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Abstract

In this work, we prove the existence of the solution of integral equations via fixed point results in the framework
of extended Branciari b-distance spaces. In order to do this, we introduce FG-contractive conditions in extended
Branciari b-distance spaces and derive common fixed points results for triangular α-admissible mappings, followed by
some suitable examples.
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1 Introduction

Many authors introduce and generalize the concept of distance in the metric fixed-point theory in various ways.
Czerwik[7] extends Bakhtin’s [4] definition of b-metric space. Kamran et al. [10] introduced the concept of extended
b-metric space by replacing the property of triangle inequality with a quadrilateral one, Branciari [5] extended the
metric space and introduced the concept of the Branciari distance.

2 Preliminaries

Now we will review certain concepts and lemmas that will be useful in the following sections.

2.1 b - metric spaces

Czerwik [7] introduced the notion of b - metric space in this manner.

Definition 2.1. [7] Let X be a non empty set and s ≥ 1 be a given real number. A function dB : X ×X → [0,∞)
is called b-metric if it satisfies the following properties for each x, y, z ∈ X

1. dB(x, y) = 0 if and only if x = y

2. dB(x, y) = dB(y, x) (Symmetry)
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3. dB(x, y) ≤ s[dB(x, z) + dB(z, y)] (Triangular Inequality).

Then (X, dB) is called a b-metric space with coefficient s. When s = 1, the concepts of b-metric space and metric
space are all the same.

Example 2.2. [10] Let X = lp(R) with 0 < p < 1

where lp(R) = {{xm} ⊂ (R) :
∞∑

m=1

|xm|p <∞}

Define dB : X ×X → R+ as dB(x, y) =
( ∞∑
m=1

|xm − ym|p
) 1

p where x = {xm}, y = {ym}.

It can be easily checked that dB is a b-metric with coefficient s = 2
1
p

The class of b - metric spaces is bigger than the class of metric spaces, as seen in the example above.

2.2 Extended b - metric space

Kamran [10] termed as extended b-metric space a new form of generalized metric space.

Definition 2.3. Let X be a non-empty set and ω : X ×X → [1,∞). A function
dω : X ×X → [0,∞) is called an extended b-metric if for all x, y, z ϵ X, it satisfies the following conditions

1. dω(x, y) = 0 if and only if x = y

2. dω(x, y) = dω(y, x) (Symmetry)

3. dω(x, z) ≤ ω(x, z)[dω(x, y) + dω(y, z)] (Triangular Inequality).

The pair (X, dω) is called an extended b-metric space.

Note: b - metric is a special case of the extended b-metric when ω(x, y) = s, for s ≥ 1.

Example 2.4. [2, Example 3]

Consider the set X = {−1, 1, 2}, define the function ω on X ×X to be the function
ω(x, y) = |x| + |y|. We define the function dω (x; y) as follows:

dω(2, 2) = dω(1, 1) = dω(-1, -1) = 0;

dω(1, 2) =
1

2
= dω(2, 1) and

dω(1, -1) = dω(-1, 1) = dω(2, -1) = dω(-1, 2) = 1
Then it is clear that dω(x, y) satisfies the first two conditions of definition. We need to verify the last condition:

dω(1, 2) =
1

2
≤ 3

[
1

3
+

1

3

]
= ω(1, 2)

[
dω(1,−1) + dω(−1, 2)

]

dω(1,−1) =
1

3
≤ 2

[
1

2
+

1

3

]
= ω(1,−1)

[
dω(1, 2) + dω(2,−1)

]

dω(−1, 2) =
1

3
≤ 3

[
1

3
+

1

2

]
= ω(−1, 2)

[
dω(1, 2) + dω(2,−1)

][
dω(−1, 1) + dω(1, 2)

]
Therefore, dω(x, y) satisfies the last condition of the definition and hence (X, dω) is an extended b-metric space.

For the mapping T : X → X and x0 ∈ X,O(x0) =
{
x0, T

2x0, T
3x0, ...

}
represents the orbit of x0.

Theorem 2.5. [10, Theorem 2] Let (X, dω) be a complete extended b-metric space such that dω is a continuous
functional. Let T : X → X satisfy
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dω(T (x), T (y)) ≤ kdω(x, y) for each x, y ∈ X

where k ∈ [0, 1) be such that for x0 ∈ X, lim
n,m→∞

ω(xn, xm) <
1

k
, here xn = Tn(x0),

n = 1, 2, ... Then T has precisely one fixed point ξ. Moreover, for each y ∈ X Tn(y) → ξ.

2.3 Rectangular metric spaces

Branciari first introduced the concept of rectangular metric spaces in [5].

Definition 2.6. Let X be a nonempty set. A mapping dR : X×X → [0,∞) is called a rectangular metric on X if for
any x, y ∈ X and such that for all distinct points s, t ∈ X different from x and y it satisfies the following conditions:
(i) dR(x, y) = 0 ⇐⇒ x = y
(ii) dR(x, y) = dR(y, x)
(iii) dR(x, y) ≤ dR(x, s) + dR(s, t) + dR(t, y) (This is known as Rectangular Inequality)

The function dR is known as rectangular metric and the pair (X, dR) is called a rectangular metric space. In many
sources it was called ” Branciari distance space”.

The concept of rectangular b - metric spaces was first introduced by George et al [8]. in the following way.

Definition 2.7. A mapping dRB : X×X → [0,∞) is called a rectangular b - metric on X if for any x, y ∈ X if there
exists a constant µ ≥ 1 and such that for all distinct points s, t ∈ X different from x and y it satisfies the following
conditions:
(i) dRB(x, y) = 0 ⇐⇒ x = y
(ii) dRB(x, y) = dRB(y, x)
(iii) dRB(x, y) ≤ µ [dRB(x, s) + dRB(s, t) + dRB(t, y)]

The function dRB is known as rectangular metric and the pair (X, dRB) is called a rectangular b - metric space.

Abdeljawad et al. [1] introduced the notion of extended Branciari b-metric spaces as a generalization of rectangular
b-metric spaces. The concepts of extended b-metric and Branciari distance were merged, to form an extended Branciari
b-distance space.

Definition 2.8. A mapping dRω : X ×X → [0,∞) is called a extended Branciari b-distance on a non-empty set X
if for any x, y ∈ X and all distinct points s, t inX different from x and y and a mapping ω : X × X → [1,∞) if it
satisfies the following conditions:
(i) dRω(x, y) = 0 ⇐⇒ x = y
(ii) dRω(x, y) = dRω(y, x)
(iii) dRω(x, y) ≤ ω(x, y) [dRω(x, s) + dRω(s, t) + dRω(t, y)]

The function dRω is known as extended Branciari b-distance and the pair (X, dRω) is called a extended Branciari
b-distance space.

Example 2.9 (Example 2 [1]). Let X = [0, 1]. Define dRω : X ×X −→ R by
ω(x, y) = 5x+ 5y + 3, then (X, dRω) is an extended Branciari b-distance space.

The quadrilateral inequality will be only proved as the other conditions are trivial.

dRω(x, y) = |x− y|2

= |x− z + z − w + w − y|2

= |x− z|2 + |z − w|2 + |w − y|2 + 2|x− z||z − w|+ 2|z − w||w − y|+ 2|w − y||x− z|

≤ (5x+ 5y + 3)

[
|x− z|2 + |z − w|2 + |w − y|2

]
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= ω(x, y)

[
dRω(x, z) + dRω(z, w) + dRω(w, y)

]
Hence dRω(x, y) ≤ ω(x, y)

[
dRω(x, z) + dRω(z, w) + dRω(w, y)

]
. Therefore (X, dRω) is an extended Branciari b-

distance space.

Controlled rectangular b-metric spaces, which are an extension of rectangular metric spaces, were introduced by
Mlaiki et al. in [14]

Definition 2.10. Let X be a nonempty set, a function ξ : X4 → [1,∞) and
dξ : X × X → [0,∞). We say that (X, dξ) a controlled rectangular b-metric space if for all distinct x, y, s, t ∈ X it
satisfies the following
(1) dξ(x, y) = 0 ⇐⇒ x = y
(2) dξ(x, y) = dξ(y, x)
(3) dξ(x, y) ≤ ξ(x, y, s, t)[dξ(x, s) + dξ(s, t) + dξ(t, y)]

Many different forms of contractions have been used in recent years to ensure the existence and uniqueness of
the fixed point of mapings in various spaces. Wardowski [19] proposed the concept of an F -contraction in 2012, and
demonstrated fixed point results in metric spaces as a generalization of the Banach contraction principle.

Definition 2.11. Let (X, d) be a metric space. A mapping T : X � X is said to be an F-contraction if there exists
τ > 0 such that

∀x, y ϵX, d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) < F (d(x, y)). (2.1)

where F: R+ → R is a mapping satisfying the following conditions
(F1) F is strictly increasing, i.e., for all x, y ϵ R+ such that x < y , F(x) < F(y)
(F2) For each sequence {αn}∞n=1 of positive numbers , lim

n→∞
αn = 0 if and only if lim

n→∞
F (αn) = −∞

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0

Wardowski’s [19] key result is a generalization of the Banach Contraction Mapping Principle.

Example 2.12. Let F : R+ → R be given by the formula F (α) = lnα.
It is clear that F satisfies ((F1), (F3)) (F3 satisfies for any k ∈ (0, 1)).
Each mapping T : X → X satisfying (3.1) also satisfies d(Tx, Ty) ≤ e−τd(x, y),
for all x, y ∈ X,Tx ̸= Ty.

It is clear that for x, y ϵ X such that Tx = Ty the inequality d(Tx, Ty) ≤ e−τd(x, y) also holds, i.e. T is a Banach
contraction.

3 Fixed Point Results for α-Admissible β- FG-Contractions

Parvaneh et al.[16] introduced the following. Let s > 1 be a fixed real number. We will consider the following
classes of functions. ∆F will denote the set of all functions F : R+ → R such that

(F∆1) is continuous and strictly increasing.

(F∆2) for each sequence
{
tn
}
⊆ R+, lim

n→∞
tn = 0 ⇐⇒ lim

n→∞
F (tn) = −∞

Note that condition (F3) from [[19], [18]] will not be used.

∆G,β will denote the set of pairs (G, β), where G : R+ → R and β : [0,∞) → [0, 1), such that

(F∆3) for each sequence
{
tn
}
⊆ R+, lim sup

n→∞
G(tn) ≥ 0 if and only if lim sup

n→∞
tn ≥ 1

(F∆4) for each sequence
{
tn
}
⊆ [0,∞), lim sup

n→∞
β(tn) = 1 implies lim

n→∞
tn = 0;

(F∆5) for each sequence
{
tn
}
⊆ R+ ,

∞∑
n=1

G(β(tn)) = −∞
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Samet et al. [17] defined the α -admissible mappings class in 2012.

Definition 3.1. [17] Let α : X×X → [0,∞) be given mapping where X ̸= 0. A self mapping T is called α admissible
if for all x, y ∈ X, we have

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1

Definition 3.2. [11] Let X be a nonempty set, T : X → X be a mapping and α : X ×X → [0,∞) be a function.
Then T is called a triangular α - admissible mapping if for all x, y ∈ X ,

1. α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1

2. α(x, z) ≥ 1 and α(z, y) ≥ 1 implies α(x, y) ≥ 1

Definition 3.3. For a nonempty set X, let A,B : X → X and α : X ×X → [0,∞) be mappings. We say that (A,
B) is a generalized α - admissible pair if for all x, y ∈ X, we have α(x, y) ≥ 1 =⇒ α(Ax,By) ≥ 1

Remark 3.4. If A is α-admissible, it is obvious that (A, A) is a generalized α-admissible pair.

Definition 3.5. Let (X, dRω) be an extended Branciari b-metric space. A mapping

T : X → X be a mapping on (X, dRω) is said to be a generalized FGRω-contraction if there exists F ∈ ∆F and
(G, β) ∈ ∆G,β such that for all x, y ∈ X , dRω(x, y) > 0 implies

F(ω(x, y)rdRω(T x, T y)) ≤ F(Mω(x, y)) + G(β(Mω(x, y))), where r ≥ 2 and

Mω(x, y)) = max

{
dRω(x, y), dRω(x, T x), dRω(y, T y),

dRω(y, T y)[1 + dRω(y, T y)]
ω(x, y)[1 + dRω(x, y)]

}

Definition 3.6. [1] Let X be a non-empty set endowed with extended Branciari b-distance dRω

1. A sequence {xn} in X converges to x if for every ϵ > 0 there exists N = N(ϵ) ∈ N such that dRω(xn, x) < ϵ for
all n ≥ N . For this particular case, we write lim

n→∞
xn = x.

2. A sequence {xn} in X is called Cauchy if for every ϵ > 0 ∃ N = N(ϵ) ∈ N such that dRω(xn, xm) < ϵ for all
m,n ≥ N .

3. A dRω - metric space (X, dRω) is complete if every Cauchy sequence in X is convergent.

Lemma 3.7 ([11] Lemma 7). Let X be a nonempty set , T : X → X be a triangular α-admissible mapping and
x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence
{xn by xn+1 = Txn} for all n ∈ N. Then α(xn, xm) ≥ 1 for all m,n ∈ N with n < m.

The existence and uniqueness of fixed points for generalized FGRω - contraction in complete extended Branciari b
- distance spaces are proved by the following theorem.

Theorem 3.8. Let (X, dRω) be a complete extended Branciari b-metric space,

T : X → X and α : X ×X → [0,∞) be given mappings. F ∈ ∆F and (G, β) ∈ ∆G,β such that

1. T is a triangular α - admissible mapping.

2. T is a generalized FGRω - contraction.

3. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1

4. T is α - continuous.

Then

1. T has a fixed point x∗ ∈ X and lim
n→∞

Tnx0 = x∗

2. If α(x, y) ≥ 1 for all x, y ∈ Fix(T ), T has a unique fixed point, where
Fix(T) = {x ∈ X|Tx = x}
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Proof . Define a sequence xn ∈ X by xn = Tn(x0) = T (xn−1). As T is a triangular

α - admissible mapping and there ∃ x0 ∈ X such that α(x0, Tx0) ≥ 1.

By using Lemma 1 we conclude that for all m,n ∈ N with n < m

α(xn, xm) ≥ 1 (3.1)

This implies that
α(xn, xn+1) ≥ 1 (3.2)

If there exists n0 ∈ N such that xn0
= xn0+1

, then xn0
is fixed point of T and lim

n→∞
Tnxn0

= xn0
.

Therefore assume that xn ̸= xn+1 for all n ∈ N
so dRω(xn, Txn) = dRω(Txn−1, Txn) > 0 for all n ∈ N.

As T is a generalized FGRω - contraction, so we have

F (dRω(xn, xn+1)) = F (dRω(Txn−1, Txn))
≤ F(ω(xn−1, xn)

rdRω(Txn−1, Txn))
≤ F(Mω(xn−1, xn)) + G(β(Mω(xn−1, xn)))

where Mω(xn−1, xn) = max

{
dRω(xn−1, xn), dRω(xn−1, Txn−1), dRω(xn, Txn),

dRω(xn, Txn)[1 + dRω(xn−1, Txn−1)]

ω(xn−1, xn)[1 + dRω(xn−1, xn)]

}

= max

{
dRω(xn−1, xn), dRω(xn−1, xn), dRω(xn, xn+1),

dRω(xn, xn+1)[1 + dRω(xn−1, xn)]

ω(xn−1, xn)[1 + dRω(xn−1, xn)]

}

= max

{
dRω(xn−1, xn), dRω(xn, xn+1),

dRω(xn, xn+1)

ω(xn−1, xn)

}

= max

{
dRω(xn−1, xn), dRω(xn, xn+1)

}

If Mω(xn−1, xn) = dRω(xn, xn+1) , for some n ≥ 1 then

F (dRω(xn, xn+1)) ≤ F(dRω(xn, xn+1)) + G(β(dRω(xn, xn+1))) which implies that

G(β(dRω(xn, xn+1))) ≥ 0 which in turn implies β(dRω(xn, xn+1)) ≥ 0.

This is a contradiction to the condition of (F∆3), therefore for all n ≥ 1 we get

dRω(xn, xn+1) ≤ dRω(xn−1, xn)

Hence we get F (dRω(xn, xn+1)) ≤ F(dRω(xn−1, xn)) + G(β(dRω(xn−1, xn)))

Using the condition of (F∆1), we get

F (dRω(xn, xn+1)) ≤ F(dRω(xn−1, xn)) + G(β(dRω(xn−1, xn)))

≤ F(dRω(xn−2, xn−1)) + G(β(dRω(xn−2, xn−1))) + G(β(dRω(xn−1, xn)))
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≤ ...

≤ F(dRω(x0, x1)) +

n∑
i=1

G(β(dRω(xi−1, xi)))

Letting the limit n→ ∞ in the above inequality and using the condition (F∆5) we get

lim
n→∞

F (dRω(xn, xn+1)) = −∞.

Combining this with the condition (F∆2) we have

lim
n→∞

dRω(xn, xn+1) = 0 (3.3)

We will show that the sequence {xn} is a Cauchy sequence in (X, dRω). On the contrary , we will assume that
there exists ϵ > 0 and two sub sequences {xnt

} and {xmt
} of {xn} such that nt is the smallest index for which

nt > mt > t ≥ 1, dRω(xmt
, xnt

) ≥ ϵ (3.4)

This implies dRω(xmt
, xnt−2) < ϵ

Taking the upper limit as t→ ∞, we get

lim
t→∞

sup dRω(xmt , xnt−2) < ϵ (3.5)

ϵ ≤ dRω(xmt
, xnt

) ≤ ω(xmt
, xnt

)

[
dRω(xnt

, xnt−2) + dRω(xnt−2, xnt−1) + dRω(xnt−1, xnt
)

]
Using (3.4), we get

ϵ ≤ dRω(xmt , xnt) ≤ ω(xmt , xnt)

[
dRω(xmt , xnt−2)

]
Taking the upper limit as t→ ∞ in the above equation and using(3.3) we get

ϵ ≤ lim
t→∞

sup dRω(xmt , xnt) ≤ ϵ lim
t→∞

sup ω(xmt , xnt) (3.6)

From (3.4), we have

ϵ ≤ dRω(xmt , xnt) ≤ ω(xmt , xnt)

[
dRω(xmt , xmt+1) + dRω(xmt+1, xnt+1) + dRω(xnt+1, xnt)

]
Taking the upper limit as t→ ∞ in the above equation and using(3.3) we get

ϵ ≤ lim
t→∞

sup dRω(xmt
, xnt

) ≤ lim
t→∞

sup ω(xmt
, xnt

)

[
lim
t→∞

sup dRω(xmt+1, xnt+1)

]
Therefore we get

ϵ

lim
t→∞

sup ω(xmt , xnt)
≤ lim

t→∞
sup dRω(xmt+1, xnt+1) (3.7)

Furthermore, we get

dRω(xmt
, xnt

) ≤ ω((xmt
, xnt

))

[
dRω(xmt

, xnt−2) + dRω(xnt−2, xnt−1) + dRω(xnt−1, xnt
)

]

dRω(xmt+1, xnt−1) ≤ ω((xmt+1, xmt−1))

[
dRω(xmt+1, xmt

) + dRω(xmt
, xnt−2) + dRω(xnt−2, xnt−1)

]
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dRω(xmt+2, xnt−1) ≤ ω((xmt+2, xnt−1))

[
dRω(xmt+2, xmt−2) + dRω(xnt−2, xnt−1) + dRω(xnt−2, xnt)

]

dRω(xmt+2, xnt
) ≤ ω((xmt+2, xnt

))

[
dRω(xmt+2, xnt−2) + dRω(xnt−2, xnt−1) + dRω(xnt−1, xnt

)

]

dRω(xmt+2, xmt
) ≤ ω((xmt+2, xmt

))

[
dRω(xmt+2, xmt+1) + dRω(xmt+1, xnt+1) + dRω(xmt+1, xmt

)

]
Taking the upper limit as t→ ∞ in the above inequalities and using (3.3) and (3.4), we get

lim
t→∞

sup dRω(xmt
, xnt

) ≤ ϵ lim
t→∞

sup ω(xmt
, xnt

)

lim
t→∞

sup dRω(xmt+1, xnt−1) ≤ ϵ lim
t→∞

sup ω(xmt+1, xnt−1)

lim
t→∞

sup dRω(xmt+2, xnt−1) ≤ ϵ lim
t→∞

sup ω(xmt+2, xnt−1)

lim
t→∞

sup dRω(xmt+2, xnt) ≤ ϵ lim
t→∞

sup ω(xmt+2, xnt)

.lim
t→∞

sup dRω(xmt
, xnt

) = 0

Again using

ϵ ≤ dRω(xmt
, xnt

) ≤ ω(xmt
, xnt

)

[
dRω(xmt

, xmt+1) + dRω(xmt+1, xnt+1) + dRω(xnt+1, xnt
)

]
Taking the lower limit as t→ ∞ in the above equation and using(3.3) we get

ϵ ≤ lim
t→∞

inf dRω(xmt
, xnt

) ≤ lim
t→∞

inf ω(xmt
, xnt

)

[
lim
t→∞

inf dRω(xmt+1, xnt+1)

]
Therefore we get

ϵ

lim
t→∞

inf ω(xmt
, xnt

)
≤ lim

t→∞
inf dRω(xmt+1, xnt+1)

Therefore there exists t0 ∈ N such that dRω(xmt+1, xnt+1) > 0m

Consider Mω(xnt
, xmt

) = max

{
dRω(xnt

, xmt
), dRω(xnt

, Txnt
), dRω(xmt

, Txmt
),

dRω(xmt
, Txmt

)[1 + dRω(xnt
, Txnt

)

ω(xnt , xmt)[1 + dRω(xnt , xmt)]

}

Mω(xnt
, xmt

) = max

{
dRω(xnt

, xmt
), dRω(xnt

, xnt+1), dRω(xmt
, xmt+1),

dRω(xmt , xmt+1)[1 + dRω(xnt , xnt+1)

ω(xnt
, xmt

)[1 + dRω(xnt
, xmt

)]

}
.

Therefore, Mω(xnt
, xmt

) = dRω(xnt
, xmt

) from [ 3.3].
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Taking the upper limit as t→ ∞ in the above equation and using equation (3.6), we get

lim
t→∞

sup Mω(xnt
, xmt

) = lim
t→∞

sup dRω(xmt
, xnt

) < ϵ lim
t→∞

sup ω(xmt
, xnt

). (3.8)

Consider F
(
ω(xnt

, xmt
)

ϵ

ω(xnt
, xmt

)

)
≤ F

(
ω(xnt

, xmt
)r

ϵ

ω(xnt
, xmt

)

)
. Taking the upper limit as t → ∞ in the

above equation and using (3.7), we get

F
(

lim
t→∞

supω(xnt
, xmt

)r
ϵ

lim
t→∞

sup ω(xnt
, xmt

)

)

≤ F
(

lim
t→∞

supω(xnt , xmt)
r lim
t→∞

sup dRω(xmt+1, xnt+1)

)
≤ F( lim

t→∞
supMω(xnt

, xmt
)) + G(β( lim

t→∞
sup Mω(xnt

, xmt
)))

≤ F(ϵ lim
t→∞

supω(xnt , xmt)) + lim
t→∞

sup G(β(Mω(xnt , xmt))).

Therefore
lim
t→∞

supG(β(Mω(xnt
, xmt

))) ≥ 0.

This implies lim
t→∞

sup(β(Mω(xnt
, xmt

))) ≥ 1. As β(ξ) < 1 for all ξ ≥ 0, we get

lim
t→∞

sup(β(Mω(xnt
, xmt

))) = 1.

Using the property of β, we get lim
t→∞

sup Mω(xnt
, xmt

) = 0, which is a contradiction to (3.8). Hence {xn} is a

Cauchy sequence in (X, dRω)

As (X, dRω) is a complete extended Branciari b-distance space, there exists x∗ ∈ X such that lim
n→∞

dRω(xn, x
∗) = 0.

By definition of sequence {xn}, we get lim
n→∞

Tn(x0) = x∗. By using (3.2) and α continuous property of T , we get

lim
n→∞

T (xn) = T (x∗) =⇒ x∗ = lim
n→∞

xn+1 = lim
n→∞

T (xn) =⇒ x∗

is a fixed point of T .

To prove uniqueness of fixed point of T , let us assume there are two fixed points x, y such that x ̸= y then
T (x) ̸= T (y). As α(x, y) ≥ 1 and

F(ω(x, y)rdRω(Tx, Ty)) ≤ F(Mω(x, y)) + G(β(Mω(x, y)))

where r ≥ 2 and

Mω(x, y) = max

{
dRω(x, y), dRω(x, Tx), dRω(y, Ty),

dRω(y, Ty)[1 + dRω(x, Tx)]

ω(x, y)[1 + dRω(x, y)]

}
.

Therefore,

Mω(x, y) = max

{
dRω(x, y), dRω(x, x), dRω(y, y),

dRω(y, y)[1 + dRω(x, x)]

ω(x, y)[1 + dRω(x, y)]

}
.

Hence, Mω(x, y) = dRω(x, y). This implies F(ω(x, y)rdRω(Tx, Ty)) ≤ F(dRω(x, y)) + G(β(dRω(x, y))). Using the
increasing property of F , we get

G(β(dRω(x, y))) ≥ 0 =⇒ β(dRω(x, y)) ≥ 1.

But this is a contradiction to β(ξ) < 1, for all ξ ≥ 0. Therefore dRω(x, y) = 0 =⇒ x = y. This means T has a
unique fixed point. □

Theorem 3.9. Let (X, dRω) be a complete extended Branciari b-metric space,

T : X → X and α : X ×X → [0,∞) be two mappings. F ∈ ∆F and (G, β) ∈ ∆G,β such that
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1. T is a triangular α - admissible mapping.

2. T is a generalized FGRω - contraction.

3. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1

4. If {xn} is a sequence in X and lim
t→∞

xn = x such that α(xn, xn+1) ≥ 1 for all n ∈ N, then α(xn, x) ≥ 1 for all

n ∈ N.

Then

1. T has a fixed point x∗ ∈ X and lim
n→∞

Tnx0 = x∗

2. If α(x, y) ≥ 1 for all x, y ∈ Fix(T ), T has a unique fixed point, where
Fix (T) = {x ∈ X|Tx = x}

Proof . We conclude, as we did in the proof of Theorem 3.8, that the sequence is {xn} is defined by xn = Tnx0 =
Txn−1 satisfying

α(xn, xm) ≥ 1 (3.9)

lim
n→∞

dRω(xn, xn+1) = 0 (3.10)

for all n,m ∈ N with n > m and there exists x∗ ∈ X such that

lim
n→∞

xn = x∗ =⇒ lim
n→∞

Tnx0 = x∗ (3.11)

We will show that x∗ is a fixed point of T .

Assume there exists n0 ∈ N such that xn+1 ̸= Tx∗ for all n ≥ n0.

This implies dRω(Txn, Tx
∗) > 0 for all n ≥ n0.

Using (3.9) and (3.11), we get α(xn, x
∗) ≥ 1

For all n ≥ n0, we get

F(ω(xn, x
∗)rdRω(Txn, Tx

∗)) ≤ F(MRω(xn, x
∗)) + G(β(MRω(xn, x

∗))) (3.12)

where MRω(xn, x
∗) = max

{
dRω(xn, x

∗), dRω(xn, Txn), dRω(x
∗, Tx∗),

dRω(x
∗, Tx∗)[1 + dRω(xn, xn)]

ω(xn, x∗)[1 + dRω(xn, x∗)]

}
.

Therefore

MRω(xn, x
∗) = max

{
dRω(xn, x

∗), dRω(xn, xn+1), dRω(x
∗, Tx∗),

dRω(x
∗, Tx∗)[1 + dRω(xn, xn+1)]

ω(xn, x∗)[1 + dRω(xn, x∗)]

}
.

Taking the upper limits as n→ ∞ and (3.10), we get

lim
n→∞

sup MRω(xn, x
∗) = dRω(x

∗, Tx∗). (3.13)

Taking upper limits in (3.12) as n→ ∞ and using (3.13), we get

lim
n→∞

sup F(ω(xn, x
∗)rdRω(Txn, Tx

∗)) ≤ F( lim
n→∞

sup MRω(xn, x
∗)) + lim

n→∞
sup G(β(MRω(xn, x

∗)))

Using the increasing property of F , we get

lim
n→∞

sup G(β(MRω(xn, x
∗))) ≥ 0 =⇒ lim

n→∞
sup β(MRω(xn, x

∗)) ≥ 1

As β(ξ) < 1 for all ξ ≥ 0, we get,

lim
n→∞

sup β(MRω(xn, x
∗)) = 1 =⇒ lim

n→∞
sup MRω(xn, x

∗) = 0

Using (3.13), we get dRω(x
∗, Tx∗) = 0. But this is a contradiction to dRω(x

∗, Tx∗) > 0. Therefore, x∗ is a fixed
point of T . For the second part of the proof proceed as in theorem 3.8. □

From the Theorem 3.8 and Theorem 3.9, we get the following corollary.
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Corollary 3.10. Let (X, dRω) be a complete extended Branciari b-metric space, T : X → X and α : X×X → [0,∞)
be two mappings. F ∈ ∆F and (G, β) ∈ ∆G,β such that

1. T is a triangular α - admissible mapping.

2. For all x, y ∈ X with ω(x, y)dRω(Tx, Ty) ≤ γA(x, y)

3. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1

4. (a) Either T is α− continuous or
(b) If {xn} is a sequence in X and lim

t→∞
xn = x such that α(xn, xn+1) ≥ 1 for all n ∈ N, then α(xn, x) ≥ 1 for

all n ∈ N.

Then

1. T has a fixed point x∗ ∈ X and lim
n→∞

Tnx0 = x∗

2. If α(x, y) ≥ 1 for all x, y ∈ Fix(T ), T has a unique fixed point, where
Fix(T) = {x ∈ X|Tx = x}

4 Application to nonlinear integral equations

Let C([0, 1]) be the set of all continuous function on I = [0, 1]. Let X = C(I,R) be endowed with the Extended
Branciari b-metric space function defined by

dRω(x, y) = supt∈I |x(t)− y(t)|2

for all x, y ∈ X and ω(x, y) = |x|+ |y|+ 3, where ω : X ×X → [1,∞)

Consider the nonlinear integral equation

x(t) = g(t) + λ

∫ 1

0

L(t, s)f(s, x(s))ds (4.1)

where f : I × R → R, λ ≥ 0 and L : I × I → [0,∞) are given functions.

Suppose that the following conditions hold:

1. g : I → R is a continuous function.

2. L : I × I → [0,∞) is integrable on [0, 1]

3. f : I × R → R is a continuous function such that for all x, y ∈ C[0, 1].∫ 1

0

|f(s, x(s))− f(s, y(s))
∣∣2ds ≤ ρΘ(x(t), y(t))

maxt∈[0,1]

(
|x|+ |y|+ 3

)2 , where
Θ(x(t), y(t)) = max

{
|x(t)− y(t)|2, |x(t)− Tx(t)|2, |y(t)− Ty(t)|2,

|y(t)− Ty(t)|2[1 + |x(t)− Tx(t)|2]
maxt∈[0,1](|x|+ |y|+ 3)2[1 + |x(t)− y(t)|2]

}

4. Tx ∈ C[0, 1] for all x ∈ C[0, 1] where Tx(t) = g(t) + λ

∫ 1

0

L(t, s)f(s, x(s))ds

5. For all x ∈ C[0, 1] and x(t) ≥ 0 for all t ∈ [0, 1], we have Tx(t) ≥ 0 for all t ∈ [0, 1]

6. Assume λ2 L2 ≤ 1

Under the above conditions (1)− (6), the nonlinear integral equation (4.1) has a unique solution in C[0, 1]
Proof . Define a function T : C[0, 1] → C[0, 1] by

Tx(t) = g(t) + λ

∫ 1

0

L(t, s)f(s, x(s))ds for all x ∈ C[0, 1], t ∈ [0, 1]

The existence of a solution to (4.1) is equivalent to the existence of a fixed point of T .
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Define a mapping α : X ×X → [0,∞) by

α(x, y) =

{
2 if x(t), y(t) ∈ [0,∞) for all t ∈ [0, 1]
0 otherwise

We will prove that T is a triangular α-admissible mapping. Let x, y ∈ C[0, 1] such that α(x, y) ≥ 1. Therefore,
x(t) ≥ 0, y(t) ≥ 0 for all t ∈ [0, 1].

From condition (4) it follows that Tx(t) ≥ 0, T y(t) ≥ 0 for all t ∈ [0, 1] this implies α(Tx, Ty) ≥ 1. Similarly, for
x, y, z ∈ C[0, 1] such that α(x, z) ≥ 1 and α(z, y) ≥ 1, we have x(t) ≥ 0, y(t), z(t) ≥ 0 for all t ∈ [0, 1]. This implies
that α(x, y) ≥ 1. Hence, T is a triangular α-admissible mapping. Now, for x, y ∈ X we have

|T (x(t)− T (y(t)|2 =

∣∣∣∣∣g(t) + λ

∫ 1

0

L(t, s)f(s, x(s))ds− g(t)− λ

∫ 1

0

L(t, s)f(s, y(s))ds

∣∣∣∣∣
2

≤ λ2
(∫ 1

0

L(t, s)
∣∣f(s, x(s))− f(s, y(s))

∣∣ds)2

≤ λ2
(∫ 1

0

L(t, s)ds
)2(∫ 1

0

∣∣f(s, x(s))− f(s, y(s))
∣∣2ds)

≤ λ2
(
supt∈I

∫ 1

0

L(t, s)ds
)2

ρΘ(x(t), y(t))

maxt∈[0,1]

(
|x|+ |y|+ 3

)2
≤ λ2L2 ρΘ(x(t), y(t))

maxt∈[0,1]

(
|x|+ |y|+ 3

)2
≤ ρ Θ(x(t), y(t))

(|x|+ |y|+ 3)2
.

Therefore

supt∈[0,1]|T (x(t)− T (y(t)|2 ≤ supt∈[0,1]

(
ρTheta(x(t), y(t))

(|x|+ |y|+ 3)2

)
=

ρ Theta(x, y)

(|x|+ |y|+ 3)2
.

By the above, we conclude that all the assumptions in corollary (3.10) are satisfied. Thus, T has a fixed point
x ∈ C[0, 1] and hence equation (4.1) has a solution x ∈ C[0, 1]. □

5 Conclusion

We proved the existence and uniqueness of a fixed point in extended Branciari b-metric space in this manuscript,
which generalises many previous results. We also presented an application of our integral equations results.

Acknowledgment The authors are grateful to the referees for their assistance in improving the paper in several
places. The authors are grateful to the manuscript reviewers and the Journal’s editorial board for their thoughtful
remarks and consideration.

References

[1] T. Abdeljawad, E. Karapinar, S. Kumari Panda and N. Mlaiki, Solutions of boundary value problems on extended-
branciari b-distance, J. Inequal. Appl. 2020 (2020), no. 1, 1–16.

[2] A.A. Abdou and M.F.S. Alasmari, Fixed point theorems for generalized α-ψ-contractive mappings in extended
b-metric spaces with applications, AIMS Math. 6 (2021), no. 6, 5465–5478.

[3] E. Ameer, H. Huang, M. Nazam and M. Arshad, Fixed point theorems for multivalued γ-fg-contractions with (α,
β)-admissible mappings in partial b-metric spaces and application, Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019),
no. 2, 97–108.

[4] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Func. An. Gos. Ped. Inst. Unianowsk 30
(1989), 26–37.



Solutions of integral equations via fixed point results in extended Branciari b-distance spaces 29

[5] A. Branciari, A fixed point theorem of banach-caccioppoli type on a class of generalized metric spaces, Pub. Math.
Debercen 57 (2000), 31–37.

[6] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int.
J. Math. Math. Sci. 29 (2002), no. 9, 531–536.

[7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostraviensis 1 (1993), no. 1, 5–11.

[8] R. George, S. Radenovic, K.P. Reshma and S. Shukla, Rectangular b-metric space and contraction principles, J.
Nonlinear Sci. Appl. 8 (2015), no. 6, 1005–1013.

[9] R. Jain, H. Kumar Nashine, R. George and Z.D. Mitrović, On extended branciari-distance spaces and applications
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