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Abstract

A unique common fixed point is obtained for compatible and non-compatible self-maps on a b-metric space, through
the notion of conditional reciprocal continuity, due to Pant and Bist.
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1 Introduction

Let X be a non-empty set and ρ : X ×X → R be such that

(m1) ρ(x, y) ≥ 0 for all x, y ∈ X

(m2) ρ(x, y) = 0 if and only if x = y for all x, y ∈ X

(m3) ρ(x, y) = ρ(y, x) for all x, y ∈ X

(m4) ρ(x, y) ≤ ρ(x, z) + ρ(y, z) for all x, y, z ∈ X.

Then the pair (X, ρ) denotes a metric space with metric ρ. Let X = R. Then the metric ρ(x, y) = |x− y| for all
x, y ∈ X is called the usual metric and it gives the distance between the points x and y on the number line R1. Let
X = R × R and ρ(x, y) = |x− y| for all x, y ∈ X. Condition (m4) says that the length of one side in a triangle with
vertices x, y and z never exceeds the sum of the lengths of other sides in it. Hence it is referred to as the triangle
inequality of the metric ρ. The notion of metric space was due to Frechet in 1926.

In the last few decades, fixed point theorems were developed in a metric space, normed linear space, topological
space etc., while the conditions imposed on the underlying mappings are usually metrical or compact type conditions.
Further, new ambient algebraic structures were formulated to improve the results. One such was a b-metric, introduced
by Bakhtin [4], by generalizing the triangle inequality (m4).

Definition 1.1. Let s ≥ 1, X be a nonempty set and ρs : X ×X → [0,∞) be such that
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(b1) ρs(x, y) = 0 if and only if x = y for all x, y ∈ X

(b2) ρs(x, y) = ρs(y, x) for all x, y ∈ X

(b3) ρs(x, y) ≤ s[ρs(x, z) + ρs(y, z)] for all x, y, z ∈ X.

Then ρs is a b-metric on X, and (X, ρs) denotes a b-metric space.

Metric space is a particular case of a b-metric space, when s = 1. However, a b-metric space is not necessarily a
metric space. For instance, consider the pair (X, ρs), where X = R and ρs(x, y) = |x− y|2 for all x, y ∈ R. Then the
conditions (b1) and (b2) are obvious. Further,

ρs(x, y) = |x− y|2 = |x− z + z − y|2 ≤ 2
(
|x− z|2 + |z − y|2

)
= 2[ρs(x, z) + ρs(y, z)]

for all x, y ∈ X. Thus (X = R, ρs) is a b-metric space with b = 2. Since ρs(1, 3)+ρs(1, 0) = 4+1 = 5 and ρs(0, 3) = 9,
(m3) fails to hold good, showing that ρs is not a metric. Thus a b-metric space is not a metric space. In view of the
convexity of f(x) = xp, where x > 0 and 1 < p < ∞, it follows that (R, |x− y|p) is a b-metric space, which is not a
metric space. In other words, the class of b-metric spaces contains that of metric spaces.

It is well-known that unlike the set R of real numbers, the set C of all complex numbers does not have the ordering
property. Azam et al. In [3] introduced the notion of a complex-valued metric space in terms of a partial ordering
on C, which was further generalized to a complex-valued b-metric space in [9]. For some of its applications, one may
refer to [2] [8] and mebetal2.

Definition 1.2. A b-ball in a b-metric space (X, ρs) is defined by

Bρs
(x, r) =

{
y ∈ X : ρs(x, y) < r

}
.

The family of all b-balls forms a base topology, called the b-metric topology τ(ρs) on X.

Definition 1.3. Let (X, ρs) be a b-metric space with parameter s. A sequence {xn}∞n=1 in X is said to be

(a) b-convergent, with limit p ∈ X, if it converges to p in the b-metric topology τ(ρs)

(b) b-Cauchy, if limn,m→∞ ρs(xn, xm) = 0.

Like in a metric space, every b-convergent sequence has a unique limit, and is necessarily b-Cauchy.

Definition 1.4. A b-metric space X is said to be b-complete, if every b-Cauchy sequence in X is b-convergent in it.

Since a b-metric is not jointly continuous in general in its coordinate variables x and y, though a metric d is known to
be continuous (See Example 2.13, [20]), we use the following results from [17]:

Lemma 1.1. Let (X, ρs) be a b-metric space with parameter s. Suppose that {xn}∞n=1 is b-convergent with limit x
and {yn}∞n=1 is b-convergent with limit y in X. Then

1

s2
ρs(x, y) ≤ lim inf

n→∞
ρs(xn, yn) ≤ lim sup

n→∞
ρs(xn, yn) ≤ s2ρs(x, y). (1.1)

In particular, x = y, then limn→∞ ρs(xn, yn) = 0. Further, for each z ∈ X, we have

1

s
ρs(x, z) ≤ lim inf

n→∞
ρs(xn, z) ≤ lim sup

n→∞
ρs(xn, z) ≤ sρs(x, z). (1.2)

Lemma 1.2. Let (X, ρs) be a b-metric space with parameter s. Suppose that there exist sequences {xn}∞n=1 and
{yn}∞n=1 such that limn→∞ ρs(xn, yn) = 0, whenever limn→∞ xn = t for some t ∈ X, then limn→∞ yn = t.
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2 Conditional Reciprocal Continuity in b-Metric Spaces

Self-maps f and r on a metric space (X, ρ) are known to be commuting, if frx = rfx for all x ∈ X. As a weaker
form of it, Sessa [18] introduced weakly commuting maps f and r on X with the choice ρ(frx, rfx) ≤ ρ(fx, rx) for
all x ∈ X. weakly commuting maps were generalized as R-weakly commuting maps by Pant [10], which satisfy the
condition:

ρ(frx, rfx) ≤ Rρ(fx, rx) for all x ∈ X for some R > 0. (2.1)

Writing R = 1 in (2.1), we get weakly commuting pair (f, r). Splitting the condition (2.1), Pathak et al. [14] defined
R-weakly commuting of types (Ag) and (Af ). In fact, self-maps f and r on X are said to be R-weakly commuting of
type (Ag), if

ρ(frx, rrx) ≤ Rρ(fx, rx) for all x ∈ X for some R > 0. (2.2)

Interchanging the roles of f and r in (2.2), we get R-weakly commuting of type (Af ). In a comparative study of
various weaker forms of commuting maps, Singh and Tomar [19] remarked that R-weak commutativity is independent
of these two types. Prior to these notions, Gerald Jungck [6] introduced compatible maps as a generalization for
weakly commuting maps as follows:

Definition 2.1. Self-maps f and r on X are said to be compatible, if

lim
n→∞

ρ(frxn, rfxn) = 0 (2.3)

whenever there exists a sequence {xn}∞n=1 ⊂ X such that

lim
n→∞

fxn = lim
n→∞

rxn = z for some z ∈ X. (2.4)

It was observed from [15] that a pair (f, r) of self-maps can be weakly commuting, but there may not be any sequence
{xn}∞n=1 with the choice (2.4). Such maps are vacuously compatible. While, self-maps f and r are non-compatible, if
there is a sequence {xn}∞n=1 with (2.4) but lim

n→∞
ρ(frxn, rfxn) ̸= 0 or +∞. In the study of common fixed points for non-

compatible and discontinuous maps, the notions of reciprocal continuity, weak reciprocal continuity and conditional
reciprocal continuity were introduced as follows:

Definition 2.2 (Pant et al., [11]). Self-maps f and r on X are reciprocally continuous at z ∈ X, if for any sequence
{xn}∞n=1 ⊂ X with the choice (2.4), we have

lim
n→∞

frxn = fz and lim
n→∞

rfxn = rz, (2.5)

where f and r are reciprocally continuous (on X) if and only if they are reciprocally continuous at each z ∈ X.

Example 2.1. Consider X = R with the usual metric ρu(x, y) = |x− y| for all x, y ∈ X. Define f, r : X → X
by fx = x/2 and rx = fx + 1 for all x ∈ X. Since ρ(fx, rx) = 1 for all x, we see that there exists no sequence
{xn}∞n=1 satisfying (2.4). Thus the condition reciprocal continuity is vacuously satisfied. We call such maps vacuously
reciprocally continuous.

Definition 2.3 (Pant et al., [13]). Self-maps f and r on X are said to be weakly reciprocally continuous at z ∈ X,
if for any sequence {xn}∞n=1 ⊂ X with the choice (2.4), we have

lim
n→∞

frxn = fz or lim
n→∞

rfxn = rz. (2.6)

It is obvious that reciprocal continuity implies weak reciprocal continuity.

Definition 2.4 (Pant and Bist, [12]). Self-maps f and r on X are said to be conditionally reciprocally continuous
at z ∈ X, if for any sequence {xn}∞n=1 ⊂ X with the choice (2.4), there corresponds a sequence {yn}∞n=1 ⊂ X such
that

lim
n→∞

fyn = lim
n→∞

ryn = z for some z ∈ X implies lim
n→∞

fryn = fz and lim
n→∞

rfyn = rz. (2.7)
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Example 4 and Example 5 of [12] suggests that the notions of nonvacuous weak reciprocal continuity and nonvacuous
conditional reciprocal continuity are independent of each other.

Definition 2.5 (Jungck, [7]). A point x ∈ X is called a coincidence point for self-maps f and r if fx = rx = y.
Self-maps which commute at their coincidence points are called weakly compatible.

Weakly compatible maps are also called coincidentally commuting maps [5].

Remark 2.1. Compatible maps do commute at their coincident points, and hence are weakly compatible.

Splitting the condition (2.3) in different ways, Pathak and Khan [16] introduced different types of compatible maps:

Definition 2.6. Self-maps f and r on X are said to be f -compatible, if

lim
n→∞

ρ(frxn, rrxn) = 0 (2.8)

whenever there exists a sequence {xn}∞n=1 ⊂ X with the choice (2.4). Whereas, self-maps f and r on X are r-
compatible, if

lim
n→∞

ρ(ffxn, rfxn) = 0 (2.9)

whenever there exists a sequence {xn}∞n=1 ⊂ X with the choice (2.4).

Remark 2.2. It was observed that each of these two types is independent of the compatibility. However, f -
compatibility, r-compatibility and the compatibility are equivalent, whenever f and r are continuous.

Remark 2.3. It may be noted that non-vacuously compatible, compatible maps of all types and non-compatible
maps are included in the wider class of self-maps {f, g} satisfying the property (EA) [1], in which (2.4) holds good for
some {xn}∞n=1 ⊂ X.

Remark 2.4. Compatibility and all its types, and R-weak commutativity and its types imply the weak compatibility
[19]. Since two self-maps fail to be weakly compatible, only if they have a coincidence point at which they do not
commute, weak compatibility is the minimal condition for the maps to have a common fixed point. Further, weak
compatibility and property (EA) are weaker than the compatibility and all its types. However, both these notations
are independent of each other [14].

3 Common Fixed Points in b-Metric Spaces

We now prove the following common fixed point theorem for conditionally reciprocally continuous pairs of maps
in a b-metric space:

Theorem 3.1. Let f , g, r, h be self-maps on a complete b-metric space (X, ρs) with s ≥ 1, satisfying the inclusions:

f(X) ⊂ h(X), g(X) ⊂ r(X), (3.1)

and the inequality

ρs(fx, gy) ≤
q

s4
max

{
ρs(rx, hy), ρs(fx, rx), ρs(gy, hy),

1

2
[ρs(rx, gy) + ρs(fx, hy)]

}
for all x, y ∈ X, (3.2)

where 0 < q < 1. Suppose that {f, r} and {g, h} are conditionally reciprocally continuous pairs and one of the following
conditions holds good:

(a) {f, r} and {g, h} are compatible,

(b) {f, r} is r-compatible and {g, h} is h-compatible,

(c) {f, r} is f -compatible and {g, h} is g-compatible.
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Then f , g, r and h have a unique common fixed point.

Proof . Let x0 ∈ X be arbitrary. By virtue of the inclusions (3.1), we choose points x1, x2, ... in X such that

y2n−1 = fx2n−1 = hx2n, y2n = gx2n = rx2n+1 for n ≥ 1. (3.3)

We first establish that {yn}∞n=1 is b-Cauchy sequence in X.

Writing x = x2n−1 and y = x2n in (3.2) and using (3.3) and (b4),

ρs(y2n−1, y2n) = ρs(fx2n−1, gx2n) (3.4)

≤ q

s4
max

{
ρs(rx2n−1, hx2n), ρs(fx2n−1, rx2n−1), ρs(gx2n, hx2n),

1

2
[ρs(rx2n−1, gx2n) + ρs(fx2n−1, hx2n)]

}
=

q

s4
max

{
ρs(y2n−2, y2n−1), ρs(y2n−1, y2n−2), ρs(y2n, y2n−1),

1

2
[ρs(y2n−2, y2n) + ρs(y2n−1, y2n−1)]

}
=

q

s4
max

{
ρs(y2n−2, y2n−1), ρs(y2n−1, y2n),

1

2
[ρs(y2n−2, y2n)]

}
≤ q

s4
max

{
ρs(y2n−2, y2n−1), ρs(y2n−1, y2n),

s

2
[ρs(y2n−2, y2n−1) + ρs(y2n−1, y2n)]

}
.

If ρs(y2n−1, y2n) > ρs(y2n−2, y2n−1) for some n = m, then (3.4) would imply that

0 < ρs(y2m−1, y2m) ≤ q

s2
ρs(y2m−1, y2m) < ρs(y2m−1, y2m), (3.5)

which is a contradiction. Thus ρs(y2n−1, y2n) ≤ ρs(y2n−2, y2n−1) for all n so that (3.4) gives

ρs(y2n−1, y2n) ≤
q

s3
ρs(y2n−2, y2n−1) for all n. (3.6)

Similarly, it follows that

ρs(y2n−2, y2n−1) ≤
q

s3
ρs(y2n−3, y2n−2) for all n. (3.7)

Combining (3.6) and (3.7),

ρs(yn−1, yn) ≤ kρs(yn−2, yn−1) for all n ≥ 3,

where k = q/s3. By induction,

ρs(yn−1, yn) ≤ kn−2ρs(y1, y2) for all n ≥ 3. (3.8)

Therefore, for all n > m, repeatedly using (3.8), we have

ρs(ym, yn) ≤ s

[
ρs(ym, ym+1) + ρs(ym+1, yn)

]
≤ sρs(ym, ym+1) + s2

[
ρs(ym+1, ym+2) + ρs(ym+2, yn)

]
...

≤ sρs(ym, ym+1) + s2ρs(ym+1, ym+2) + · · ·+ sn−mρs(yn−1, yn)︸ ︷︷ ︸
n−m terms

≤
[
skm−1 + s2km + · · ·+ sn−mkn−2

]
ρs(y1, y2)

= skm−1
(
1 + sk + · · · sn−m−1kn−m−1

)
ρs(y1, y2)

≤ skm−1

1− sk
· ρs(y1, y2) for all n.
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As m,n → ∞, this implies that ρs(ym, yn) → 0. Thus {yn}∞n=1 is b-Cauchy sequence in X. Since X is b-complete,
there exists a point z ∈ X such that

lim
n→∞

fx2n−1 = lim
n→∞

rx2n = lim
n→∞

gx2n = lim
n→∞

hx2n+1 = z. (3.9)

Since, {f, r} is a conditionally reciprocally continuous pair, there exists {an}∞n=1 ⊂ X such that

lim
n→∞

fan = lim
n→∞

ran = u for some u ∈ X implies lim
n→∞

fran = fu, lim
n→∞

rfan = ru. (3.10)

Also, since {g, h} is a conditionally reciprocally continuous pair, there exists {bn}∞n=1 ⊂ X such that

lim
n→∞

gbn = lim
n→∞

hbn = v for some v ∈ X implies lim
n→∞

ghbn = gv and lim
n→∞

hgbn = hv. (3.11)

Case (a): Suppose that (f, r) and (g, h) are compatible. Then

lim
n→∞

ρs(rfan, fran) = 0 and lim
n→∞

ρs(hgbn, ghbn) = 0.

In view of Lemma 1.2, (3.10) and (3.11) imply that

ru = lim
n→∞

rfan = fu and hv = lim
n→∞

ghbn = gv. (3.12)

Now, writing x = u, y = v in (3.2), and using (3.12), we see that

ρs(fu, gv) ≤
q

s4
max

{
ρs(ru, hv), ρs(fu, ru), ρs(gv, hv),

1

2
[ρs(ru, gv) + ρs(fu, hv)]

}
≤ q

s4
max

{
ρs(fu, gv), 0, 0,

1

2
[ρs(fu, gv) + ρs(fu, gv)]

}
=

q

s4
ρs(fu, gv)

so that ρs(fu, gv) = 0 or fu = gv. Thus

fu = ru = gv = hv = p. (3.13)

In view of Remark 2.1, (3.13) implies that

fp = rp and gp = hp. (3.14)

Writing x = y = p in (3.2), and then using (3.13) and (3.14), we see that

ρs(fp, gp) ≤
q

s4
max

{
ρs(rp, hp), ρs(fp, rp), ρs(gp, hp),

1

2
[ρs(rp, gp) + ρs(fp, hp)]

}
=

q

s4
ρs(fp, gp).

In other words, p is a common coincidence point of f , g, r and h. Finally, writing x = u, y = p in (3.2), and using
this,

ρs(p, gp) = ρs(fu, gp) ≤
q

s4
max

{
ρs(ru, hp), ρs(fu, ru), ρs(gp, hp),

1

2
[ρs(ru, gp) + ρs(fu, hp)]

}
=

q

s4
max

{
ρs(p, gp), 0, 0,

1

2
[ρs(p, gp) + ρs(p, gp)]

}
= ρs(p, gp).

Thus ρs(p, gp) = 0 or p = gp. In other words, p is a common fixed point of f , g, r and h.

Case (b): Suppose that ({f, r} is r-compatible and {g, h} is h-compatible. Then from (3.10) and (3.11),

lim
n→∞

ffan = lim
n→∞

rfan = ru and lim
n→∞

ggbn = lim
n→∞

hgbn = hv. (3.15)

Now, writing x = fan, y = gbn in (3.2), and using (3.15), we see that

ρs(ffan, ggbn) ≤
q

s4
max

{
ρs(rfan, hgbn), ρs(ffan, rfan), ρs(ggbn, hgbn),

1

2
[ρs(rfan, ggbn) + ρs(ffan, hgbn)]

}
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Employing the limit superior as n → ∞ and using Lemma 1.1, this gives

1

s2
ρs(ru, hv) ≤ lim sup

n→∞
ρs(ffan, ggbn)

≤ lim sup
n→∞

q

s4
max

{
ρs(rfan, hgbn), ρs(ffan, rfan), ρs(ggbn, hgbn),

1

2
[ρs(rfan, ggbn) + ρs(ffan, hgbn)]

}
≤ q

s4
·max

{
s2ρs(ru, hv), 0, 0,

s2

2
[ρs(ru, hv) + ρs(ru, hv)]

}
=

q

s2
· ρs(ru, hv).

If ρs(ru, hv) > 0, this would imply a contradiction that

0 <
1

s2
ρs(ru, hv) ≤

q

s2
· ρs(ru, hv) <

1

s2
ρs(ru, hv).

Therefore, ρs(ru, hv) = 0 or ru = hv.

Now, writing x = u, y = gbn in (3.2), and using (3.15), we see that

ρs(fu, ggbn) ≤
q

s4
max

{
ρs(ru, hgbn), ρs(fu, ru), ρs(ggbn, hgbn),

ρs(ru, ggbn) + ρs(fu, hgbn)

2

}
Again applying the limit superior as n → ∞ in this and using Lemma 1.1, this gives

1

s2
ρs(fu, hv) ≤ lim sup

n→∞
ρs(fu, ggbn)

≤ q

s4
max

{
s2ρs(fu, hv), s

2ρs(fu, ru), 0, 0,
s2

2
[ρs(fu, hv) + ρs(fu, hv)]

}
=

q

s2
· ρs(fu, hv)

so that ρs(fu, hv) = 0 or fu = ru = hv.

Whereas, writing x = fan, y = v in (3.2), and using (3.15), we see that

ρs(ffan, gv) ≤
q

s4
max

{
ρs(rfan, hv), ρs(ffan, rfan), ρs(gv, hv),

1

2
[ρs(rfan, gv) + ρs(ffan, hv)]

}
.

In view of Lemma 1.1, as n → ∞, this gives

1

s2
ρs(ru, gv) ≤

q

s4
max

{
s2ρs(ru, hv), 0, s

2ρs(gv, hv),
s2

2
[ρs(ru, gv) + ρs(ru, hv)]

}
=

s2

2
· ρs(ru, gv)

so that ρs(ru, gv) = 0 or ru = gv. In other words, fu = ru = gv = hv = ξ, say. Since r-compatible and h-compatible
pairs commute at their coincidence points, we see that

fξ = rξ and gξ = hξ. (3.16)

Putting x = y = ξ in (3.2), using (3.16) and then simplifying, we obtain that

fξ = rξ = gξ = hξ. (3.17)

Finally, writing x = w, y = ξ in (3.2), and using this,

ρs(p, gξ) = ρs(fw, gξ) ≤
q

s4
max

{
ρs(rw, hξ), ρs(fw, rw), ρs(gξ, hξ),

1

2
[ρs(rw, gξ) + ρs(fw, hξ)]

}
=

q

s4
max

{
ρs(ξ, gξ), 0, 0,

1

2
[ρs(ξ, gξ) + ρs(ξ, gξ)]

}
= ρs(ξ, gξ).
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Thus ρs(ξ, gξ) = 0 or ξ = gξ. In other words, ξ is a common fixed point of f , g, r and h.

Case (c): Interchanging the roles of f and r, and g and h in case (b), a common fixed point can be obtained. The
uniqueness of the common fixed point follows easily from (3.2) and the choice of k. □

The following theorem was proved in [17]:

Theorem 3.2. Let (X, ρs) be a complete b-metric space, s ≥ 1, and f , g, r, h : X → X satisfy the inclusions (3.1),
the inequality (3.2), and the condition (a) of Theorem 3.1. If r and h are continuous, then f , g, r and h have a unique
common fixed point.

Note that a unique common fixed point can be obtained by Theorem 3.1, even if neither r nor h is continuous. Where
as, Theorem 3.2 employed the continuity of both r and h for finding a common fixed point.

Remark 3.1. In addition to the continuity of r and h, if f and g are also continuous Theorem 3.2, then in view of
Remark 2.2, the compatibility of {f, r} coincides with their f -compatibility and the compatibility of {g, h} coincides
with their h-compatibility. Therefore, it suffices to use only one of (a), (b) and (c) to obtain the unique common fixed
point in Theorem 3.2.

Setting f = g, r = h and s = 1 in Theorem 3.2, we get

Corollary 3.1 (Theorem 1, [12]). Let f and r be self-maps on a complete metric space (X, ρ), satisfying the
inclusion:

f(X) ⊂ r(X), (3.18)

and the inequality

ρs(fx, fy) ≤
q

s4
max

{
ρs(rx, ry), ρs(fx, rx), ρs(fy, ry),

1

2
[ρs(rx, fy) + ρs(fx, ry)]

}
for all x, y ∈ X, (3.19)

where 0 < q < 1. Suppose that {f, r} is a conditionally reciprocally continuous pair and one of the following conditions
holds good:

(a) {f, r} is compatible,

(b) {f, r} is f -compatible,

(c) {f, r} is r-compatible.

Then f and r have a unique common fixed point.

Corollary 3.2 (Theorem 1, [12]). Let f and r be self-maps on a complete metric space (X, ρ), satisfying the
inclusion (3.18) and the inequality

ρs(fx, fy) ≤ qρs(rx, ry) for all x, y ∈ X, (3.20)

where 0 < q < 1. Suppose that {f, r} is a conditionally reciprocally continuous pair and one of the following conditions
holds good:

(a) {f, r} is compatible,

(b) {f, r} is f -compatible,

(c) {f, r} is r-compatible.

Then f and r have a unique common fixed point.

It may be noted that the right hand side of (3.20) is less than or equal to that of (3.19), and hence (3.19) holds good
whenever (3.19) holds. Thus Corollary 3.2 follows from Corollary 3.1.

Acknowledgements. The authors are highly thankful to the reviewer for valuable suggestions in improving the
paper.
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