultimately, based on the proposed
model, the evaluation of the performance of DMUs for the case that the input and output data
are not accurately expressed, but are presented as interval values, was done by DEA. Considering
that in the real world, most of the data are inaccurate and ambiguous, it is suggested to expand
the proposed model and the method of calculating the performance of DMUs for interval and fuzzy
data.
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