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Abstract

In this article, we introduce the notion of Fn-contractions T : An → B in standard metric spaces and explore the
possibility of certain approximation results for these mappings. We prove the existence and uniqueness of n-tuple
(n ≥ 2) best proximity points of Fn-contractions, not necessarily continuous, using the weak P -property in complete
metric spaces. Additionally, suitable examples are presented to substantiate our main results. Moreover, we anticipate
a fixed point result to prove the existence and uniqueness of the solution for a type of integral equations to elucidate
our obtained theorems.
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1 Introduction

The theory on the existence of a solution to the equation of the type Tx = x has motivated mathematicians over
the years due to its far-reaching applications to deal with many interesting problems that can be reformulated of
ordinary differential equations, matrix equations and many others. Let A be a non-empty subset of a metric space
(X, d) and T : A → X be a mapping. We know that the solutions of the equation Tx = x are fixed points of T .
Consequently, T (A) ∩ A ̸= ∅ is a necessary condition for the existence of a fixed point for the operator T . If this
condition does not hold, then d(x, Tx) > 0 for any x ∈ A and the mapping T : A → X does not have any fixed
point. In fact, for given non-empty closed subsets A and B of a complete metric space (X, d), a contraction mapping
T : A → B, being non-self, does not necessarily has a fixed point. This gave birth to proximity theory. Let A, B
be two non-empty subsets of X and let T : A → B be a non-self mapping. In this situation, it is quite natural to
attempt to find an approximate solution x that is optimal in the sense that the distance d(x, Tx) is minimum, i.e.,
d(x, Tx) = d(A,B) is satisfied. We can say that it accomplishes the highest possible closeness between x and Tx.
This x (if exists) is called a best proximity point for the mapping T . Best proximity point theory is regarded as the
natural generalization of fixed point theory (when the mapping concerned is a non-self mapping). One of the most
fascinating best approximation theorem is due to Ky Fan [6]. Over the years several authors [9, 10, 11] have extended
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this interesting theorem in different directions, sometimes by changing the restriction on mapping or by altering the
structure of the space.

On the other hand, Bhaskar and Lakshmikantham [7] introduced the notion of mixed monotone mappings and
proved some coupled fixed point theorems for mappings satisfying mixed monotone property in partially ordered
metric spaces. The investigation of [7] was followed by similar investigations by several authors (for example see
[1, 4, 12, 13, 14, 15, 16, 17, 18]). Of late, Ertürk et al. [5] introduced an idea of n-tuple fixed points for contractive
type mappings in partially ordered metric spaces. Recently, Dey et al. [10] also proved a best proximity point theorem
for general type F -contractions in a complete metric space. The concept of coupled best proximity points has been
introduced by Sintunavarat et al. [17, 18] who investigated coupled best proximity theorem for cyclic contractions.
For some more interesting findings in this direction, the readers are referred to [8, 20, 21].

The main objective of this article is to first introduce the notion of Fn-contractions (n ≥ 2) and the notions of
coupled, tripled, and inductively n-tuple best proximity points. Also we prove certain results for the existence and
uniqueness of n-tuple best proximity points of these types of contraction mappings using weak P -property in a complete
metric space. It is worthy to mention that, we deduce our claims without considering the continuity assumption of
the concerning self-map. Moreover, we construct two examples to justify our results. To end with, as an application
of the discussed results, we achieve a fixed point result of such type of contractions and execute it to solve a type of
integral equations.

2 Preliminaries

In this section we recall some of the basic definitions and notations which are essential throughout the paper.

Definition 2.1. [7] Let A be a non-empty subset of a metric space X and T : A× A → A. A point (x, x′) ∈ A× A
is called a coupled fixed point of T if

x = T (x, x′) and x′ = T (x′, x).

Definition 2.2. [5] Let A be a non-empty subset of a metric space X and T : An → A. A point (x1, x2, · · · , xn) ∈ An

is called an n-tuple fixed point of T if
x1 = T (x1, x2, · · · , xn),

x2 = T (x2, x3, · · · , x1),

...

xn = T (xn, x1, · · · , xn−1).

Definition 2.3. [19] Let (X, d) be a metric space and A and B be two non-empty subsets of X. Let T : A → B be
any mapping. A point x ∈ A is said to be a best proximity point of T if it satisfies the condition that

d(x, Tx) = d(A,B),

where d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Note that if B = A, then the best proximity point reduces to usual fixed point of T .

Definition 2.4. [18] Let A and B be non-empty subsets of a metric space X and T : A × A → B. A point
(x, x′) ∈ A×A is called a coupled best proximity point of T if

d(x, T (x, x′)) = d(x′, T (x′, x)) = d(A,B).

It is clear that if A = B, then coupled best proximity point reduces to coupled fixed point. Let A and B be two
non-empty subsets of a metric space (X, d). We denote by A0 and B0 the following sets:

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B}

and
B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

In [9], Kirk et al. presented certain sufficient conditions for the sets A0 and B0 to be non-empty. Further, in [3],
the authors introduced the notion of P -property which is given below.
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Definition 2.5. [3] Let (A,B) be a pair of non-empty subsets of a metric space (X, d) with A0 ̸= ∅. Then the pair
(A,B) is said to have the P -property if and only if for any x1, x2 ∈ A0 and y1, y2 ∈ B0,

d(x1, y1) = d(A,B) and d(x2, y2) = d(A,B) ⇒ d(x1, x2) = d(y1, y2).

It is naturally true that for any non-empty subset A of (X, d), the pair (A,A) has the P -property.

Definition 2.6. [19] Let (A,B) be a pair of non-empty subsets of a metric space (X, d) with A0 ̸= ∅. Then the pair
(A,B) is said to have the weak P -property if and only if for any x1, x2 ∈ A0 and y1, y2 ∈ B0,

d(x1, y1) = d(A,B) and d(x2, y2) = d(A,B) ⇒ d(x1, x2) ≤ d(y1, y2).

It is naturally true that if the pair (A,B) has the P -property, then it has the weak P -property. In [19], the authors
gave an example to show that the converse is not true.

3 Main results

In this section we consider a new type of contraction mapping and we name this as Fn-contraction. Our main aim
is to prove an n-tuple best proximity point theorem for Fn-contractions. Finally, we construct examples to support
our results.

Definition 3.1. Let A and B be two non-empty closed subsets of a metric space X and T : An → B be a mapping
from the product space An of A to B. Then T is said to be an Fn-contraction (n ≥ 2) if

d(T (x1, x2, · · · , xn), T (y1, y2, · · · , yn)) ≤ k

n
{d(x1, y1) + d(x2, y2) + · · ·+ d(xn, yn)}

where 0 ≤ k < 1.

Example 3.2. Let us consider the metric space X = R with the usual metric d(x, y) = |x− y| and let A = [1, 3] and
B = [−1, 0]. It is clear that d(A,B) = 1. Define T : A×A×A → B as

T (x, y, z) =
−x− y − z

9
.

Now

d(T (x, y, z), T (x′, y′, z′)) =
∣∣∣−x− y − z

9
− −x′ − y′ − z′

9

∣∣∣
≤ |x− x′|+ |y − y′|+ |z − z′|

9

≤ k

3
[d(x, x′) + d(y, y′) + d(z, z′)].

This implies that T is an F3-contraction with k ∈ [ 13 , 1).

Definition 3.3. LetA andB be two non-empty subsets of a metric spaceX and T : An → B.A point (x1, x2, · · · , xn) ∈
An is called an n-tuple best proximity point of T if

d(x1, T (x1, x2, · · · , xn)) = d(A,B),

d(x2, T (x2, x3, · · · , x1)) = d(A,B),

...

d(xn, T (xn, x1, · · · , xn−1)) = d(A,B).

Before proceeding to the main theorem, we prove the following lemma.
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Lemma 3.4. Let (A,B) be a pair of non-empty closed subsets of a complete metric space (X, d) such that (A,B)
satisfies the weak P -property. Then any n-tuple (n ≥ 2) best proximity point of an Fn-contraction T : An → B is of

the form
︷ ︸︸ ︷
(x, x,· · · , x) for some x ∈ A.

Proof . Let (x1, x2, · · · , xn) be a best proximity point of T for some xi ∈ A, i = 1, 2, · · · , n. Then by the definition
of best proximity points

d(x1, T (x1, x2, · · · , xn)) = d(A,B),

d(x2, T (x2, x3, · · · , x1)) = d(A,B),

...

and
d(xn, T (xn, x1, · · · , xn−1)) = d(A,B).

Now by the weak P -property of (A,B) and since T is an Fn-contraction, we have

d(x1, x2) ≤ d(T (x1, x2, · · · , xn), T (x2, x3, · · · , x1))

≤ k

n
{d(x1, x2) + d(x2, x3) + · · ·+ d(xn, x1)},

...

d(xi, xi+1) ≤ d(T (xi, xi+1, · · · , xi−1), T (xi+1, xi+2, · · · , xi))

≤ k

n
{d(xi, xi+1) + d(xi+1, xi+2) + · · ·+ d(xi−1, xi)},

...

d(xn, x1) ≤ d(T (xn, x1, · · · , xn−1), T (x1, x2, · · · , xn))

≤ k

n
{d(xn, x1) + d(x1, x2) + · · ·+ d(xn−1, xn)}.

Adding all the above inequalities we get,

d(x1, x2) + d(x2, x3) + · · ·+ d(xn, x1) ≤ k{d(x1, x2) + d(x2, x3) + · · ·+ d(xn, x1)},

Since 0 ≤ k < 1, d(x1, x2) + d(x2, x3) + · · · + d(xn, x1) = 0. This shows that x1 = x2 = · · · = xn. Therefore best

proximity is of the form
︷ ︸︸ ︷
(x, x,· · · , x). □

Now we establish the n-tuple (n ≥ 2) best proximity point theorem.

Theorem 3.5. Let (A,B) be a pair of non-empty closed subsets of a complete metric space (X, d) such that A0 is
non-empty and T : An → B be a mapping. Assume that the following conditions are satisfied:

(i) T (An
0 ) ⊆ B0;

(ii) the pair (A,B) satisfies the weak P -property;

(iii) T is an Fn-contraction.

Then T has a unique n-tuple best proximity point in An.

Proof . Since An
0 is non-empty, we can choose x1

0, x
2
0, · · · , xn

0 ∈ A0. Clearly by condition (i),

T (x1
0, x

2
0, · · · , xn

0 ) ∈ T (An
0 ) ⊆ B0.

Then from the construction of the set A0, we can find x1
1, x

2
1, · · · , xn

1 ∈ A0 such that

d(x1
1, T (x

1
0, x

2
0, · · · , xn

0 )) = d(A,B),
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d(x2
1, T (x

2
0, x

3
0, · · · , x1

0)) = d(A,B),

...

d(xn
1 , T (x

n
0 , x

1
0, · · · , xn−1

0 )) = d(A,B).

Similarly, we can find x1
2, x

2
2, · · · , xn

2 ∈ A0 such that

d(x1
2, T (x

1
1, x

2
1, · · · , xn

1 )) = d(A,B),

d(x2
2, T (x

2
1, x

3
1, · · · , x1

1)) = d(A,B),

...

d(xn
2 , T (x

n
1 , x

1
1, · · · , xn−1

1 )) = d(A,B).

Recursively, we obtain sequences (x1
p), (x

2
p), · · · , (xn

p ) in A0 satisfying

d(x1
p+1, T (x

1
p, x

2
p, · · · , xn

p )) = d(A,B),

d(x2
p+1, T (x

2
p, x

3
p, · · · , x1

p)) = d(A,B),

...

d(xn
p+1, T (x

n
p , x

1
p, · · · , xn−1

p )) = d(A,B).

Since (A,B) has the weak P -property, we have

d(x1
p+1, x

1
p) ≤ d(T (x1

p, x
2
p, · · · , xn

p ), T (x
1
p−1, x

2
p−1, · · · , xn

p−1))

≤ k

n
{d(x1

p, x
1
p−1) + d(x2

p, x
2
p−1) + · · ·+ d(xn

p , x
n
p−1)}

d(x2
p+1, x

2
p) ≤ d(T (x2

p, x
3
p, · · · , x1

p), T (x
2
p−1, x

3
p−1, · · · , x1

p−1))

≤ k

n
{d(x2

p, x
2
p−1) + d(x3

p, x
3
p−1) + · · ·+ d(x1

p, x
1
p−1)}

for any p ∈ N and so on. Again

d(xn
p+1, x

n
p ) ≤ d(T (xn

p , x
1
p, · · · , xn−1

p ), T (xn
p−1, x

1
p−1, · · · , xn−1

p−1 ))

≤ k

n
{d(xn

p , x
n
p−1) + d(x1

p, x
1
p−1) + · · ·+ d(xn−1

p , xn−1
p−1 )}.

for any p ∈ N. Therefore

d(x1
p+1, x

1
p) + d(x2

p+1, x
2
p) + · · ·+ d(xn

p+1, x
n
p ) ≤ k{d(x1

p, x
1
p−1) + d(x2

p, x
2
p−1) + · · ·+

d(xn
p , x

n
p−1)}

≤ k2{d(x1
p−1, x

1
p−2) + d(x2

p−1, x
2
p−2) + · · ·+

d(xn
p−1, x

n
p−2)}

...

≤ kp{d(x1
1, x

1
0) + d(x2

1, x
2
0) + · · ·+ d(xn

1 , x
n
0 )}.
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Now for m > p ≥ n1,

d(x1
m, x1

p) + d(x2
m, x2

p) + · · ·+ d(xn
m, xn

p ) ≤{d(x1
m, x1

m−1) + d(x1
m−1, x

1
m−2) + · · ·+ d(x1

p+1, x
1
p)}

+ {d(x2
m, x2

m−1) + d(x2
m−1, x

2
m−2) + · · ·+ d(x2

p+1, x
2
p)}

+ · · ·
+ {d(xn

m, xn
m−1) + d(xn

m−1, x
n
m−2) + · · ·+ d(xn

p+1, x
n
p )}

={d(x1
m, x1

m−1) + d(x2
m, x2

m−1) + · · ·+ d(xn
m, xn

m−1)}+
{d(x1

m−1, x
1
m−2) + d(x2

m−1, x
2
m−2) + · · ·+ d(xn

m−1, x
n
m−2)}

+ · · ·+ {d(x1
p+1, x

1
p) + d(x2

p+1, x
2
p) + · · ·+ d(xn

p+1, x
n
p )}

≤km−1{d(x1
1, x

1
0) + d(x2

1, x
2
0) + · · ·+ d(xn

1 , x
n
0 )}

+ km−2{d(x1
1, x

1
0) + d(x2

1, x
2
0) + · · ·+ d(xn

1 , x
n
0 )}

+ · · ·+ kp{d(x1
1, x

1
0) + d(x2

1, x
2
0) + · · ·+ d(xn

1 , x
n
0 )}

= (km−1 + km−2 + · · ·+ kp){d(x1
1, x

1
0) + d(x2

1, x
2
0) + · · ·+ d(xn

1 , x
n
0 )}

≤ (kp + kp+1 + · · · ){d(x1
1, x

1
0) + d(x2

1, x
2
0) + · · ·+ d(xn

1 , x
n
0 )}

=
( kp

1− k

)
{d(x1

1, x
1
0) + d(x2

1, x
2
0) + · · ·+ d(xn

1 , x
n
0 )} → 0 for m, p → ∞.

From the above, we conclude that (x1
p), (x

2
p), · · · , (xn

p ) are Cauchy sequences in A. A being a closed subset of a
complete metric space X, so A is also complete. Hence (x1

p), (x
2
p), · · · , (xn

p ) are convergent and let

lim
p→∞

x1
p = x1, lim

p→∞
x2
p = x2, · · · , lim

p→∞
xn
p = xn.

Now we claim that lim
p→∞

T (x1
p, x

2
p, · · · , xn

p ) = T (x1, x2, · · · , xn). If possible, let

lim
p→∞

T (x1
p, x

2
p, · · · , xn

p ) ̸= T (x1, x2, · · · , xn). Then we have,

d(T (x1
p, x

2
p, · · · , xn

p ), T (x
1, x2, · · · , xn)) ≤ k

n
{d(x1

p, x
1) + d(x2

p, x
2) + · · ·+ d(xn

p , x
n)}

as p → ∞, this implies
d(T (x1

p, x
2
p, · · · , xn

p ), T (x
1, x2, · · · , xn)) ≤ 0

which is a contradiction. Hence our claim is established. Now as p → ∞, we get,

d(x1
p+1, T (x

1
p, x

2
p, · · · , xn

p )) = d(x1, T (x1, x2, · · · , xn)) = d(A,B),

d(x2
p+1, T (x

2
p, x

3
p, · · · , x1

p)) = d(x2, T (x2, x3, · · · , x1)) = d(A,B),

...

d(xn
p+1, T (x

n
p , x

1
p, · · · , xn−1

p )) = d(xn, T (xn, x1, · · · , xn−1)) = d(A,B).

Now, by Lemma 3.4, we can say

n in total︷ ︸︸ ︷
(x, x,· · · , x) is the best proximity point of T in An. Next we prove the uniqueness of

the best proximity point of T . Let

n in total︷ ︸︸ ︷
(y, y, · · · , y) be another best proximity point of T . Therefore,

d(x, T

n in total︷ ︸︸ ︷
(x, x,· · · , x)) = d(A,B) and d(y, T

n in total︷ ︸︸ ︷
(y, y, · · · , y)) = d(A,B).

Then using the weak P -property, we have,

d(x, y) ≤ d(T

n in total︷ ︸︸ ︷
(x, x,· · · , x)),

n in total︷ ︸︸ ︷
T (y, y, · · · , y))

≤ k

n
{

n in total︷ ︸︸ ︷
d(x, y) + d(x, y) + · · ·+ d(x, y)}.
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Therefore,
d(x, y) ≤ k{d(x, y)}.

As 0 ≤ k < 1, we arrive at a contradiction. This completes the proof of the theorem. □

Remark 3.6. Recently, Zhang et al. [21] came by some interesting findings on the existence and uniqueness of
the n-tuple best proximity points of a generalized contraction in the backdrop of partially ordered metric spaces
via continuity assumption and weak P -monotone property. However, in our obtained Theorem 3.5, we attained our
desired result without the continuity assumption of the contraction and considering the weak P -property. Also, we
have proved our claim via less number of hypotheses.

Finally we illustrate our best proximity result by the following examples.

Example 3.7. Let X = R2 and d ((x, y), (x′, y′)) = max{|x − x′|, |y − y′|} be a metric on X. Consider the sets
A = {(0, y) : |y| ≥ 1, y ∈ R} and B = {(x, 0) : x ∈ R} which are closed in X. Clearly d(A,B) = 1, where
A0 = {(0, 1), (0,−1)} and B0 = {(0, 0)}. As

d((0, 1), (0, 0)) = d((0,−1), (0, 0)) = 1,

so the pair (A,B) does not satisfy weak P -property. We define T : A×A → B by T ((0, x), (0, y)) = ( |x|−|y|
4 , 0). Now

d(T ((0, x), (0, x′)), T ((0, y), (0, y′))) = d

((
|x| − |x′|

4
, 0

)
,

(
|y| − |y′|

4
, 0

))
= max

{∣∣∣ (|x| − |x′|)− (|y| − |y′|)
4

∣∣∣, |0− 0|
}

=
∣∣∣ (|x| − |x′|)− (|y| − |y′|)

4

∣∣∣
=

∣∣∣ (|x| − |y|)− (|x′| − |y′|)
4

∣∣∣
≤

∣∣∣ (|x− y|)− (|x′ − y′|)
4

∣∣∣
≤

∣∣∣ |x− y|
4

− |x′ − y′|
4

∣∣∣
≤

∣∣∣ |x− y|
4

∣∣∣+ ∣∣∣ |x′ − y′|
4

∣∣∣
≤ k

2
{d((0, x), (0, y)) + d((0, x′), (0, y′))},

where k ∈ [ 12 , 1). So T is an F2-contraction. Note that even the pair (A,B) does not satisfy weak P -property. Here
we see that ((0, 1), (0,−1)) is a best proximity point of T . But in that case (0, 1) ̸= (0,−1) and there does not exist
any other best proximity point.

Example 3.8. Let X = R2 and d ((x, y), (x′, y′)) = max{|x − x′|, |y − y′|} be a metric on X. Consider the sets
A = {(x, 0) : x ∈ R} and B = {(0, x) : |x| ≥ 1, x ∈ R} which are closed in X. Clearly d(A,B) = 1, where A0 = {(0, 0)}
and B0 = {(0, 1), (0,−1)}. As

d((0, 0), (0,−1)) = d((0, 0), (0, 1)) = 1,

so the pair (A,B) satisfies weak P -property but does not satisfy the P -property. We define T : A × A → B by
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T ((x, 0), (y, 0)) =
(
0, 4+|x−y|

4

)
. Now

d(T ((x, 0), (x, 0′)), T ((y, 0), (y, 0′))) = d

((
0,

4 + |x− x′|
4

)
,

(
0,

4 + |y − y′|
4

))
= max

{
|0− 0|,

∣∣∣ (|x− x′|)− (|y − y′|)
4

∣∣∣}
=

∣∣∣ (|x− x′|)− (|y − y′|)
4

∣∣∣
≤

∣∣∣ |(x− x′)− (y − y′)|
4

∣∣∣
≤

∣∣∣ (|x− y|)− (|x′ − y′|)
4

∣∣∣
=

∣∣∣ |x− y|
4

− |x′ − y′|
4

∣∣∣
≤

∣∣∣ |x− y|
4

∣∣∣+ ∣∣∣ |x′ − y′|
4

∣∣∣
≤ k

2
{d((x, 0), (y, 0)) + d((x′, 0), (y′, 0))},

where k ∈ [ 12 , 1). So T is an F2-contraction and note that all the conditions of Theorem 3.5 are satisfied. Therefore
there exists a unique best proximity point of T in A2. We see that ((0, 0), (0, 0)) is a best proximity point of T and
there does not exist any other best proximity point.

Example 3.9. Let X = R endowed with the usual metric d(x, y) = |x− y|. Let A = [−3,−2]∪ [2, 3] and B = [−1, 1]
which are two closed subsets of R. Define T : A×A → B such that

T (x, x′) =

{
|x−x′|−4

4 if x, y are of same sign;
||x|−|x′||−4

4 if x, y are of opposite sign.

Observe that d(A,B) = 1, where A0 = {−2, 2} and B0 = {−1, 1}. Now T (−2,−2) = T (2, 2) = T (−2, 2) = T (2,−2) =
−1, which imply

T (A0 ×A0) ⊆ B0.

Also the pair (A,B) satisfies the weak P -property, since d(−2,−1) = 1 = d(A,B) = d(1, 2) implies d(−2, 1) = d(−1, 2).
Finally note that

d(T (x, x′), T (y, y′)) ≤ k

2
{d(x, y) + d(x′, y′)},

where k ∈ [ 12 , 1). Therefore all the conditions of the Theorem 3.5 are satisfied. Hence there exists a best proximity
point of T in A2. Obviously (−2,−2) is a best proximity point of T . Also, it is clear that there does not exist any
other best proximity point of T .

4 Applications on fixed point

In this section, we state a fixed point result which is direct outcome of one of the results presented in the main
section of this article. From Theorem 3.5, we derive the following theorem.

Theorem 4.1. Let (X, d) be a complete metric space and T :

n in total︷ ︸︸ ︷
X ×X × · · · ×X → X be a mapping such that the

following condition holds:

d(T (x1, x2, · · · , xn), T (y1, y2, · · · , yn)) ≤ k

n
{d(x1, y1) + d(x2, y2) + · · ·+ d(xn, yn)},

where 0 ≤ k < 1. Then T has a unique n-tuple fixed point.
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Example 4.2. Let us consider a function T : R2 → R defined as T (x, y) = x+y
3 with the usual metric d(x, y) = |x−y|

on R. Then

d(T (x1, x2), T (y1, y2)) = d
(x1 + x2

3
,
y1 + y2

3

)
=

∣∣∣x1 + x2

3
− y1 + y2

3

∣∣∣
=

∣∣∣x1 − y1
3

+
x2 − y2

3

∣∣∣
≤ k

2
{d(x1, y1) + d(x2, y2)},

where 2
3 ≤ k < 1. Clearly (0, 0) is a coupled fixed point of T and it is unique.

Here we apply our fixed point result to study the existence and uniqueness of the solution to a type of integral equations.
Let a, b > 0 and E = [0, a] × [0, b]. Moreover, we take X = L∞(E). Suppose the mapping d : X × X → [0,∞) is
defined by,

d(w1, w2) = sup
(x,y)∈E

|w1(x, y)− w2(x, y)|, (4.1)

where w1, w2 ∈ X and (x, y) ∈ E. Then (X, d) is a complete metric space.

Theorem 4.3. Consider the integral equation

u(x, y) =h(x, y) +

∫∫
E

[
K1(x, y, τ, s) +K2(x, y, τ, s)

](
f(τ, s, u(τ, s)) + g(τ, s, v(τ, s)

)
dτds, (4.2)

where a, b > 0 and E = [0, a]× [0, b]. Suppose that

(i) K1,K2 : E × E → R and h ∈ L∞(E);

(ii) assume that there exists λ1, λ2 > 0 and 0 ≤ k < 1 such that

sup
(x,y)∈E

∣∣∣ ∫∫
E

K1(x, y, τ, s)dτds
∣∣∣ ≤ k

2(λ1 + λ2)

and

sup
(x,y)∈E

∣∣∣ ∫∫
E

K2(x, y, τ, s)dτds
∣∣∣ ≤ k

2(λ1 + λ2)
;

(iii) f, g : E × R → R, such that
|f(t, s, u)− f(t, s, v)| ≤ λ1|u− v|

and
|g(t, s, u)− g(t, s, v)| ≤ λ2|u− v|,

for (t, s) ∈ E and u, v ∈ R.

Then there exists a unique solution of the integral equation (4.2) in L∞(E).

Proof . Let X = L∞(E). Then (X, d) is a complete metric space with metric defined in (4.1). Define T : X×X → X
by

(T (u, v))(x, y) = h(x, y) +

∫∫
E

K1(x, y, τ, s)
(
f(τ, s, u(τ, s)) + g(τ, s, v(τ, s))

)
dτds

+

∫∫
E

K2(x, y, τ, s)
(
f(τ, s, v(τ, s)) + g(τ, s, u(τ, s))

)
dτds
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for all x, y ∈ E and u, v ∈ X. Now for u1, u2, v1, v2 ∈ X,

d(T (u1, v1), T (u2, v2)) = sup
(x,y)∈E

|T (u1, v1)(x, y)− T (u2, v2)(x, y)|

= sup
(x,y)∈E

∣∣∣ ∫∫
E

K1(x, y, τ, s)
(
f(τ, s, u1(τ, s)) + g(τ, s, v1(τ, s))

)
dτds

+

∫∫
E

K2(x, y, τ, s)
(
f(τ, s, v1(τ, s)) + g(τ, s, u1(τ, s))

)
dτds

−
∫∫

E

K1(x, y, τ, s)
(
f(τ, s, u2(τ, s)) + g(τ, s, v2(τ, s))

)
dτds

−
∫∫

E

K2(x, y, τ, s)
(
f(τ, s, v2(τ, s)) + g(τ, s, u2(τ, s))

)
dτds

∣∣∣
= sup

(x,y)∈E

∣∣∣ ∫∫
E

K1(x, y, τ, s)
[(

f(τ, s, u1(τ, s))− f(τ, s, u2(τ, s))
)

+
(
g(τ, s, v1(τ, s))− g(τ, s, v2(τ, s))

)]
dτds

+

∫∫
E

K2(x, y, τ, s)
[(

f(τ, s, v1(τ, s))− f(τ, s, v2(τ, s))
)

+
(
g(τ, s, u1(τ, s))− g(τ, s, u2(τ, s))

)]
dτds

∣∣∣
≤ sup

(x,y)∈E

∣∣∣ ∫∫
E

K1(x, y, τ, s)
[(

f(τ, s, u1(τ, s))− f(τ, s, u2(τ, s))
)

+
(
g(τ, s, v1(τ, s))− g(τ, s, v2(τ, s))

)]
dτds

∣∣∣
+ sup

(x,y)∈E

∣∣∣ ∫∫
E

K2(x, y, τ, s)
[(

f(τ, s, v1(τ, s))− f(τ, s, v2(τ, s))
)

+
(
g(τ, s, u1(τ, s))− g(τ, s, u2(τ, s))

)]
dτds

∣∣∣
≤ sup

(x,y)∈E

∣∣∣ ∫∫
E

K1(x, y, τ, s)
[
λ1

(
u1(τ, s)− u2(τ, s)

)
+

λ2

(
v1(τ, s)− v2(τ, s)

)]
dτds

∣∣∣+ sup
(x,y)∈E

∣∣∣ ∫∫
E

K2(x, y, τ, s)[
λ1

(
v1(τ, s)− v2(τ, s)

)
+ λ2

(
u1(τ, s)− u2(τ, s)

)]
dτds

∣∣∣
= sup

(x,y)∈E

∣∣∣ ∫∫
E

K1(x, y, τ, s)
[
λ1d(u1, u2) + λ2d(v1, v2)

]
dτds

∣∣∣
+ sup

(x,y)∈E

∣∣∣ ∫∫
E

K2(x, y, τ, s)
[
λ1d(v1, v2) + λ2d(u1, u2)

]
dτds

∣∣∣

≤ sup
(x,y)∈E

∣∣∣ ∫∫
E

K1(x, y, τ, s)dτds
∣∣∣[λ1d(u1, u2) + λ2d(v1, v2)

]
+ sup

(x,y)∈E

∣∣∣ ∫∫
E

K2(x, y, τ, s)dτds
∣∣∣[λ1d(v1, v2) + λ2d(u1, u2)

]
≤ k

2(λ1 + λ2)

[
λ1d(u1, u2) + λ2d(v1, v2)

]
+

k

2(λ1 + λ2)

[
λ1d(v1, v2) + λ2d(u1, u2)

]
=

k

2(λ1 + λ2)

[
(λ1 + λ2)d(u1, u2) + (λ1 + λ2)d(v1, v2)

]
=

k

2
[d(u1, u2) + d(v1, v2)].

Then by Theorem 4.1, u(x, y) has a unique solution in L∞(E). □
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