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Abstract

In this article, Ulam Hyers stability of Volterra Fredholm (VF) type fractional integro-differential equation is studied
by the fixed point notion in the generalized metric space. In addition, the efficiency of the Laplace decomposition
method in the context of solving some integral equations of the Volterra Fredholm type is shown. Further convergence
analysis of the numerical scheme is shown.
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1 Introduction

Integral and integro-differential equations have been used through decades to model variety of physical problems.
Specifically, fractional integral and integro-differential equations often arise to model problems related to mathematical
physics, such as heat conduction with some hereditary properties, viscoelasticity etc. As a sequel the study of existence
of solution of such equation is of utmost significance. Some recent works related to the existence study can be found
in [6, 9, 10, 13, 11, 15]. Also, the essence of developing various numerical schemes [2, 3, 7, 8, 14, 12] for solving such
equations with accuracy is of high interest till date. Mittal and Nigam [8] implemented the ADM to deal with integro-
differential equations of fractional order. Ma and Huang [7] adopted hybridization method to solve concerned class of
equations. Hamoud and Ghadle [3] implemented homotopy analysis method to approximate solution of the fractional
VF integro-differential equation. Hamoud and Ghadle [2] proposed analytic technique to approximate solution of
fractional integro-differential equation. They further [5] proposed modified adomian decomposition method to solve
such equations. A part from this many authors deal with the stability of such equations. Yunus Atalan and Vatan
Karakaya [1] studied Hyers-Ulam and Hyers-Ulam-Rassias for the nonlinear Volterra Fredholm integro-differential
equation (VFIDE) implementing the fixed point concept. But less number of works have been noticed regarding the
stability of integro-differential equation of fractional order. Motivated by Yunus and Vatan work, the main aim of this
study is to find out the sufficient conditions for attaining the Hyers Ulam stability of fractional Volterra Fredholm
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integro-differential equation of the following form:

Dαv(τ) = g(τ) +

τ∫
0

H1(τ, σ)G1(σ, v(σ))dσ +

b∫
0

H2(τ, σ)G2(σ, v(σ))dσ, 0 < α < 1 (1.1)

with the initial condition
v(j)(0) = ∆j (1.2)

for j = 0, 1, 2, 3, ...n − 1. Here g(t) is the known function, H1 and H2 are kernel functions. G1 and G2 are unknown
functions.

2 Preliminaries

In this section the notion of generalized metric space and the fixed point theorem related to this metric has been
discussed.

Definition 2.1. A function d̃ : Y × Y → [0,∞] is called a generalized metric on Y if and only f d̃ satisfies
(A1) d̃(p̃, q̃) = 0 if and only if p̃ = q̃;
(A2) d̃(p̃, q̃) = d̃(q̃, p̃) for all p̃, q̃ ∈ Y ;
(A3) d̃(p̃, r̃) ≤ d̃(p̃, q̃) + d̃(q̃, r̃) ∀ p̃, q̃, r̃ ∈ Y .

Theorem 2.2. [1] Let (Y, d̃) be a generalized complete metric space. Also let φ : Y → Y be a strictly contractive
operator with the Lipschitz constant λ < 1. If there is a nonnegative integer p such that d̃(φp+1v, φpv) < ∞ for some
v ∈ Y , then

(i) the sequence {φnv} converges to a unique fixed point v0 of φ in V = {ṽ ∈ Y : d̃(φpv, ṽ) < ∞}

(ii) If v ∈ Y , then d̃(v, v0) ≤ 1
1−λ d̃(φv, v)

Definition 2.3. The Riemann Liouville integral operator of order γ is defined as

Iγp(τ) = 1
Γ(γ)

τ∫
0

p(σ)
(τ−σ)1−γ dσ, γ > 0 where Γ(·) symbolizes the Gamma function provided the integral exists.

Definition 2.4. The Caputo fractional derivative of p(t) of order γ is defined as

Dγp(τ) = 1
Γ(n−γ)

τ∫
0

(τ − σ)n−γ−1pn(σ)dσ,

for n− 1 ≤ γ ≤ n, n ∈ N , τ > 0.

Lemma 2.5. If v0(τ) ∈ C(I,R), then v(τ) ∈ C(I,R+) is a solution of the problem (1.1)-(1.2) iff v satisfies the
following equation

v(τ) = Σn−1
k=0v

k(0+) τ
k

k +
τ∫
0

(τ − τ∗)q−1

(
g(ζ) +

τ∗∫
0

H1(τ
∗, σ)G1(σ, v(σ))dσ

)
dτ∗ +

τ∫
0

(τ − τ∗)q−1

(
b∫
0

H2(τ
∗, σ)G2(σ, v(σ))dσ

)
dτ∗ (2.1)

Theorem 2.6. The Laplace transform of the Caputo derivative is defined as

L[Dβf(τ)] = sβF (σ)−
n−1∑
k=0

σβ−k−1fk(0) (2.2)

for n− 1 < β ≤ n.
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3 Main results

To derive the theoretical findings the following hypothesis have been considered.
(I) G1(τ, v(τ)) and G2(τ, v(τ)) are Lipschitz functions with Lipschitz constants L1(> 0) and L2(> 0) respectively i.e.,

|G1(τ, v(τ))−G1(τ, w(τ))| ≤ L1|v − w| (3.1)

|G2(τ, v(τ))−G2(τ, w(τ))| ≤ L2|v − w| (3.2)

and also G1(τ, 0) = G2(τ, 0) = 0, ∀ τ ∈ I.
(II) The kernel functions H1(τ, σ) and H2(τ, σ) are continuous on I × I, and consequently bounded by M1(> 0) and
M2(> 0) in I × I.
(III)There exist two positive continuous functions M⋆

1 , M
⋆
2 : I × I → R+ such that

M⋆
1 = supτ∈I

τ∫
0

|H1(τ, σ)|dσ < ∞,

M⋆
2 = supτ∈I

τ∫
0

|H2(τ, σ)|dσ < ∞.

3.1 Hyer Ulam Stability

Definition 3.1. If ∀ϵ > 0 and each continuously differentiable function v(τ) satisfying

|Dαv(τ)− g(τ)−
τ∫

0

H1(τ, σ)G1(σ, v(σ))dσ −
b∫

0

H2(τ, σ)G2(σ, v(σ))dσ| ≤ ϵ, (3.3)

∀ τ ∈ I, there exists a solution v0(τ) of the Volterra Fredholm fractional integro-differential equation and a constant
K > 0 (independent of v(τ) and v0(τ)) with
|v(τ)− v0(τ)| ≤ Kϵ, for all τ ∈ I, then the equation (1.1) is said to be Hyers-Ulam stable on I.

Moreover, if v(k)(0) = v
(k)
0 (0), k = 0, 1, 2, ....m− 1 equation (1.1) is Hyers-Ulam stable with initial conditions.

Remark 1: A function v ∈ C ′(I,R) is a solution of the inequality (3.3) if there exists a function qv ∈ C(I,R)(which
depends on v) such that
(i) |qv(τ)| ≤ ϵ, τ ∈ I;

(ii) Dαv(τ) = g(τ) +
τ∫
0

H1(τ, σ)G1(σ, v(σ))dσ +
b∫
0

H2(τ, σ)G2(σ, v(σ))dσ + qv(τ).

Theorem 3.2. If v ∈ C ′(I,R) satisfies the inequality (3.3), then v satisfies the following inequality: |v(τ)−Σn−1
k=0v

k(0+) τ
k

k −
1

Γ(β)

τ∫
0

(τ − τ∗)β−1
(
g(τ∗)−

τ∗∫
0

H1(τ
∗, σ)G1(σ, v(σ))dσ−

b∫
0

H2(τ
∗, σ)G2(σ, v(σ))dσ

)
dτ∗|

≤ ϵτ, τ ∈ I.

Proof . Indeed, if v ∈ C ′(I,R) satisfies the inequality (3.3), then by Remark 1, we have

Dβv(τ) = g(τ) +
τ∫
0

H1(τ, σ)G1(σ, v(σ))dσ +
b∫
0

H2(τ, σ)G2(σ, v(σ))dσ + qv(τ).

Thus yields

|v(τ)− Σn−1
k=0v

k(0+) τ
k

k − 1
Γ(β)

τ∫
0

(τ − τ∗)β−1(g(τ∗)−
τ∗∫
0

H1(τ
∗, σ)G1(σ, v(σ))dσ

−
b∫
0

H2(τ
∗, σ)G2(σ, v(σ))dσ)dτ

∗|

≤
τ∫
0

|qv(σ)|dσ

≤ ϵτ . □
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Theorem 3.3. Let I = [0, b] be a non-degenerated interval, L1, L2, M1 and M2 be nonnegative constants such that

M1L1 + (β + 1)M2L2

Γ(β + 2)
bβ+1 < 1 (3.4)

Suppose g is continuous function and F1, F2 : I×R → R are continuous functions which satisfy the Lipchitz conditions
with respect to the second argument and also the kernels k1, k2 are bounded by M1 and M2 respectively . If for ϵ ≥ 0
and ∀τ ∈ I, a continuously differentiable function v : I → R satisfy

|Dβv(τ)− g(τ)−
τ∫

0

H1(τ, σ)G1(σ, v(σ))dσ −
b∫

0

H2(τ, σ)G2(σ, v(σ))dσ| ≤ ϵ (3.5)

then there exists a unique continuous function v0 : I → R given by

v0(τ) = Σn−1
k=0v

k(0+)
τk

k
+

1

Γ(β)

τ∫
0

(τ − τ∗)β−1
(
g(τ∗) +

τ∗∫
0

H1(τ
∗, σ)G1(σ, v(σ))dσ+

b∫
0

H2(τ
∗, σ)G2(σ, v(σ))dσ

)
dτ∗ (3.6)

and also the following inequality holds good.

|v(τ)− v0(τ)| ≤
bϵ

1− M1L1+(β+1)M2L2

Γ(β+2) bβ+1
,∀τ ∈ I. (3.7)

Proof . Suppose Y is the set of all real valued continuous functions on closed and bounded interval I. Now ∀ u,w ∈ Y ,
a metric on Y is defined by
d̃(u,w) = inf{N ∈ [0,∞] : |v(τ)− w(τ)| ≤ N∀τ ∈ I}. (Y, d̃) is a complete generalized metric space, see [1].

Now the operator φ : Y → Y is considered which is defined as:

(φv)(τ) = Σn−1
k=0v

k(0+) τ
k

k + 1
Γ(β)

τ∫
0

(τ − τ∗)q−1
(
g(τ∗) +

τ∗∫
0

H1(τ
∗, σ)G1(σ, v(σ))dσ +

b∫
0

H2(τ
∗, σ)G2(σ, v(σ))dσ

)
dτ∗

Suppose N(v, w) be an arbitrary constant such that d̃(v, w) ≤ N(v, w). Now for v1(τ), v2(τ),
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|(φv)(τ)− (φw)(τ)| ≤ 1

Γ(q)

τ∫
0

(τ − τ∗)q−1[

τ∗∫
0

|H1(τ
∗, σ)| (|G1(σ, v(σ))−G1(σ,w(σ))|) dσ

+

b∫
0

|H2(τ
∗, σ)| (|G1(σ, v(σ))−G1(σ,w(σ))|) dσ]

≤ M1

Γ(q)

τ∫
0

(τ − τ∗)q−1[

τ∗∫
0

L1|v(σ)− w(σ)|dσ]dτ∗

+
M2

Γ(q)

τ∫
0

(τ − τ∗)q−1[

b∫
0

L2|v(σ)− w(σ)|dσ]dτ∗ (3.8)

≤ M1L1

Γ(q)

τ∫
0

(τ − τ∗)q−1[

τ∗∫
0

N(v, w)dσ]dτ∗

+
M2L2

Γ(q)

τ∫
0

(τ − τ∗)q−1[

b∫
0

N(v, w)dσ]dτ∗ (3.9)

≤ M1L1 + (α+ 1)M2L2

Γ(q + 2)
bα+1N(v, w)

Thus by the hypothesis, φ is strictly contractive on the considered space Y . Now for an arbitrary element v0 in
Y , there exists a constant Ñ ∈ (0,∞)∀τ ∈ I such that

|(φv0)(τ)− (v0)(τ)| ≤ |Σn−1
k=0v

k(0+)
τk

k

+
1

Γ(q)

τ∫
0

(τ − τ∗)q−1

g(τ∗) +

τ∗∫
0

k1(τ
∗, σ)G1(σ, v(σ))dσ +

b∫
0

k2(τ
∗, σ)G2(σ, v(σ))dσ

 dτ∗ − v0(τ)|

≤ Ñ

. Hence, from the above inequality it is inferred that

d(φv0, v0) ≤ ∞

.
Now, using Theorem 2.2, there exists v1 ∈ C([0, b], R) such that φnv0 → v1 in (Y, d̃) as n → ∞ and φv1 = v1. Thus
the fixed point v0 is the desired solution of the considered equation.
Since d̃ is a metric, v0 : I → R is the unique continuous solution such that

v0(τ) = Σn−1
k=0v

k(0+) τ
k

k + 1
Γ(q)

τ∫
0

(τ − τ∗)q−1
(
g(τ∗) +

τ∗∫
0

H1(τ
∗, σ)G1(σ, v(σ))dσ +

b∫
0

H2(τ
∗, σ)G2(σ, v(σ))dσ

)
dτ∗

Now by the hypothesis (3.5), it yields
d̃(v, φv) ≤ bϵ (3.10)

Linking the Theorem 2.2 with the above equality (3.10), yields the following
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d̃(v, v0) ≤
1

1− M1L1+(α+1)M2L2

Γ(q+2) bα+1
d̃(v, φv)

≤ bϵ

1− M1L1+(α+1)M2L2

Γ(q+2) bα+1
.

(3.11)

□

4 Numerical Scheme

4.1 Laplace Decomposition Method

Dαv(τ) = g(τ) +

τ∫
0

H1(τ, σ)G1(σ, v(σ))dσ +

b∫
0

H2(τ, σ)G2(σ, v(σ))dσ

Applying laplace transform to both sides, it is estimated that

L(Dαv(τ)) = L(g(τ)) + L

 τ∫
0

H1(τ, σ)G1(σ, v(σ))dσ

+ L

 b∫
0

H2(τ, σ)G2(σ, v(σ))dσ

 (4.1)

Utilizing the differentiation property of laplace transform, it is obtained that

sαL(v(τ))− c = L(g(τ) + L

 τ∫
0

H1(τ, σ)G1(σ, v(σ))dσ

+ L

 b∫
0

H2(τ, σ)G2(σ, v(σ))dσ

 (4.2)

where c is given by
c =

∑m−1
k=0 σα−k−1vk(0).

Thus, the above equation is equivalent to

L(v(τ)) = c

σα
+

1

σα
L(g(τ)) + 1

σα
L

 τ∫
0

H1(τ, σ)G1(σ, v(σ))dσ

+
1

σα
L

 b∫
0

H2(τ, σ)G2(σ, v(σ))dσ

 (4.3)

The second step in Laplace decomposition method is that solution is expressed as an infinite series

v(τ) =

∞∑
n=0

vn (4.4)

Moreover, the nonlinear function is decomposed as

G1(τ, v(τ)) =

∞∑
n=0

An (4.5)

and

G2(τ, v(τ)) =

∞∑
n=0

Bn (4.6)

where An and Bn are Adomian polynomials are given as

An(τ) =
1

n!

[ dn
dpn

[
G1(τ,

∞∑
i=0

pivi)

]
p=0

(4.7)
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Bn(τ) =
1

n!

[ dn
dpn

[
G2(τ,

∞∑
i=0

pivi)

]
p

(4.8)

L(
∞∑

n=0

vn) =
c

σα
+

1

σα
L(g(τ)) + 1

sα
L(

τ∫
0

H1(τ, σ)

∞∑
n=0

Andσ) +
1

σα
L(

b∫
0

H2(τ, σ)

∞∑
n=0

Bndσ) (4.9)

Comparing both sides yields the iterative algorithm

L(v0) =
c

σα
+

1

σα
L(g(τ)) (4.10)

L(v1) =
1

σα
L(

τ∫
0

H1(τ, σ)A0dσ) +
1

σα
L(

b∫
0

H2(τ, σ)B0dσ) (4.11)

L(v2) =
1

σα
L(

τ∫
0

H1(τ, σ)A1dσ) +
1

σα
L(

b∫
0

H2(τ, σ)B1dσ) (4.12)

Thus considering the equations, the recursion relation is as follows

L(vk+1) =
1

σα
L(

τ∫
0

H1(τ, σ)Akdσ) +
1

σα
L(

b∫
0

H2(τ, σ)Bkdσ), k ≥ 0 (4.13)

Finally by the inverse laplace transform method, the required iterative scheme for estimation of v0(τ), v1(τ), .. are as
follows

v0(τ) = L−1

[
1

σα
L(g(τ))

]
, (4.14)

and

vk+1(τ) = L−1

 1

σα
L(

τ∫
0

H1(τ, σ)Akdσ)

+ L−1

 1

σα
L(

b∫
0

H2(τ, σ)Bkdσ)

 (4.15)

Thus the modified iterated scheme is as follows:

v0(τ) = L−1

[
1

σα
L(g(τ))

]
, (4.16)

v1(τ) = L−1

 1

σα
L(

τ∫
0

H1(τ, σ)A0dσ)

+ L−1

 1

σα
L(

b∫
0

H2(τ, σ)B0dσ)

 (4.17)

vk+1(τ) = L−1

 1

σα
L(

τ∫
0

H1(τ, σ)Akdσ)

+ L−1

 1

σα
L(

b∫
0

H2(τ, σ)Bkdσ)

 (4.18)

5 Convergence Result

In this section we analyse a theoretical result in support of the convergence criterion.

Theorem 5.1. Suppose that (A1)-(A3), hold. Then the series solution given by v(τ) = Σ∞
i=0vi(τ), and ∥v1∥ < ∞

obtained by the mth-order deformation converges to the exact solution of the fractional Volterra-Fredholm integro-

differential equation (1)-(2) if
M⋆

1 L1+M⋆
2 L2

Γ(α+1) < 1 holds.
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Proof . Denote as (C[0, b], ·) the Banach space of all continuous functions on I, with for all τ in I.
First, we define the sequence of partial sums as sn =

∑n
i=0 vi(τ).

Let sn and sm be arbitrary partial sums with n ≥ m.
We claim that sn = Σn

i=0vi(τ) is a Cauchy sequence in (C[0, b], ·).
Now we proceed as follows
∥sn − sm∥∞ = max∀τ∈I |sn − sm|

= max∀τ∈I |Σn
i=0vi(τ)− Σm

i=0vi(τ)|

= max∀τ∈I |Σn
i=m+1vi(τ)|

= max∀τ∈I |Σn
i=m+1L−1

[
1
sαL(

t∫
0

H1(τ, σ)Ai−1ds) +
1
σαL(

b∫
0

H2(τ, σ)Bi−1dσ)

]
|

= max∀τ∈I |L−1

[
1
σαL(

τ∫
0

H1(τ, σ)Σ
n−1
i=mAi−1dσ) +

1
σαL(

b∫
0

H2(τ, σ)Σ
n−1
i=mBi−1dσ)

]
|.

From (4.5) and (4.6), we have

Σn−1
i=mAi−1 = G1(τ, sn−1)−G1(τ, sm−1),

Σn−1
i=mBi−1 = G2(τ, sn−1)−G2(τ, sm−1).

Thus,

∥sn − sm∥

= max∀τ∈I |L−1
[

1
σαL(

τ∫
0

H1(τ, σ)(G1(τ, sn−1)−G1(τ, sm−1))dσ)+

1
sαL(

b∫
0

H2(τ, σ)(G2(τ, sn−1)−G2(τ, sm−1))dσ)
]
|

= max∀τ∈I

(
L−1

[
1
σαL(

τ∫
0

|H1(τ, σ)||G1(τ, sn−1)−G1(τ, sm−1)|dσ) +

1
σαL(

b∫
0

|H2(τ, σ)||G2(τ, sn−1)−G2(τ, sm−1)|dσ)
])

≤ L−1
[

1
σαL(

τ∫
0

|H1(τ, σ)||G1(τ, sn−1)−G1(τ, sm−1)|dσ) +

1
σαL(

b∫
0

|H2(τ, σ)||G2(τ, sn−1)−G2(τ, sm−1)|dσ)
]

≤ L−1
[

1
σαL(M⋆

1L1∥sn−1 − sm−1∥∞) + 1
σαL(M⋆

2L2∥sn−1 − sm−1∥∞)
]

≤ L−1
[

1
σα+1M

⋆
1L1∥sn−1 − sm−1∥∞ + 1

σα+1M
⋆
2L2∥sn−1 − sm−1∥∞

]
≤ τα

Γ(α+1) (M
⋆
1L1 +M⋆

2L2)∥sn−1 − sm−1∥∞

Thus,

∥sn − sm∥∞ ≤ M⋆
1 L1+M⋆

2 L2

Γ(α+1) ∥sn−1 − sm−1∥∞

Further,

∥sn − sm∥∞ ≤ λ∥sn−1 − sm−1∥∞.

Let n = m+ 1 then

∥sn − sm∥∞ ≤ λ∥sm − sm−1∥∞ ≤ λ2∥sm−1 − sm−2∥∞...λm∥s1 − s0∥∞.
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∥sn − sm∥∞ ≤ ∥sm+1 − sm∥∞ + ∥sm+2 − sm+1∥∞ + ...+ ∥sn − sn−1∥∞

≤ [1 + λ+ λ2 + ...+ λn−m−1]∥s1 − s0∥∞

≤ λm( 1−λn−m

1−λ )∥v1∥∞.

Since 0 < λ < 1, (1 − λn−m) < 1. But ∥v1(t)∥ < ∞. Thus, ∥sn − sm∥∞ → 0 as m → ∞. Hence it is concluded
that sn is a Cauchy sequence in C[0, b]. Finally, v = limn→∞ vn i.e., the series is convergent.

□

6 Numerical Example

6.1 Example 1

D1/2v(τ) = 1 + 3τ2 + τ3 +

τ∫
0

(2 + τ + 2s)v(σ)dσ, τ ∈ [0, 1/4] (6.1)

with the initial condition v(0) = 0.
Here, β = 1/2, g(τ) = 1 + 3τ2 + τ3, H1(τ, σ) = 2 + τ + 2σ, G1(τ, v(τ)) = v(τ), G2(τ, v(τ)) = 0.
Also the conditions (I) and (II) are satisfied and the inequality (3.4) holds. Thus, by Theorem 3.3, the equation (6.1)
is Ulam stable and has a unique solution.
Applying Laplace transform to both sides, it is obtained that

L[D1/2v(τ)] = L[1 + 3τ2 + τ3] + L[
τ∫

0

(2 + τ + 2σ)v(σ)dσ] (6.2)

Now, by the linearity of laplace transform and the initial condition

s1/2L[v(τ)] =L[1 + 3τ2 + τ3] + L[
τ∫

0

(2 + τ + 2σ)v(σ)dσ] (6.3)

L[v(τ)] = 1

σ1/2
{L[1 + 3τ2 + τ3] + L[

τ∫
0

(2 + τ + 2σ)v(σ)dσ]}

Substituting (4.4) into the above equation, it is obtained that

L[
∞∑

n=0

vn(τ)] =
1

σ1/2
{L[1 + 3τ2 + τ3] + L[

τ∫
0

(2 + τ + 2σ)

∞∑
n=0

vn(σ)dσ]} (6.4)

Comparing both sides of equation (6.4), it is estimated that

L[v0(τ)] =
1

σ1/2
{L[1 + 3τ2 + τ3]} (6.5)

L[vn+1(τ)] =
1

σ1/2
{L[

τ∫
0

(2 + τ + 2σ)vn(σ)dσ]} (6.6)

Now applying inverse laplace transform to all the above equations, it is obtained that

v0(τ) = L−1{ 1

σ1/2
{L[1 + 3τ2 + τ3]}} (6.7)
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vn+1(τ) = L−1{ 1

σ1/2
{L[

t∫
0

(2 + τ + 2σ)vn(σ)dσ]} (6.8)

Thus it is estimated that

v0(τ) =
2τ1/2√

π
+

16

5

τ5/2√
π

+
32

35

τ7/2√
π

(6.9)

v1(τ) =
τ2

8
+

11

96
τ3 +

37

792
τ4 +

27

320
τ5 +

29

1920
τ6 (6.10)

Similarly the other terms i.e., v2(τ), v3(τ) and v4(τ) of the approximate solution can be obtained.

6.2 Example 2

D3/2v(τ) = τ2 + 3τ3 +
1

5

τ∫
0

(τσ + 1)v(σ)dσ +
1

6

1∫
0

(2 + τ + σ2)v(σ)dσ (6.11)

with the initial condition v(0) = 0 and v′(0) = 2.
Applying Laplace transform to both sides, it is obtained that

L[D3/2v(τ)] = L[τ2 + 3τ3] + L[ 1
5

t∫
0

(τσ + 1)v(σ)dσ] + L[ 1
6

1∫
0

(2 + τ + σ2)v(σ)dσ] (6.12)

Now by the linearity of laplace transform and the initial conditions

σ3/2L[v(τ)]− 2σ−1/2 =L[τ2 + 3τ3] + L[ 1
5

τ∫
0

(τσ + 1)v(σ)dσ] + L[ 1
6

1∫
0

(2 + τ + σ2)v(σ)dσ] (6.13)

L[v(τ)] = 2

σ2
+

1

σ3/2
{L[τ2 + 3τ3] + L[ 1

5

τ∫
0

(τσ + 1)v(σ)dσ] + L[ 1
6

1∫
0

(2 + τ + σ2)v(σ)dσ]}

Substituting (4.4) into the above equation, it is obtained that

L[
∞∑

n=0

vn(τ)] =
2

σ2
+

1

σ3/2
{L[τ2 + 3τ3] + L[ 1

5

τ∫
0

(τσ + 1)

∞∑
n=0

vn(σ)dσ] + L[ 1
6

1∫
0

(2 + τ + σ2)

∞∑
n=0

vn(σ)dσ]}

Comparing both sides of equation (6.24), it is estimated that

L[v0(τ)] =
2

σ2
+

1

σ3/2
{L[τ2 + 3τ3]} (6.14)

L[v0(τ)] = L[ 1
5

τ∫
0

(τσ + 1)v0(σ)dσ] + L[ 1
6

1∫
0

(2 + τ + σ2)v0(σ)dσ] (6.15)

L[vn+1(τ)] = L[ 1
5

τ∫
0

(τσ + 1)vn(σ)dσ] + L[ 1
6

1∫
0

(2 + τ + σ2)vn(σ)dσ] (6.16)

Now applying inverse laplace transform to all the above equations, it is obtained that

v0(τ) = L−1{ 2

σ2
}+ L−1{ 1

σ3/2
{L[τ2 + 3τ3]}} (6.17)
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v1(τ) = L−1{ 1

σ3/2
L[ 1

5

τ∫
0

(τσ + 1)v0(σ)dσ] + L[ 1
6

1∫
0

(2 + τ + σ2)v0(σ)dσ]} (6.18)

vn+1(τ) = L−1{ 1

σ3/2
L[ 1

5

τ∫
0

(τσ + 1)vn(σ)dσ] + L[ 1
6

1∫
0

(2 + τ + σ2)vn(σ)dσ]} (6.19)

Thus it is estimated that

v0(τ) = 2τ +
32

105
√
π
τ7/2 +

64

105
√
π
τ9/2 (6.20)

6.3 Example 3

D1/2v(τ) =
2τ1/2√

π
+

3τ
√
π

4
− 9

10
+

1∫
0

v(σ)dσ (6.21)

with the initial condition v(0) = 0 and the exact solution given by v(τ) = τ3/2 + τ . Here, β = 1/2, g(τ) =
2τ1/2
√
π

+ 3τ
√
π

4 − 9
10 , H2(τ, σ) = 1, G1(τ, v(τ)) = 0, G2(τ, v(τ)) = v(τ).

Also the conditions (I) and (II) are satisfied and the inequality (3.4) holds. Thus by Theorem 3.3, the equation (6.3)
is Ulam stable and has a unique solution.
Applying Laplace transform to both sides, it is obtained that

L[D1/2v(τ)] = L[ 2τ
1/2

√
π

] + L[ 3τ
√
π

4
]− L[ 9

10
] + L(

τ∫
0

v(σ)dσ) (6.22)

Now by the linearity of laplace transform and the initial condition

σ1/2L[v(τ)] =L[ 2τ
1/2

√
π

] + L[ 3τ
√
π

4
]− L[ 9

10
] + L[

1∫
0

v(σ)dσ] (6.23)

L[v(τ)] = 1

σ1/2
L[ 2τ

1/2

√
π

] +
1

σ1/2
L[ 3τ

√
π

4
]− 1

σ1/2
L[ 9

10
] +

1

σ1/2
L[

1∫
0

v(σ)dσ]

Substituting (4.4) into the above equation, it is obtained that

L[
∞∑

n=0

vn(τ)] =
1

σ1/2
L[ 2τ

1/2

√
π

] +
1

σ1/2
L[ 3τ

√
π

4
]− 1

σ1/2
L[ 9

10
] +

1

σ1/2
L[

1∫
0

∞∑
n=0

vn(σ)dσ] (6.24)

Now applying inverse laplace transform to all the above equations, it is obtained that

v0(τ) = L−1{ 1

σ1/2
L[ 2τ

1/2

√
π

]}+ L−1{ 1

σ1/2
L[ 3τ

√
π

4
]} − L−1{ 1

σ1/2
L[ 9

10
]} (6.25)

v1(τ) = L−1{ 1

σ1/2
L[

1∫
0

v0(σ)dσ]} (6.26)

vn+1(τ) = L−1{ 1

σ1/2
L[

1∫
0

vn(σ)dσ]} (6.27)

Thus it is estimated that

v0(τ) = τ + τ
3
2 − 9

5
√
π
τ1/2 (6.28)
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Figure 1:

v1(τ) =
9

10
− 12

5π
τ1/2 (6.29)

Now ṽ(τ) = v0(τ) + v1(τ) = τ + τ
3
2 − 9

5
√
π
τ1/2 + 9

10 − 12
5π τ

1/2 is the approximate closed form solution of the above

equation. Also the exact and approximate solution of the considered problem is shown in Figure 1.

7 Conclusion

Here sufficient criteria for Ulam stability and existence of the solution of the initial value problem has been derived.
Decomposition method has been proposed to find out the solution of the considered nonlinear problem. Finally, some
examples have been showcased to ensure the validity of the derived results.
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