Strong bi-ideals in bi-near subtraction semigroup

M. Fareeda Banua , S. Jayalakshmia,*
${ }^{a}$ Department of Mathematics, Sri Parasakthi College for Women, Courtallam, Tamil Nadu-627801, India

(Communicated by Neha Choubey)

Abstract

We study certain things connecting strong bi-ideals of bi-near subtraction semigroup in a sub commutative S-bi-near subtraction semigroup. A bi-ideals B of X is strong bi-ideals if $X_{1} B_{1}^{2} \subseteq B_{1}$ (or $X_{2} B_{2}^{2} \subseteq B_{2}$) denotes $X B^{2} \subseteq B$.

Keywords: S-bi-near subtraction semigroup, sub commutative, bi-ideals. 2020 MSC: $46 \mathrm{H} 10,20 \mathrm{M} 30$

1 Introduction

This paper belongs to a bi-near subtraction semigroup, simply we can say zero-symmetric right bi-near subtraction semigroup. We can refer Pilz [4] for basic definition. Zelinka [7] conversed a problem offered by schein regarding the structure of multiplication in subtraction semigroup. And also he solved the complications of subtraction algebras. Jun et al. [3] presented the view of ideas in subtraction algebras and recommended characterization of ideas. In Jun and Kim recognized the ideal generated by a set and conferred many related results. Inspired by the study of strong bi-ideals in "A study on regularities in near rings" by S. Jayalakshmi and T. Tamizh Chelvam [1] and also inspired by the study of bi-ideals in "Bi-ideals of near subtraction semigroup" by S. Maharasi, V. Mahalakshmi, S. Jayalakshmi. With this in mind, primarily we study certain properties connecting strong bi-ideals of a bi-near subtraction semigroup in a sub commutative S-bi-near subtraction semigroup. More it shown the concept of strong bi-ideals and bi-ideals are equal in sub commutative S-bi-near subtraction semigroup. We characterized strong bi-ideals by a bi-sub algebra B of X. In case of zero-symmetric and sub commutative S-bi-near subtraction semigroup, we recognized essential and necessary condition for strong bi-ideals to be bi-ideals in bi-near subtraction semigroup X.

2 Preliminaries

Definition 2.1. Let X is nonempty set, then the operation "-" is subtraction algebra, if the condition holds.

- $u(v-u)=u$
- $u-(u-v)=v-(v-u)$
- $(u-v)-w=(u-w)-v$ for every $u, v, w \in X$.

[^0]Definition 2.2. Let X is nonempty set, then the operation "-" and "." is near subtraction semigroup (right), if the condition holds.

- $(X,-)$ is subtraction algebra.
- (X, \cdot) is semigroup.
- $(x-y) z=x z-y z$ for every $x, y, z \in X$.

Definition 2.3. Let X is nonempty set, then the operation "-" and "." is subtraction semigroup, if the condition holds.

- $(X,-)$ is subtraction algebra.
- (X, \cdot) is semigroup.
- $a(b-c)=a b-b c$ for every $a, b, c \in X$.

Definition 2.4. Let $(X,-, \cdot)$ be nonempty set. We call X to be bi-near subtraction semigroup, if $X=X_{1} \cup X_{2}$

- $\left(X_{1},-, \cdot\right)$ is near subtraction group (right).
- $\left(X_{2},-, \cdot\right)$ is subtraction semigroup.

Definition 2.5. Let S be nonempty subset. Then a near subtraction semigroup is sub algebra of X, if $u-v \in S$, for every $u, v \in S$.

Definition 2.6. Let S be nonempty subset. Then S be bi-sub algebra of ($X,-$) if

- $S=S_{1} \cup S_{2}$.
- $\left(S_{1},-\right)$ is near sub algebra of $\left(X_{1},-\right)$.
- $\left(S_{2},-\right)$ is sub algebra of $\left(X_{2},-\right)$.

Definition 2.7. Let each element of X is bi-regular. Then for all $a \in X_{1} \cup X_{2}$, there exists $b \in X_{1} \cup X_{2}$, such that $a=a b a$.

Definition 2.8. Let X is strongly bi-regular if every element of X is strongly regular. For each $a \in X_{1} \cup X_{2}$, there exists $b \in X_{1} \cup X_{2}$, such that $a=b a^{2}$.

Definition 2.9. Let X is sub commutative, if $X a=a X$ for all $a \in X_{1} \cup X_{2}$.

Definition 2.10. Let every element of X is left bi-potent, i.e., $X a=a X$ for all $a \in X_{1} \cup X_{2}$.

Definition 2.11. A S-bi-near subtraction semigroup of X, if $a \in X a$ for all $a \in X_{1} \cup X_{2}$.

Definition 2.12. A bi-sub algebra B of $(X,-)$ is bi-ideals of X. If B_{1} s sub algebra of ($\left.X_{1},-\right)$ is bi-ideal of X_{1} or if B_{2} is sub algebra of ($X_{2},-$) is bi-ideal of X_{2}. (i.e.,) $B_{1} X_{1} B_{1} \subseteq B_{1}$ (or $B_{2} X_{2} B_{2} \subseteq B_{2}$) which implies $B X B \subseteq B$.

Result 2.13. Let X be bi-near subtraction semi group then $X x$ is bi-ideals of X for every $x \in X_{1} \cup X_{2}$.
Definition 2.14. A sub algebra Q of ($X,-)$ is quasi-ideal of X if $Q X \cap X Q \cap X^{*} Q \subset Q$. In case of zero-symmetric, a bi-sub algebra Q of $(X,-)$ is s quasi-ideal of X if and only if $Q X \cap X Q \subseteq Q$.

Result 2.15. Every quasi-ideal Q of bi-near subtraction semigroup X is also a bi-ideal B of bi-near subtraction semigroup X.

Proof . By the definition of quasi-ideal $Q X \cap X Q \subseteq Q$. It is enough to prove Q is bi-ideal of X. (i.e.,) to prove $Q X Q \subseteq Q$. Let $x \in Q X Q$ then $x=q x_{1} q \in Q X$ and $x=q x_{1} q \in X Q$. Thus $x \in Q X \cap X Q \subseteq Q$. Hence $x \in Q X Q$ implies $x \in Q$ which gives $Q X Q \subseteq Q$. Therefore Q is bi-ideal of X.

Lemma 2.16. A \bar{S}-b-near subtraction semigroup X with property (α) is bi-regular if and only if $B=B X B$ for every bi-ideals B of X.

Definition 2.17. If X is $S_{k}\left(S_{k}^{\prime}\right)$ bi-near subtraction semigroup then X is said to be \bar{S}-bi-near subtraction semigroup if $a \in X a^{k}\left(a \in a^{k} X\right)$ for all $a \in X_{1} \cup X_{2}$ for any positive integer k.

Remark 2.18. Every $S_{k}\left(S_{k}^{\prime}\right)$-bi-near subtraction semigroup is $S\left(S^{\prime}\right)$-bi-near subtraction semigroup. i.e., every \bar{S}-binear subtraction semigroup is bi-near subtraction semigroup.

Proof . Let X be \bar{S}-bi-near subtraction semigroup for $k=2$. Then for all $x \in X_{1} \cup X_{2}$ and $x \in X x^{k} \subseteq X x$. Hence X is \bar{S}-bi-near subtraction semigroup.

Definition 2.19. If X is $P_{k}\left(P_{k}^{\prime}\right)$-bi-near subtraction semigroup there exist positive integer k such that $x^{k} X=$ $x X x\left(X x^{k}=x X x\right)$, for all $x \in X_{1} \cup X_{2}$.

Theorem 2.20. The following subdivisions are equivalent.
(i) A bi-near subtraction semigroup of X is $G N F$.
(ii) A bi-near subtraction semigroup of X is bi-regular and each idempotent is central.
(iii) A bi-near subtraction semigroup of X is bi-regular and sub commutative.

Theorem 2.21. Let X be sub commutative \bar{S}-bi-near subtraction semigroup. The following conditions are equivalent.
(i) $B=X^{m} X B^{n}$ for each generalized (m, n) bi-ideals B of X.
(ii) X is regular.
(iii) X is strongly bi-regular.
(iv) X is left bi-potent.
(v) $a X a=X a=X a^{2}$, for all $a \in X_{1} \cup X_{2}$.
(vi) $B=B X B$, for each bi-ideals B of X.

3 Strong Bi-ideals

In this section, first we study certain properties of Strong bi-ideals in a left permutable S-bi-near subtraction semigroup. A bi-near subtraction semigroup of X is said to be left permutable if $x y z=y x z$ for all $x, y, z \in X_{1} \cup X_{2}$.

Definition 3.1. A bi-ideals B of $(X,-)$ is strong bi-ideals of a bi-near subtraction semigroup, if B_{1} is sub algebra of $\left(X_{1},-\right)$ is strong bi-ideal of X_{1} or if B_{2} is sub algebra of ($X_{2},-$) is strong bi-ideal of X_{2}. (i.e.,) $X_{1} B_{1}^{2} \subseteq B_{1}$ (or $X_{2} B_{2}^{2} \subseteq B_{2}$) implies $X B^{2} \subseteq B$.

Example 3.2. Let X be non-empty set. Where X_{1} is proper subset in X. Then $X_{1}=\{0, x, y, z\}$ be near subtraction semigroup (right) took from Klein's four group scheme ($0,7,0,9$) defined as follows.

Table 1: Strong bi-ideals in near subtraction semigroup

-	0	x	y	z
0	0	0	0	0
x	x	0	x	0
y	y	y	0	0
z	z	y	x	0

\cdot	0	x	y	z
0	0	0	0	0
x	0	x	0	z
y	0	0	0	0
z	0	x	0	z

Consider $B_{1}=\{0, z\}$ be non empty subset. To prove B_{1} is sub algebra of X_{1}. For every $0, z \in B_{1} \Rightarrow 0-z=0 \in$ $B_{1} \& z-0=z \in B_{1}$. Therefore, $\left(B_{1},-\right)$ is sub algebra of $\left(X_{1},-\right)$. Now to prove B_{1} is a strong bi-ideal of X_{1}. Then $X_{1} B_{1}^{2} \subseteq B_{1} \Rightarrow X_{1}\{0, z\}^{2} \subseteq\{0, z\} \Rightarrow\{0, x, y, z\}\{0, z\} \subseteq\{0, z\} \Rightarrow\{0, z\} \subseteq\{0, z\}$.

Or X_{2} is proper subset in X. Then $X_{2}=\{0, a, b, c\}$ be subtraction semigroup defined on Klein's four group scheme $(0,7,13,9)(\mathrm{P} .408$, Pilz [29]) defined as follows.

Table 2: Strong bi-ideals in subtraction semigroup

-	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	a	b	c
b	0	0	0	0
c	0	a	b	c

Consider $B_{2}=\{0, a\}$ be nonempty subset. To prove B_{2} is sub algebra of X_{2}. For every $0, a \in B_{2} \Rightarrow 0-a=0 \in$ $B_{2} \& a-0=a \in B_{2}$. Therefore, $\left(B_{2},-\right)$ is sub algebra of $\left(X_{2},-\right)$. Now to prove B_{2} is a strong bi-ideal of X_{2}. Then $X_{2} B_{2}^{2} \subseteq B_{2} \Rightarrow X_{2}\{0, a\}^{2} \subseteq\{0, a\} \Rightarrow\{0, a, b, c\}\{0, a\} \subseteq\{0, a\} \Rightarrow\{0, a\} \subseteq\{0, a\}$. Therefore X is a strong bi-ideals of a bi-near subtraction semigroup.

Remark 3.3. Every strong bi-ideals of X is also a bi-ideals of X.
Example 3.4. Let X is non-empty set. Where X_{1} is proper subset in X. Then $X_{1}=\{0, x, y, z\}$ be near subtraction semigroup (right) took from Klein's four group scheme ($0,7,0,9$) defined as follows

Table 3: Strong bi-ideals as well as bi-ideals in near subtraction semigroup

-	0	x	y	z
0	0	0	0	0
x	x	0	x	0
y	y	y	0	0
z	z	y	x	0

\cdot	0	x	y	z
0	0	0	0	0
x	0	x	0	z
y	0	0	0	0
z	0	x	0	z

Consider $B_{1}=\{0, z\}$ be non empty subset. To prove B_{1} is sub algebra of X_{1}. For every $0, z \in B_{1} \Rightarrow 0-z=0 \in$ $B_{1} \& z-0=z \in B_{1}$. Therefore, $\left(B_{1},-\right)$ is sub algebra of $\left(X_{1},-\right)$. Now to prove B_{1} is a strong bi-ideal of X_{1}. Then $X_{1} B_{1}^{2} \subseteq B_{1} \Rightarrow X_{1}\{0, z\}^{2} \subseteq\{0, z\} \Rightarrow\{0, x, y, z\}\{0, z\} \subseteq\{0, z\} \Rightarrow\{0, z\} \subseteq\{0, z\}$. Also to prove B_{1} is a bi-ideal of X_{1}. Then $B_{1} X_{1} B_{1} \subseteq B_{1} \Rightarrow\{0, z\} X_{1}\{0, z\} \Rightarrow\{0, z\}\{0, x, y, z\}\{0, z\} \Rightarrow\{0, z\} \subseteq\{0, z\}$.

Or X_{2} is proper subset in X. Then $X_{2}=\{0, a, b, c\}$ be subtraction semigroup defined on Klein's four group scheme $(0,7,11,1)$ defined as follows:

Table 4: Strong bi-ideals as well as bi-ideals in subtraction semigroup

-	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
c	0	a	b	c

Consider $B_{2}=\{0, a\}$ be nonempty subset. To prove B_{2} is sub algebra of X_{2}. For every $0, a \in B_{2} \Rightarrow 0-a=0 \in$ $B_{2} \& a-0=a \in B_{2}$. Therefore, $\left(B_{2},-\right)$ is sub algebra of $\left(X_{2},-\right)$. Now to prove B_{2} is a strong bi-ideal of X_{2}. Then $X_{2} B_{2}^{2} \subseteq B_{2} \Rightarrow X_{2}\{0, a\}^{2} \subseteq\{0, a\} \Rightarrow\{0, a, b, c\}\{0, a\} \subseteq\{0, a\} \Rightarrow\{0, a\} \subseteq\{0, a\}$. Also to prove B_{2} is a bi-ideal of X_{2}. Then $B_{2} X_{2} B_{2} \subseteq B_{2} \Rightarrow\{0, a\} X_{2}\{0, a\} \Rightarrow\{0, a\}\{0, a, b, c\}\{0, a\} \Rightarrow\{0, a\} \subseteq\{0, a\}$.

Clearly every strong bi-ideals of bi-near subtraction semigroup X is also a strong bi-ideals of X.
Remark 3.5. Every bi-ideals of bi-near subtraction semigroup X is different from strong bi-ideals of bi-near subtraction semigroup X.

Example 3.6. Let X is nonempty set. Where X_{1} is proper subset in X. Then $X_{1}=\{0, x, y, z\}$ be near subtraction semi group(right) defined on Klein's four group scheme ($0,1,1,1$) defined as follows:

Table 5: Bi-ideals is different from strong bi-ideals in near subtraction semigroup

-	0	x	y	z
0	0	0	0	0
x	x	0	x	0
y	y	y	0	0
z	z	y	x	0

\cdot	0	x	y	z
0	0	0	0	0
x	0	x	x	x
y	0	y	y	y
z	0	z	z	z

Consider $B_{1}=\{0, y\}$ be nonempty subset. To prove B_{1} is sub algebra of X_{1}. For every $0 . y \in B_{1} \Rightarrow 0-y=0 \in$ $B_{1} \& y-0=y \in B_{1}$. Therefore, $\left(B_{1},-\right)$ is sub algebra of $\left(X_{1},-\right)$. Now, to prove B_{1} is a bi-ideal of X_{1}. Then $B_{1} X_{1} B_{1} \subseteq$ $B_{1} \Rightarrow\{0, y\} X_{1}\{0, y\} \subseteq\{0, y\} \Rightarrow\{0, y\}\{0, x, y, z\}\{0, y\} \subseteq\{0, y\} \Rightarrow\{0, y\} \subseteq\{0, y\}$. Also to prove B_{1} is different from strong bi-ideal of X_{1}. Then $X_{1} B_{1}^{2} \nsubseteq B_{1} \Rightarrow X_{1}\{0, y\}^{2} \nsubseteq\{0, y\} \Rightarrow\{0, x, y, z\}\{0, y\} \nsubseteq\{0, y\} \Rightarrow\{0, x, y, z\} \not \subset\{0, y\}$.

Or, X_{2} is proper subset in X. Then $X_{2}=\{0, a, b, c\}$ be subtraction semi group defined on Klein's four group scheme $(0,0,1,1)$ defined as follows:

Table 6: Bi-ideals is different from Strong bi-ideals in subtraction semigroup

-	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	0	b	b
c	0	0	c	c

Consider $B_{2}=\{0, b\}$ be nonempty subset. To prove B_{2} is sub algebra of X_{2}. For every $0 . b \in B_{2} \Rightarrow 0-b=0 \in$ $B_{2} \& b-0=b \in B_{2}$. Therefore, $\left(B_{2},-\right)$ is sub algebra of $\left(X_{2},-\right)$. Now, to prove B_{2} is a bi-ideal of X_{2}. Then $B_{2} X_{2} B_{2} \subseteq$ $B_{2} \Rightarrow\{0, b\} X_{2}\{0, b\} \subseteq\{0, b\} \Rightarrow\{0, b\}\{0, a, b, c\}\{0, b\} \subseteq\{0, b\} \Rightarrow\{0, b\} \subseteq\{0, b\}$. Also to prove B_{2} is different from strong bi-ideal of X_{2}. Then $X_{2} B_{2}^{2} \nsubseteq B_{2} \Rightarrow X_{2}\{0, b\}^{2} \nsubseteq\{0, b\} \Rightarrow\{0, a, b, c\}\{0, b\} \nsubseteq\{0, b\} \Rightarrow\{0, a, b, c\} \not \subset\{0, b\}$. One can verify that $\{0, b\}$ is a bi-ideals but not a strong bi-ideals of bi-near subtraction semigroup X.

Result 3.7. Let X be a bi-near subtraction semigroup, then $X x$ is strong bi-ideals of X for every $x \in X_{1} \cup X_{2}$.
Proof . Let X be bi-near subtraction semigroup. By Result 2.13, then $X x$ is strong bi-ideal of X. Let us consider $X(X x)^{2}=X(X x)(X x)=X x X x \subseteq X x$. The above gives $X x$ is strong bi-ideals of X.

Proposition 3.8. A set of all strong bi-ideals of X form a moore system on X.
Proof . Let $\left\{B_{i}\right\}_{i \in I}$ be set of all strong bi-ideals of X. To prove $B=\bigcap_{i \in I} B_{i}$ is strong bi-ideals of X. Now to prove $X B^{2} \subseteq B$. Let $\left\{B_{i}\right\}_{i \in I}$ be strong bi-ideals of X if $X B_{i}^{2} \subseteq B_{i}$ implies $X_{1} B_{i}^{2} \subseteq B_{i}$ (or $X_{2} B_{i}^{2} \subseteq B_{i}$). Clearly $B \subseteq B_{i}$. We can say as $B^{2} \subseteq B_{i}^{2}$. Then $X_{1} B_{1}^{2} \subseteq X_{1} B_{i}^{2} \subseteq B_{i} \subseteq B\left(\right.$ or $X_{2} B_{2}^{2} \subseteq X_{2} B_{i}^{2} \subseteq B_{i} \subseteq B$) implies $X_{1} B_{1}^{2} \subseteq B_{i} \subseteq B$ (or $\left.X_{2} B_{2}^{2} \subseteq B_{i} \subseteq B\right)$ which implies $X B_{i}^{2} \subseteq B_{i} \subseteq B \Rightarrow X B^{2} \subseteq B$. Hence $B=\bigcap_{i \in I} B_{i}$ is a strong bi-ideals of X.

Proposition 3.9. Let B be strong bi-ideals of X and S is sub bi-near subtraction semigroup of X, then $B \cap S$ is strong b-ideals of S.

Proof . Let B is strong bi-ideals of X implies $X B^{2} \subseteq B$ and S is sub bi-near subtraction semigroup of X implies $S S \subseteq S$. To prove $C=B \cap S$ is strong bi-ideals of S. Now to prove $S C^{2} \subseteq C$. Now $S C^{2}=S C C=S(B \cap S)(B \cap S)=$ $S(B B \cap S S) \subseteq S B^{2} \cap S S^{2} \subseteq S B^{2} \cap S$. (Since S is sub bi-near) $\in X B^{2} \cap S \subseteq B \cap S=C$. (i.e.,) $S C^{2} \subseteq C$. Hence $B \cap S$ is strong bi-ideals of S.

Proposition 3.10. Let B be a Strong bi-ideals of X. If elements of B are strongly regular, then B is a quasi-ideal of X.

Proof . Let B be a Strong bi-ideals of X if $X_{1} B_{1}^{2} \subseteq B_{1}$ (or $X_{2} B_{2}^{2} \subseteq B_{2}$) implies $X B^{2} \subseteq B$. To prove B is a quasi-ideal of X. (i.e) To prove $B_{1} X_{1} \cap X_{1} B_{1} \subseteq B_{1}$ (or $B_{2} X_{2} \cap X_{2} B_{2} \subseteq B_{2}$). If $x \in B_{1} X_{1} \cap X_{1} B_{1}$, then $x=b_{1} x_{1}=m_{1} b_{2}$, for some $b_{1}, b_{2} \in B$ and $n_{1}, m_{1} \in X_{1}$. Since the elements of B are strongly regular, $b_{1}=c_{1} b_{1}^{2}$ and $b_{2}=c_{2} b_{2}^{2}$, for some $c_{1}, c_{2} \in B$. Hence $x=b_{1} x_{1}=\left(c_{1} b_{1}^{2}\right) x_{1}=\left(c_{1}\left(b_{1} b_{1}\right)\right) x_{1}=\left(c_{1} b_{1}\right)\left(b_{1} x_{1}\right)=\left(c_{1} b_{1}\right)\left(m_{1} b_{2}\right)=\left(c_{1} b_{1}\right)\left(m_{1} c_{2} b_{2}^{2}\right)=\left(c_{1} b_{1} m_{1} c_{2}\right) b_{2}^{2} \in$ $X_{1} B_{1}^{2} \subseteq B_{1}$ (i.e) $B_{1} X_{1} \cap X_{1} B_{1} \subseteq B_{1}$. Similarly $x \in B_{2} X_{2} \cap X_{2} B_{2}$, we can prove that $B_{2} X_{2} \cap X_{2} B_{2} \subseteq B_{2}$. Hence B is a quasi-ideal of X.

Proposition 3.11. Let X be sub commutative. If B is a Strong bi-ideals of X then $x B$ and $B x^{\prime}$ are strong bi-ideals of bi-near subtraction semigroup X, where $x, x^{\prime} \in X$ and x is distributive.

Proof . To prove $x B$ is a Strong bi-ideals of X. First to prove $x B$ is a bi sub algebra of X. (i.e.,) to prove $X_{1}\left(x B_{1}\right)^{2}\left(\right.$ or $\left.X_{2}\left(x B_{2}\right)^{2}\right) \subseteq X(x B) \subseteq x B$. Let $n \in X(x B)^{2}$ then $n=x_{1} x b x b^{\prime}$ where $x \in X_{1} \cup X_{2}$ and $b, b^{\prime} \in B$. Now $n=x_{1} x b x b^{\prime}=x x_{1} b x b^{\prime}$ (Since X is sub commutative) $x x_{1} x b b^{\prime} \in x\left(X B^{2}\right) \subseteq x B$. (i.e) $X(x B)^{2} \subseteq x B$. Hence $x B$ is a Strong bi-ideals of X.

Similarly we can prove that $B x^{\prime}$ is Strong bi-ideals of X. First to prove $B x^{\prime}$ is a bi sub algebra of X. Now, to prove $X\left(B x^{\prime}\right)^{2} \subseteq B x^{\prime}$. Let $n \in X\left(B x^{\prime}\right)^{2}$ then $n=x_{1} b x^{\prime} b^{\prime} x^{\prime}$ where $x^{\prime} \in X_{1}^{\prime} \cup X_{2}^{\prime}$ and $b,^{\prime} \in B$. Now $n=x_{1} b b^{\prime} x^{\prime} x^{\prime} \in$ $X\left(B^{2} x^{\prime}\right)=X\left(B x^{\prime}\right)^{2} \subseteq B x^{\prime}$. (i.e) $X\left(B x^{\prime}\right)^{2} \subseteq B x^{\prime}$. Hence $B x^{\prime}$ is a Strong bi-ideals of X.

Proposition 3.12. Let X be strongly bi-regular, then $B=X B^{2}$, for each strong bi-ideals B of X.
Proof . Let B be strong bi-ideals of X then $X B^{2} \subseteq B$ i.e., $X_{1} B_{1}^{2} \subseteq B_{1}$ (or $X_{2} B_{2}^{2} \subseteq B_{2}$). It is enough prove $B \subseteq X_{1} B_{1}^{2}$. Let $b \in B$. Since X is strongly bi-regular, there exist $x \in X_{1} \cup X_{2}$ such that $b=x b^{2} \in X_{1} B_{1}^{2}$ (or $X_{2} B_{2}^{2}$), (i.e., $B \subseteq X_{1} B_{1}^{2}$ (or $B \subseteq X_{2} B_{2}^{2}$) implies $B \subseteq X B^{2}$. Hence $B=X B^{2}$, for each strong b-ideals B of X.

Proposition 3.13. Let X be sub commutative S-bi-near subtraction semigroup of X. Then X is strongly bi-regular, if and only if $B=X B^{2}$, for each strong bi-ideals B of X.

Proof . Let X be sub commutative S-bi-near subtraction semigroup of X. Suppose X is strongly bi-regular, then by the Proposition 3.12, $B=X B^{2}$.

Conversely assume that $B=X B^{2}$. To prove X is strongly bi-regular. (i.e) to prove $x \in X x^{2}$ for all $x \in X_{1} \cup X_{2}$. By the Result 3.7 , $X x$ is a Strong bi-ideals of X. Since X is S-bi-near subtraction semigroup, $x \in X x=X(X x)^{2} \subseteq X x X x$. (i.e) for $x_{1}, x_{2} \in X_{1} \cup X_{2}, x=x_{1} x x_{2} x=x_{1} x_{2} x x \in X x^{2}$. Thus $x \in X x$ implies $x \in X x^{2}$ which gives that X is strongly bi-regular.

Proposition 3.14. Let X be sub commutative S-bi-near subtraction semigroup of X. Then X is left bi-potent if and only if $B=X B^{2}$, for each strong bi-ideals B of X.

Proof . Every left bi-potent is strongly bi-regular and by Proposition 3.10.
Proposition 3.15. Let X be sub commutative. Then B is bi-ideal of X if and only if B is strong bi-ideals of X.
Proof. If part, every bi-ideals of X with sub commutative is strong bi-ideals of X.
Conversely assume B is bi-ideals of X, then $B X B \subseteq B$. (i.e.,) $B_{1} X_{1} B_{1} \subseteq B_{1}$ (or $B_{2} X_{2} B_{2} \subseteq B_{2}$). Now to prove B is strong bi-ideals of X. (i.e.,) to prove $X B^{2} \subseteq B$. Let $x \in X B^{2}$, then $x=x_{1} b^{2}$ where $x \in X_{1} \cup X_{2}$ and $b \in B$. Now $x=x_{1} b^{2}=x_{1} b b=b x_{1} b$ (Since X is sub commutative). Therefore $x=b x_{1} b \in B_{1} X_{1} B_{1} \subseteq B_{1}$ (or $B_{2} X_{2} B_{2} \subseteq B_{2}$) implies $x \in B$. Therefore $X B^{2} \subseteq B$. Hence B is strong bi-ideals of X.

Proposition 3.16. Let X be sub commutative S-bi-near subtraction semigroup and B be bi-ideals of X. Then $B=B X B$ if and only if $B=X B^{2}$, for each strong bi-ideals B of X.

Proof . Assume that $B=B X B$, for each bi-ideals B of X. By the definition, if B is bi-ideals of X implies $B X B \subseteq B$ and X is sub commutative. From Proposition 3.15, B is a strong bi-ideals of X implies $X B^{2} \subseteq B$. (i.e) $X_{1} B_{1}^{2} \subseteq B_{1}$ (or $X_{2} B_{2}^{2} \subseteq B_{2}$). Let $x \in B=B X B$ then $x=b x_{1} b$ for some $b \in B$ then $b \in X_{1} \cup X_{2}$ and $x_{1} \in X_{1} \cup X_{2}$. Since X is left permutable, $x=x_{1} b b=x_{1} b^{2} \in X B^{2}$. (i.e) $B \subseteq X B^{2}$ and so $B=X B^{2}$, for each strong bi-ideals B of X.

Conversely let $B=X B^{2}$. To prove $B=B X B$. From the definition of bi-ideals we get $B X B \subseteq B$. It is enough to prove $B \subseteq B X B$. Let $x \in B=X B^{2}$ then $x=x_{1} b^{2}$ where $x_{1} \in X_{1} \cup X_{2}$. Now $x=x_{1} b^{2}=x_{1} b b=b x_{1} b \in B X B$. That is $B \subseteq B X B$ and hence $B=B X B$.

Theorem 3.17. Let X be sub commutative S-bi-near subtraction semigroup of X. Then the following conditions are equivalent.
(i) $B=B^{m} X B^{n}$, for each generalized (m, n) bi-ideals B of X, for any positive integers m, n.
(ii) $X B^{2}=B$, for each strong bi-ideals B of X.
(iii) $B=B X B$, for each bi-ideals B of X.
(iv) $Q=Q X Q$, for each quasi-ideal Q of X.

Proof . $(i) \Rightarrow(i i)$ Consider $B=B^{m} X B^{n}$. By the definition, if B be strong bi-ideals of X implies $X B^{2} \subseteq B$. (i.e) $X_{1} B_{1}^{2} \subseteq B_{1}\left(\right.$ or $\left.X_{2} B_{2}^{2} \subseteq B_{2}\right)$. It is enough to prove $B \subseteq X B^{2}$. Since every strong bi-ideals is a bi-ideals implies B is a bi-ideals of X. Since every bi-ideals of X is a generalized (m, n) bi-ideals of X, we get $B=B_{1}^{m} X_{1} B_{1}^{n}$ (or $\left.B_{2}^{m} X_{2} B_{2}^{n}\right) \subseteq B_{1}^{2}$ or $\left(\right.$ or $\left.X_{2}\left(B_{2}^{n-2} B_{2}^{2}\right)\right) \subseteq X_{1} B_{1}^{2}\left(\right.$ or $\left.X_{2} B_{2}^{2}\right) \subseteq X B^{2}$. Hence $X B^{2}=B$, for each strong bi-ideals B of X.
$($ ii $) \Rightarrow($ iii $)$ Consider $X B^{2}=B$. By the Proposition 3.16, $B=B X B$, for each bi-ideals B of X.
$(i i i) \Rightarrow(i v)$ Suppose $B=B X B$. By Result 2.15, every quasi-ideal Q of X is a bi-ideals of X, we acquire $Q=Q X Q$.
$(i v) \Rightarrow(i)$ Consider $Q=Q X Q$. Let B be generalized (m, n) bi-ideals B of X. Since X is S-bi-near subtraction semigroup. Let $a \in X_{1} \cup X_{2}$, then $X a$ is quasi-ideal of bi-near subtraction semigroup X. Now $a \in X a=$ $(X a) X(X a), a=x_{1} a x_{1} x_{1} a$ for some $x_{1} \in X_{1} \cup X_{2}$. (Since X is sub commutative) $=a x_{1}^{3} a \in a X a$ (i.e) $X a=a X a$ for all $a \in X_{1} \cup X_{2}$. In a sub commutative bi-near subtraction semigroup $a \in X a^{2}$ implies $a \in x a=x a a=a x a \in a X a$ then $x a \subseteq a X a \subseteq X a$ for all $a \in X_{1} \cup X_{2}$ and hence $a X a=X a=X a^{2}$ for all $a \in X_{1} \cup X_{2}$. Now by the Theorem 2.21, hence $B=B^{m} X B^{n}$, for all positive integers m and n.

4 Conclusion

We concluded that every strong bi-ideals of X is also a bi-ideals of X. And we have seen the properties of strong bi-ideals in bi-near subtraction semigroup.

Acknowledge

Thank you for the review peer members for the valued ideas and correction for perfection of the paper. Thank you to UGC, New Delhi.

References

[1] S. Jayalakshmi, A study on Regularities in near rings, PhD thesis, Manonmaniam Sundaranar University, Tamil Nadu, 2003.
[2] S. Jayalakshmi, V. Mahalakshmi and S. Maharasi, On strong bi-ideals and weak k-regular in near subtraction semigroups, IJMM 9 (2016), no. 2, 181-183.
[3] Y.B. Jun and H.S. Kim, On bi-ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129-134.
[4] P. Gunter, Near-rings, North Holland, Amsterdam, 1983.
[5] T. Tamizh Chelvam and S. Jayalakshmi, Generalized (m, n) bi-ideals in near rings, Proc. India. Acad. Sci. (Math. Sci.) 112 (2002), no.4, 479-483.
[6] T. Tamizh Chelvam and N. Ganesan, On bi-ideals of near-rings, Indian J. Pure Appl. Math. 18 (1987), no. 11, 1002-1005.
[7] B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no.4, 445-447.

[^0]: * Corresponding author

 Email addresses: athiya3@gmail.com (M. Fareeda Banu), jayarajkutti@gmail.com (S. Jayalakshmi)

