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Abstract

This work deals with various qualitative analyses of solutions of a certain delay integro-differential equation (DIDE). We
prove here six new theorems including sufficient conditions, on uniformly stability (US), boundedness, asymptotically
stability (AS), exponentially stability (ES), integrability and instability of solutions, respectively. By defining a suitable
Lyapunov function (LF) and using the Razumikhin method (RM), the proofs of the theorems are provided. We gave
two examples to demonstrate applications of the established new conditions.
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1 Introduction

It is well known that mathematical models are commonly used in physical, biological and engineering sciences,
etc., to understand and explain industrial processes and complex systems. For example, integro-differential equations
(IDEs) can be found as mathematical models of phenomena in the life sciences, population dynamics, ecology problems,
medicine, electricity, physics, artificial neural networks and engineering sciences, heat flow, electricity and so on
( see, for example, [1]-[17],[19]-[44],[46],[47], [52], [55]-[57],[59],[60]). Motivated by numerous theoretical works and
applications in applied sciences, various qualitative behaviors of IDEs and delay differential equations have been
studied intensively during the past decades and many interesting results were obtained in the relevant literature (see,
the papers or the books given in [1]-[60] and the references of these sources). It is also known from the relevant
literature that the qualitative behaviors of solutions called as US, AS, ES, convergence, boundedness, integrability
and instability of solutions are important qualitative concepts during the investigation of dynamics of the solutions
of numerous kinds of DIDEs and delay differential equations. Indeed, the books of Burton [4] and Hale [18] can be
considered as the references books for these and some others qualitative concepts .

When we look for the relevant literature on the fundamental properties of solutions of integro-differential equations
with and without delays, it can be seen that, during the last decades, various fundamental properties of solutions of
these equations have been investigated. For example, the fundamental properties of solutions such as the integrability,
US, AS, ES, etc. of integro-differential equations of the form

x′(t) = A(t)x(t) +

∫ t

0

C(t, s)x(s)ds,

x′(t) = A(t)x(t) +

∫ t

t−τ

C(t, s)x(s)ds,
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and related different linear and nonlinear modified forms have been discussed by numerous authors. Many interesting
results have been obtained on the subject. This fact can be easily checked from the works in the references of this
paper. .

In this work, motivated from the works on the qualitative properties of solutions DIDEs ([1],[2],[4]-[12],[15]-[17],
[19]-[35],[36]-[44], [47], [52]-[58],[60]), we consider the following nonlinear DIDE:

x′(t) = −a(t)g(x)− r(x) +

∫ t

t−τ

C(t, s, h(x(s)))f(s, x(s))ds, (1.1)

where t ∈ [τ,∞), x ∈ R, a(t) ∈ C(R+, (0,∞)) and C(.) ∈ C([−τ,∞) × [−τ,∞) × R,R)), −τ ≤ s ≤ t < ∞,
f ∈ C([−τ,∞) × R,R)), g, r ∈ C(R,R), g(0) = r(0) = 0, f(s, 0) = 0, h(0) = 0, h(x) ̸= 0 when x ̸= 0, C(t, s, 0) = 0
and τ > 0 is constant delay. Hence, DIDE (1.1) includes the zero solution.

Since the functions a, g, r, C, h and f are continuous, the continuity of these functions is a sufficient conditions for
the existence of the solutions of DIDE (1.1). We also assume that the functions g, r, C, h and f satisfy the Lipschitz
condition in x. This assumption is a sufficient condition for the uniqueness of the solutions of DIDE (1.1).

To the best of information, the mentioned qualitative concepts have not been discussed for DIDE (1.1) in the
literature up to now. Our aim is to give new results for these qualitative concepts and to do contribution to the theory
of DIDEs.

We suppose x(t, t0, ϕ), t ≥ t0, is a solution of DIDE (1.1) on [t0 − τ, β), β > 0, such that x(t) = ϕ(t) on [t0 − τ, t0]
and |ϕ(t)| = supt∈[t0−τ,t0] |ϕ(t)|, where ϕ ∈ C([t0 − τ, t0],R]), ϕ is the initial function.

2 Stability and Integrability

In this section, we investigate the US, AS and integrability of DIDE (1.1).

For our main results, we will consider the following conditions.

A. Assumptions

(A1) Let g0, r0 and f0 be positive constants such that

g(0) = 0, xg(x) > 0, x ̸= 0,

|g(x)|
|x|

≥ g0, x ̸= 0, x ∈ R,

r(0) = 0, xr(x) > 0, x ̸= 0,

|r(x)|
|x|

≥ r0, x ̸= 0, x ∈ R,

f(0) = 0, |f(s, x(s))| ≤ f0|x(s)|,−τ ≤ s ≤ t < ∞, x ∈ R.

(A2) Let C0,K0 ∈ R, C0,K0 > 0, such that

C(t, s, 0) = 0, |C(t, s, h(x(s))| ≤ C0|K(t, s)|

and
|K(t, s)| ≤ K0,−τ ≤ s ≤ t < ∞, x ∈ R.

(A3) There exist positive constants g0, r0, f0 from (A1), C0,K0 from (A2) and τ such that

a(t) > 0, g0a(t) + r0 − τf0C0K0 ≥ 0.

(A4) There exist positive constants g0, r0, f0 from (A1), C0,K0 from (A2), τ from (A3) and ς0 such that

a(t) > 0, g0a(t) + r0 − τf0C0K0 ≥ ς0.
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(A5) There exist positive constants g0 and r0 from (A1) such that

g(0) = 0, xg(x) > 0, x ̸= 0, x ∈ R,

|g(x)|
|x|

≥ g0, x ̸= 0,

r(0) = 0, xr(x) < 0, x ̸= 0, x ∈ R,

|r(x)| ≥ r0|x|,

f(0) = 0, |f(s, x(s))| ≤ f0|x(s)|,−τ ≤ s ≤ t < ∞, x ∈ R.

(A6) There exist positive constants g0, r0, f0 from (A1), C0,K0 from (A2) and τ from (A3) such that

a(t) < 0, g0a(t)− r0 + τf0C0K0 < 0.

Firstly, we give a new US result for DIDE (1.1).

Theorem 1. Let assumptions (A1)-(A3) hold. Then, the null solution of DIDE (1.1) is uniformly stable.

Proof . Consider the LF
V (t, x) = |x|,

where x represents x(t) and also without mention through the paper, when we need.

Clearly
V (t, 0) = 0, V (t, x) ≥ d1|x|, d1 ∈ (0, 1].

Differentiating the LF V and using conditions (A1)-(A2), we obtain

d

dt
V (t, x) =

dx

dt
sgnx(t+ 0)

=− a(t)g(x)sgnx(t+ 0)− r(x)sgnx(t+ 0)

+ sgnx(t+ 0)

∫ t

t−τ

C(t, s, h(x(s)))f(s, x(s))ds

≤− a(t)|g(x)| − |r(x)|+
∫ t

t−τ

|C(t, s, h(x(s)))||f(s, x(s))|ds

≤− a(t)g0|x| − r0|x|+ C0f0

∫ t

t−τ

|K(t, s)||x(s)|ds

≤− a(t)g0|x| − r0|x|+ C0f0K0

∫ t

t−τ

|x(s)|ds. (2.1)

Consider integral term

C0f0K0

t∫
t−τ

|x(s)|ds,

which is taken from (2.1).

When we use the RM on the interval −τ ≤ s ≤ 0, we have

C0f0K0

t∫
t−τ

|x(s)|ds = C0f0K0

0∫
−τ

|x(t+ ξ)|ds

< C0f0K0

0∫
−τ

|x(t)|ds

= τC0f0K0|x(t)|.
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Putting the last term in (2.1) and using condition (A3), we obtain

d

dt
V (t, x) ≤− a(t)g0|x| − r0|x|+ C0f0K0τ |x|

=− (a(t)g0 + r0 − τC0f0K0)|x| ≤ 0.

This result finishes the proof of Theorem 1. □

Secondly, we show the boundedness result for the solutions of DIDE (1.1), when t → ∞.

Theorem 2. Let assumptions (A1)-(A3) hold. Then, the solutions of DIDE (1.1) are bounded at infinity.

Proof . From the previous theorem, we have
d

dt
V (t, x) ≤ 0.

From this result, it follows that
V (t, x) ≤ V (t0, ϕ(t0)), t ≥ t0.

Next, it is clear that
V (t0, ϕ(t0)) = |ϕ(t0)| = V0 > 0,

where V0 is a positive constant provided that ϕ(t0) ̸= 0.

Hence, we have
|x(t)| ≤ V0 as t → ∞.

This inequality completes the proof. □

Theorem 3. Let assumptions (A1),(A2) and (A4) hold. Then, the null solution of DIDE (1.1) is asymptotically
stable.

Proof . It is obvious that
V (t, x) ≤ d2|x|, (x ̸= 0), d2 ≥ 1.

By the assumptions (A1),(A2), (A4) and the way of Theorem 1, we obtain

d

dt
V (t, x) ≤ −ς0|x|, t ≥ t0.

This is end of the proof. □

Theorem 4. Let assumptions (A1),(A2) and (A4) hold. Then, the null solution DIDE (1.1) is exponentially stable.

Proof . From Theorem 3 , we have
d

dt
V (t, x(t)) ≤ −ς0|x(t)|, t ≥ t0.

Then, from the definition of Lyapunov function V , we derive

d

dt
V (t, x(t)) ≤ −ς0|x| = −ς0V (t, x(t)).

Hence,
d
dtV (t, x(t))

V (t, x(t))
≤ −ς0.

By some elementary calculations, we derive

V (t, x(t)) ≤ V (t0, ϕ(t0)) exp (−ς0(t− t0)), ϕ(t0) ̸= 0.

As for the next step, we conclude that
|x(t)| ≤ V0 exp (−ς0(t− t0)).

The proof is done. □
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Theorem 5. Let assumptions (A1), (A2) and (A4) hold. Then, the absolute value of solutions of DIDE (1.1) are
integrable on [0,∞).

Proof . Via Theorem 4, it is known that

d

dt
V (t, x(t)) ≤ −ς0|x|, t ≥ t0.

An integration gives that

V (t, x(t))− V (t0, ϕ(t0)) ≤ −ς0

∫ t

t0

|x(s)|ds.

Therefore, it is clear that

ς0

∫ t

t0

|x(s)|ds ≤ V (t0, ϕ(t0))− V (t, x(t)) ≤ V (t0, ϕ(t0)) = V0

Then, we can get ∫ ∞

t0

|x(s)|ds ≤ ς−1
0 V0 < ∞.

This result completes the proof of Theorem 5. □

Theorem 6. Let assumptions (A2), (A5) and (A6) hold. Then, the null solution of DIDE (1.1) is unstable.

Proof . By the same way of Theorem 1, we can obtain that

d

dt
V (t, x) =

dx

dt
sgnx(t+ 0)

=− a(t)g(x)sgnx(t+ 0)− r(x)sgnx(t+ 0)

+ sgnx(t+ 0)

∫ t

t−τ

C(t, s, h(x(s)))f(s, x(s))ds

≥− a(t)|g(x)|+ |r(x)| −
∫ t

t−τ

|C(t, s, h(x(s)))||f(s, x(s))|ds

≥− g0a(t)|x|+ r0|x| − f0C0

∫ t

t−τ

|K(t, s)||x(s)|ds

≥− g0a(t)|x|+ r0|x| − f0C0K0

∫ t

t−τ

|x(s)|ds.

By applying Razumikhin condition to the term f0C0K0

∫ t

t−τ
|x(s)|ds, we derive that

d

dt
V (t, x(t)) ≥ (−g0a(t) + r0 − τf0C0K0)|x| > 0, (x ̸= 0).

The last inequality is the end of the proof of Theorem 6. □

Example 2.1. We take into consideration a nonlinear DIDE given by

ẋ(t) =−
(
25 +

3

2 + exp(t)

)(
3 +

2

1 + exp(x2(t))

)
x(t)

−
(
1 +

1

1 + exp(x2(t))

)
x(t) +

t∫
t− 1

5

1

1 + exp(t2 + s2)
× x(s)

1 + x2(s)
× x(s)

1 + s2
ds. (2.2)

Doing a comparison between the DIDE (1.1) and (2.2), one can obtain the below relations:

a(t) = 25 +
3

2 + exp(t)
> 0, τ =

1

5
is the fixed delay,
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g(x) =

(
3 +

2

1 + exp(x2)

)
x, g(0) = 0,

|g(x)| =
(
3 +

2

1 + exp(x2)

)
|x| ≥ 3 |x| , g0 = 3,

xg(x) =

(
3 +

2

1 + exp(x2)

)
x2 > 0, x ̸= 0,

r(x) =

(
1 +

1

1 + exp(x2)

)
x, r(0) = 0, xr(x) =

(
1 +

1

1 + exp(x2)

)
x2 > 0, x ̸= 0,

|r(x)|
|x|

= 1 +
1

1 + exp(x2)
≥ 1 = r0,

C(t, s, h(x)) =
1

1 + exp(t2 + s2)
× x

1 + x2
,

h(x) =
x

1 + x2
, h(0) = 0, h(x) ̸= 0 if x ̸= 0, C(t, s, 0) = 0,

|C(t, s, h(x))| = 1

1 + exp(t2 + s2)
× |x|

1 + x2

≤ 1

1 + exp(t2 + s2)
= C0K(t, s),

where

K(t, s) =
1

1 + exp(t2 + s2)
, C0 = 1,

≤ 1

1 + exp(t2 + s2)
≤ 1

2
,K0 =

1

2
,

f(s, x(s)) =
x(s)

1 + s2
, f(s, 0) = 0,

|f(t, x(s))| = |x(s)|
1 + s2

≤ |x(s)| , f0 = 1.

In view of the given relations, we derive

g0a(t) + r0 − τf0C0K0 = 75 + 1 +
9

2 + exp(t)
− 1

10
> 75 = ς0.

Hence, conditions (A1)-(A4) are satisfied. Hence, the zero solution of nonlinear DIDE (2.2) is uniformly stable,
asymptotically stable, exponentially stable, the absolute values of the solutions of DIDE (2.2) are integrable and
non-zero solutions of DIDE (2.2) are bounded at the infinity.

Example 2.2. We take into consideration a nonlinear DIDE given by

ẋ(t) =

(
25 +

3

2 + exp(t)

)(
3 +

2

1 + exp(x2(t))

)
x(t)

+

(
1 +

1

1 + exp(x2(t))

)
x(t)

+

t∫
t− 1

5

1

1 + exp(t2 + s2)
× x(s)

1 + x2(s)
× x(s)

1 + s2
ds. (2.3)

Doing a comparison between DIDEs (2.3) and (1.1), one can obtain the below relations :

a(t) = −25− 3

2 + exp(t)
< 0, τ =

1

5
,
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Figure 1: This figure shows the results of Theorem 1-5 for DIDE (2.2) and different initial values, when τ = 1
5
.

a(t) ≤ −25 < 0,

r(x) = −
(
1 +

1

1 + exp(x2)

)
x

xr(x) = −
(
1 +

1

1 + exp(x2)

)
x2 < 0, x ̸= 0,

|r(x)|
|x|

= 1 +
1

1 + exp(x2)
≥ 1 = r0.

Next, the functions g, h, f , K and the kernel C are the same as in Example 2.1. Hence, the discussions related to
these functions remain as the same in Example 2.1.

As for the next step, in view of the given relations, we derive

g0a(t)− r0 + τf0C0K0 = −75− 9

2 + exp(t)
− 1 +

1

10
= −75.9− 9

2 + exp(t)
< 0.

Hence, conditions (A5) and (A6) Theorem 6 are satisfied hold. Therefore, the zero solution of nonlinear DIDE (2.3)
is unstable.

3 Conclusion

This paper deals with behaviors of solutions of a DIDE. Six theorems, which have new sufficient conditions on the
uniformly stability, asymptotic stability, exponential stability, instability of zero solution as well as boundedness and
integrability of non-zero solutions of the considered DIDE, have been proved via the Lyapunov–Razumikhin method.
Finally, two examples are given to show applications of the given theorems.
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−8

−6

−4

−2

0

2

4

6

8
x 10

6

time(s)

x
(t

)

 

 
x(0)=1

x(0)=0.5

x(0)=−1

Figure 2: This figure shows the result of Theorem 6 for DIDE (2.3) different initial values, when τ = 1
5
.

References

[1] L.M. Berezanskii, Criteria for exponential stability of linear integro-differential equations, (Russian) Functional-
differential equations (Russian), 66–69, Perm. Politekh. Inst., Perm, 1988.
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