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Abstract

This paper deals with the study of a coupled system of generalized impulsive integro-differential evolution equations
with periodic boundary value. We show the existence and uniqueness of the solution for the proposed problem using
Banach fixed point theorem. Another way was used to show the existence result with the aim of breaking out of the
widely used Theorems style, we take advantage Monch’s fixed point theorem using a non-compactness measure that
we introduced. Some examples are given to our obtained results.
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1 Introduction

The modeling of several real world problems by evolution equations has pushed researchers, notably mathemati-
cians, to research the development of this field (see [2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 19]). Different types of
integro-different equations that are a branch of evolution equations have been treated by several researchers [1, 17].
We quote that, in [1] the authors discussed with more details the following integro-differential equation

x′(t) = Ax(t) +
∫ t
0
B(t− s)x(s)ds+ φ(t, x(t)) for t ∈ [0, a] and t ̸= t1

∆x (ti) = Ii (x (ti)) for i = 1, . . . , p and 0 < t1 < t2 < · · · < tp < tp+1 = a

x(0) = g(x)

where A and B are two closed linear operators. To show the existence of solution for this problem, they used Darbo’s
fixed point Theorem as a tool.
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From above, we were motivated to study the following coupled system of a more general class of impulsive periodic
boundary value integro-differential equations:



x′(t) = Ax(t) +
∫ t
0 B1(t− τ)x(τ)dτ + φ1(t, x(t), y(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m, (1)

y′(t) = By(t) +
∫ t
0 B2(t− τ)y(τ)dτ + φ2(t, x(t), y(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m, (2)

x(t) = T (t− ti)ψ1i(t, x(t), y(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,
y(t) = S(t− ti)ψ2i(t, x(t), y(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,
x(si) + g1(x, y) = xi ∈ X, i = 1, · · · ,m,
y(si) + g2(x, y) = yi ∈ X, i = 1, · · · ,m,
x(0) = x(a),

y(0) = y(a).

(1.1)

Provided, the operators A : D(A) ⊂ X −→ X and B : D(B) ⊂ X −→ X are the infinitesimal generators of a
uniformly continuous semigroup {T (t), t ≥ 0} and {S(t), t ≥ 0} respectively on a Banach space X provided with a
norm ∥.∥, where they satisfy ∥T (t)∥ ≤ MT e

ωT a and ∥S(t)∥ ≤ MSe
ωSa, B1 and B2 are two closed linear operators on

X which satisfy D(A) ⊂ D(B1) and D(B) ⊂ D(B2), and for each x ∈ X the maps t 7−→ B1(t)x and t 7−→ B2(t)x are
bounded differentiable and the maps t 7−→ B′

1(t)x and t 7−→ B′
2(t)x are bounded uniformly continuous on [0,+∞).

and the fixed points si and ti satisfy

0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm ≤ sm ≤ tm+1 = a

are pre-fixed numbers, φ1, φ2 : , (si, ti+1] × X × X −→ X, ψ1i, ψ2i : , (ti, si] × X × X −→ X and g1, g2 :
PC([0, a], X) × PC([0, a], X) −→ X are given functions, such that T (t − ti)ψ1i(t, x(t), y(t))|t=si = xi − g1(x, y) and
S(t− ti)ψ2i(t, x(t), y(t))|t=si = yi − g2(x, y); i = 1, · · · ,m.

To show the existence of solution for this problem we use Banach and Monch’s fixed point theorems and by
introducing a measure of noncompactness.

2 Preliminaries

In this section we recall same basic notions used to build our result.

Denote by B(Y ) the set of all bounded subsets of a Banach space Y .

Definition 2.1. We say that m : B(Y ) −→ R+ is a measure of noncompactness on Y if the following proprieties are
satisfied:

1. m(A) = 0 if and only if A is precompact.

2. m(A) = m(A), for all A ∈ B(Y ).

3. m (A ∪B) = max {m (A) ,m (B)}, for all A, B ∈ B(Y ).

We recall the Kuratowski measure of noncompactness defined by

m(A) = inf
{
ρ > 0 : A ⊂ ∪mj=1Aj ,diam (Aj) ≤ ρ

}
, for A ∈ B(Y ).

Now, we present the following theorem called Monch’s fixed point theorem on which we will be based to show the
existence of our solution.

Theorem 2.2. [15] Let Ω be a bounded, closed, and convex subset of Y such that 0 ∈ Ω, Λ : Ω −→ Ω is a continuous
mapping. Then, Λ has at least a fixed point if C = co (Λ(C)) or C = Λ(C) ∪ {0} ⇒ C is compact for each C ⊂ Ω.
Where co (Λ(C)) is the closed convex hull of Λ(C).

Let
L∞([0, a]) = {l : [0, a] −→ R : l is measurable and essentially bounded} .

With the following norm
∥l∥L∞ = inf{β > 0 : |l(t)| ≤ β, a.e. t ∈ [0, a]}

L∞([0, a]) is Banach space.
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Definition 2.3. [3] A resolvent operator for the problem

{
x′(t) = Ax(t) +

∫ t
0 B(t− τ)x(τ)dτ, t ∈ [0,+∞)

x(0) = x0 ∈ Y.

is a bounded linear operator-valued function Γ(t) satisfying the following proprieties:

1. Γ(0) = IY . (IY the identity of Y ) and there exist two constants N > 0, and b ∈ R, such that ∥Γ(t)∥ ≤ Nebt.

2. t −→ Γ(t)y is strongly continuous for each y ∈ Y .

3. Γ(t) is bounded for t ≥ 0. And for x ∈ D(A),Γ(·)x ∈ C (R+, D(A)) ∩ C1 (R+, Y ) and satisfying the following
propriety

Γ′(t)x = AΓ(t)x+

∫ t

0

B(t− τ)Γ(τ)xdτ = Γ(t)Ax+

∫ t

0

Γ(t− τ)B(τ)xdτ ; t ∈ [0,∞).

For more details concerning the basic concepts used in this paper we refer [9].

3 Main result

Firstly, we provide the following result we need:
We define on B(X ×X) the map m̂ by

m̂(D × E) = max{m(D),m(E)}, for, C ×D ∈ B(X ×X) ⊂ B(X)× B(X).

For D × E, F ×G, ∈ B(X ×X), we have

m̂(D × E) = 0 ⇔ m(D) = 0 andm(E) = 0 ⇔ D × E is precompact,

m̂(D × E) = m̂(D × E) = max{m(D),m(E)} = max{m(D),m(E)} = m̂(D × E),

and

m̂
(
(D × E) ∪ (F ×G)

)
= m̂

(
(D ∪ F )× (E ∪G)

)
= max{m(D ∪ F ),m(E ∪G)}
= max{m(D),m(F ),m(E),m(F )}
= max{m̂

(
D × E

)
, m̂

(
F ×G

)
}.

So, m̂ is a measure of noncompactness on X ×X.

Now, we define the following spaces

PC([0, a], X) = {x : [0, a] −→ X : x ∈ C([0, t1] ∪ (ti, si] ∪ (si, ti+1], X); i = 1, · · ·m,
x(t−i ), x(t

+
i ), x(s

−
i ) andx(s

+
i ) exist, withx(t

−
i ) = x(ti) andx(s

−
i ) = x(si)

}
endowed with the norm ∥x∥PC = sup

t∈[0,a]

∥x(t)∥. And

PC2 := PC([0, a], X)× PC([0, a], X),

which is a Banach space with the following norm

∥(x, y)∥2 = ∥x∥PC + ∥y∥PC , for (x, y) ∈ PC2.

Firstly, we give the expression of mild solution for the following impulsive integro-differential equation


x′(t) = Ax(t) +

∫ t
0 B(t− τ)x(τ)dτ + φ(t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

x(t) = T (t− ti)ψi(t, x(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,
x(si) + g(x) = xi ∈ X, i = 1, · · · ,m,
x(0) = x(a).
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For t ∈ [0, t1], we have

x(t) = Γ (t)x(0) +

∫ t

0

Γ (t− τ)φ(τ, x(τ))dτ

= Γ (t)x(a) +

∫ t

0

Γ (t− τ)φ(τ, x(τ))dτ

= Γ (t)

[
Γ (a)

(
xm − g(x)

)
+

∫ a

sm

Γ (a− τ)φ(τ, x(τ))dτ

]
+

∫ t

0

Γ (t− τ)φ(τ, x(τ))dτ

= Γ (t)Γ (a)
(
xm − g(x)

)
+ Γ (t)

∫ a

sm

Γ (a− τ)φ(τ, x(τ))dτ +

∫ t

0

Γ (t− τ)φ(τ, x(τ))dτ

Let Γ1, Γ2 the resolvents associated with equations (1) and (2) respectively.

Now, we can define the form of our solution, it’s given in the following definition

Definition 3.1. We say that (x, y) is a mild solution of the problem (1.1) if (x, y) ∈ PC2 and satisfies the following
system

(
x(t)
y(t)

)
=



(
Γ (t)1Γ1(a)

(
xm − g1(x, y)

)
+ Γ1(t)

∫ a
sm

Γ1(a− τ)φ1(τ, x(τ), y(τ))dτ +
∫ t
0 Γ1(t− τ)φ1(τ, x(τ), y(τ))dτ

Γ2(t)Γ2(a)
(
ym − g2(x, y)

)
+ Γ2(t)

∫ a
sm

Γ2(a− τ)φ2(τ, x(τ), y(τ))dτ +
∫ t
0 Γ2(t− τ)φ2(τ, x(τ), y(τ))dτ

)
t ∈ [0, t1](

Γ1(t)
(
xi − g1(x, y)

)
+
∫ t
si
Γ1(t− τ)φ1(τ, x(τ), y(τ))dτ

Γ2(t)
(
yi − g2(x, y)

)
+
∫ t
si
Γ2(t− τ)φ2(τ, x(τ), y(τ))dτ

)
for t ∈ (si, ti+1], i = 1, 2, · · · ,m(

T (t− ti)ψ1i(t, x(t), y(t))

S(t− ti)ψ2i(t, x(t), y(t))

)
for t ∈ (ti, si], i = 1, 2, · · · ,m

Now, we pose the following hypotheses on which our existence result is based.

A1 The functions t 7−→ φj(t, x, y) and t 7−→ ψji(t, x, y); ; j = 1, 2, are measurable on [0, a] for all (x, y) ∈ X ×X,
and continuous on X ×X for a.e. t in (si, ti+1] and (ti, si], respectively.

A2 There exit µ1, µ2, ν1i, ν2i ∈ L∞ ([0, a]); i = 1, · · · ,m, which satisfy

∥φj(t, x, y)∥ ≤ µj(t) (1 + ∥x∥+ ∥y∥) ; a.e t ∈ (si, ti+1], and for all x, y ∈ X; j = 1, 2,

and

∥ψji(t, x, y)∥ ≤ νji(t) (1 + ∥x∥+ ∥y∥) ; i = 1 · · · ,m, a.e t ∈ (ti, si], and for all x, y ∈ X; j = 1, 2,

A3 There exists a constant α1, α2 > 0, such that

∥gj(x, y)∥ ≤ αj (1 + ∥x∥PC + ∥y∥PC) a.e t ∈ [0, a], and for all x, y ∈ PC([0, a], X); j = 1, 2.

A4 For all bounded set Θ ⊂ X ×X, and t ∈ [0, a], we have

m̂(φj(t,Θ)) ≤ µj(t)m̂(Θ), and m̂(ψji(t,Θ)) ≤ νji(t)m̂(Θ); i = 1, · · · ,m; j = 1; 2,

and for all bounded set Θ̃ ⊂ PC2, we have

m̂(gj(Θ̃)) ≤ αj sup
t∈[0,a]

m̂(Θ̃(t)), j = 1, 2,

where Θ̃(t) =
{
(x(t), y(t)) : (x, y) ∈ PC2

}
, for all t ∈ [0, a].

H1 The functions φj ∈ C([0, a] × X × X,X), ψji ∈ C([si, ti] × X × X,X); i = 1, · · · ,m; j = 1, 2, and g1, g2 are
continuous.
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H2 There exist constants Lφj
, Lψji

, Lgj > 0; j = 1, 2, i = 1, · · · ,m, such that, for j = 1; 2

∥φj(t, x1, y1)− φj(t, x2, y2)∥ ≤ Lφj (∥x1 − x2∥+ ∥y1 − y2∥) , for each t ∈ [si, ti+1]; i = 0, · · · ,m; , xj , yj ∈ X,

∥ψji(t, x1, y1)− ψji(t, x2, y2)∥ ≤ Lψji
(∥x1 − x2∥+ ∥y1 − y2∥) , for each t ∈ [ti, si], i = 1, · · · ,m, xj , yj ∈ X,

∥gj(x1, y1)− gj(x2, y2)∥ ≤ Lgj (∥x1 − x2∥PC + ∥y1 − y2∥PC) , for each xj , yj ∈ PC([0, a], X).

To reduce the form of mathematical expressions, we use the following notations:

λj = ∥µj∥L∞ , σj = max
i=1,··· ,m

∥νji∥L∞ , Nj = sup
t∈[0,a]

∥Γj(t)∥B, j = 1, 2

r1 =
N1 (N1∥xm∥+N1α1 + aN1λ1 + aλ1) +N2 (N2∥ym∥+N2α2 + aN2λ2 + aλ2)

1− δ1
,

r2 =
N1 (maxi ∥xi∥+ α1 + aλ1) +N2 (maxi ∥yi∥+ α2 + aλ2)

1−
(
N1 (α1 + aλ1) +N2 (α2 + aλ2)

) ,

r3 =
δ2

1− δ2
,

δ1 = N1 (N1α1 + aN1λ1 + aλ1) +N2 (N2α2 + aN2λ2 + aλ2) ,

δ2 = σ1MT e
ωT a + σ2MSe

ωSa, δ = max{δ1, δ2}

κ11 = N1

(
Lg1N1 + Lφ1N1 max

i=1,··· ,m
(ti+1 − si) + Lφ1t1

)
,

κ12 = N2

(
Lg2N2 + Lφ2

N2 max
i=1,··· ,m

(ti+1 − si) + Lφ2
t1

)
,

κ21 = max
i=1,··· ,m

Lψ1i
MT e

ωT a, and κ22 = max
i=1,··· ,m

Lψ2i
MSe

ωSa.

After provided assumptions, now we are in a position to present our first existence result based on Banach’s fixed
point theorem.

Theorem 3.2. Let assumptions H1 and H2 be satisfied. Suppose also that

κ := max {κ11 + κ12, κ21 + κ22} < 1.

Then, the problem (1.1) has a unique mild solution on [0, a].

Proof . We define on PC2 the following operator

(Λ(x, y))(t) =
(
Λ1(x, y)(t),Λ2(x, y)(t)

)
, (3.1)

where

Λ1(x, y)(t) =


Γ (t)1Γ1(a)

(
xm − g1(x, y)

)
+ Γ1(t)

∫ a
sm

Γ1(a− τ)φ1(τ, x(τ), y(τ))dτ +
∫ t
0 Γ1(t− τ)φ1(τ, x(τ), y(τ))dτ, t ∈ [0, t1]

Γ1(t)
(
xi − g1(x, y)

)
+
∫ t
si
Γ1(t− τ)φ1(τ, x(τ), y(τ))dτ, t ∈ (si, ti+1], i = 1, 2, · · · ,m

T (t− ti)ψ1i(t, x(t), y(t)), for t ∈ (ti, si], i = 1, 2, · · · ,m

and

Λ2(x, y)(t) =


Γ2(t)Γ2(a)

(
ym − g2(x, y)

)
+ Γ2(t)

∫ a
sm

Γ2(a− τ)φ2(τ, x(τ), y(τ))dτ +
∫ t
0 Γ2(t− τ)φ2(τ, x(τ), y(τ))dτ, t ∈ [0, t1]

Γ2(t)
(
yi − g2(x, y)

)
+
∫ t
si
Γ2(t− τ)φ2(τ, x(τ), y(τ))dτ, for t ∈ (si, ti+1], i = 1, 2, · · · ,m

S(t− ti)ψ2i(t, x(t), y(t)), for t ∈ (ti, si], i = 1, 2, · · · ,m

Let (x1, y1), (x2, y2) ∈ PC2, we discuss all possible cases.
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Case 1: For t ∈ [0, t1], we have

∥Λ1(x1, y1)(t)− Λ1(x2, y2)(t)∥ ≤ ∥Γ1(t)Γ1(a)g1(x1, y1)− Γ1(t)Γ1(a)g1(x2, y2)∥

+∥Γ1(t)∥B
∫ a

sm

∥Γ1(a− τ)∥B∥φ1(τ, x1(τ), y1(τ))− φ1(τ, x2(τ), y2(τ))∥dτ

+

∫ t

0
∥Γ1(t− τ)∥B∥φ1(τ, x1(τ), y1(τ))− φ1(τ, x2(τ), y2(τ))∥dτ

≤ Lg1N
2
1 (∥x1 − x2∥PC + ∥y1 − y2∥PC)

+Lφ1N
2
1

∫ a

sm

(∥x1(τ)− x2(τ)∥+ ∥y1(τ)− y2(τ)∥) dτ

+Lφ1N1

∫ t

0
(∥x1(τ)− x2(τ)∥+ ∥y1(τ)− y2(τ)∥) dτ

≤ N1 (Lg1N1 + Lφ1N1(a− sm) + Lφ1 t1) (∥x1 − x2∥PC + ∥y1 − y2∥PC)

≤ N1 (Lg1N1 + Lφ1N1(a− sm) + Lφ1 t1) ∥(x1, y1)− (x2, y2)∥2
≤ κ11∥(x1, y1)− (x2, y2)∥2

Similarly, we have

∥Λ2(x1, y1)(t)− Λ2(x2, y2)(t)∥ ≤ N2 (Lg2N2 + Lφ2N2(a− sm) + Lφ2 t1) ∥(x1, y1)− (x2, y2)∥2
≤ κ12∥(x1, y1)− (x2, y2)∥2

Then, we obtain

∥Λ(x1, y1)(t)− Λ(x2, y2)(t)∥ = ∥Λ1(x1, y1)(t)− Λ1(x2, y2)(t)∥+ ∥Λ2(x1, y1)(t)− Λ2(x2, y2)(t)∥
≤ (κ11 + κ12) ∥(x1, y1)− (x2, y2)∥2

Case 2: For t ∈ (si, ti+1]; i = 1, · · · ,m, we have

∥Λ1(x1, y1)(t)− Λ1(x2, y2)(t)∥ ≤ ∥Γ1(t)∥B ∥g1(x1, y1)− g1(x2, y2)∥

+

∫ t

si

∥Γ1(t− τ)∥B∥φ1(τ, x1(τ), y1(τ))− φ1(τ, x2(τ), y2(τ))∥dτ

≤ Lg1N1 (∥x1 − x2∥PC + ∥y1 − y2∥PC)

+Lφ1N1

∫ t

si

(∥x1(τ)− x2(τ)∥+ ∥y1(τ)− y2(τ)∥) dτ

≤ N1

(
Lg1 + Lφ1 max

i=1,··· ,m
(ti+1 − si)

)
∥(x1, y1)− (x2, y2)∥2

≤ κ11∥(x1, y1)− (x2, y2)∥2

Likewise, we get

∥Λ2(x1, y1)(t)− Λ2(x2, y2)(t)∥ ≤ N2

(
Lg2 + Lφ2 max

i=1,··· ,m
(ti+1 − si)

)
∥(x1, y1)− (x2, y2)∥2

≤ κ12∥(x1, y1)− (x2, y2)∥2

Hence,

∥Λ(x1, y1)(t)− Λ(x2, y2)(t)∥ ≤ (κ11 + κ12) ∥(x1, y1)− (x2, y2)∥2

Case 3: For t ∈ (ti, si]; i = 1, · · · ,m, we have

∥Λ1(x1, y1)(t)− Λ1(x2, y2)(t)∥ ≤ ∥T (t− ti)∥∥ψ1i(t, x1(t), y1(t))− ψ1i(t, x2(t), y2(t))∥
≤ Lψ1i

MT e
ωT a∥(x1, y1)− (x2, y2)∥2

≤ κ21∥(x1, y1)− (x2, y2)∥2

Similarly, we get

∥Λ2(x1, y1)(t)− Λ2(x2, y2)(t)∥ ≤ Lψ2i
MSe

ωSa∥(x1, y1)− (x2, y2)∥2
≤ κ22∥(x1, y1)− (x2, y2)∥2

Then, we have

∥Λ(x1, y1)(t)− Λ(x2, y2)(t)∥ ≤ (κ21 + κ22) ∥(x1, y1)− (x2, y2)∥2
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Finally, we get the following inequality

∥Λ(x1, y1)− Λ(x2, y2)∥2 ≤ max {κ11 + κ12, κ21 + κ22} ∥(x1, y1)− (x2, y2)∥2

Therefore, Λ is a contraction. So, according to Banach fixed point theorem, problem (1.1) has a unique mild solution.
□ Using Monch’s fixed point theorem, we present the second result of existence as follows:

Theorem 3.3. Suppose that assumptions A1-A4 are satisfied, in addition

δ < 1. (3.2)

Then problem (1.1) has at least one mild solution on [0, a].

Proof . To proof this result we transform our problem into fixed point, for this we consider the operator Λ : PC2 −→
PC2 defined in (3.1), and we define the ball Br :=

{
(x, y) ∈ PC2 : ∥(x, y)∥2 ≤ r

}
, where

r ≥ max{r1, r2, r3}.

Firstly, we prove that Λ is defined from Br into itself. Indeed:

Case 1: For (x, y) ∈ Br, and t ∈ [0, t1], we have

∥Λ1(x, y)(t)∥ ≤ ∥Γ1(t)∥B∥Γ1(a)∥B
(
∥xm∥+ ∥g1(x, y)∥

)
+ ∥Γ1(t)∥B

∫ a

sm

∥Γ1(a− τ)∥B∥φ1(τ, x(τ), y(τ))∥dτ

+

∫ t

0
∥Γ1(t− τ)∥B∥φ1(τ, x(τ), y(τ))∥dτ

≤ N2
1

(
∥xm∥+ α1(1 + ∥x∥PC + ∥y∥PC)

)
+ aN2

1λ1(1 + ∥x∥PC + ∥y∥PC) + aN1λ1(1 + ∥x∥PC + ∥y∥PC)

≤ N1 (N1∥xm∥+N1α1 + aN1λ1 + aλ1) +N1 (N1α1 + aN1λ1 + aλ1) r

Similarly, we get

∥Λ2(x, y)(t)∥ ≤ N2 (N2∥ym∥+N2α2 + aN2λ2 + aλ2) +N2 (N2α2 + aN2λ2 + aλ2) r

Then,

∥Λ(x, y)∥2 = ∥Λ1(x, y)∥2 + ∥Λ2(x, y)∥2
≤ N1 (N1∥xm∥+N1α1 + aN1λ1 + aλ1)

+N2 (N2∥ym∥+N2α2 + aN2λ2 + aλ2)

+ [N1 (N1α1 + aN1λ1 + aλ1) +N2 (N2α2 + aN2λ2 + aλ2)] r

≤ (1− δ1)r1 + δ1r

≤ r

Case 2: For (x, y) ∈ Br, and t ∈ (si, ti+1]; i = 1, · · · ,m, we have

∥Λ1(x, y)(t)∥ ≤ ∥Γ1(t)∥B
(
∥xi∥+ ∥g1(x, y)∥

)
+

∫ t

si

∥Γ1(t− τ)∥B∥φ1(τ, x(τ), y(τ))∥dτ

≤ N1

(
∥xi∥+ α1(1 + ∥x∥PC + ∥y∥PC)

)
+ aN1λ1(1 + ∥x∥PC + ∥y∥PC)

≤ N1 (∥xi∥+ α1 + aλ1) +N1 (α1 + aλ1) r

In the same way, we get

∥Λ2(x, y)(t)∥ ≤ N2 (∥yi∥+ α2 + aλ2) +N2 (α2 + aλ2) r.

Therefore,

∥Λ(x, y)∥ ≤ N1 (∥xi∥+ α1 + aλ1) +N2 (∥yi∥+ α2 + aλ2) + [N1 (α1 + aλ1) +N2 (α2 + aλ2)] r

≤
(
1− [N1 (α1 + aλ1) +N2 (α2 + aλ2)]

)
r2 + [N1 (α1 + aλ1) +N2 (α2 + aλ2)] r

≤ r.
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Case 3: For (x, y) ∈ Br, and t ∈ (ti, si]; i = 1, · · · ,m, we have

∥Λ1(x, y)(t)∥ ≤ ∥T (t− ti)∥∥ψ1i(t, x(t), y(t))∥
≤ σ1MT e

ωT a(1 + r)

Similarly, we obtain

∥Λ2(x, y)(t)∥ ≤ σ2MSe
ωSa(1 + r)

Then,

∥Λ(x, y)∥2 ≤
(
σ1MT e

ωT a + σ2MSe
ωSa

)
(1 + r)

≤ (1− δ2)r3 + δ2r

≤ r.

which shows that Λ is defined from Br into itself.

The rest of proof will be done in four steps by discussing all cases in each step.

Step 1: Λ is continuous:

Let (xn, yn)n≥0 ⊂ Br be a sequence, such that limn→+∞(xn, yn) = (x, y) in Br.

Clearly, we have ∥(xn, yn)− (x, y)∥2 = ∥xn − x∥PC + ∥yn − y∥PC which implies that

lim
n→+∞

(xn, yn) = (x, y) in Br if and only if lim
n→+∞

xn = x and lim
n→+∞

yn = y in {x ∈ PC([0, a], X) : ∥x∥PC ≤ r}.

Case 1: For t ∈ [0, t1], we have

∥Λ1 (xn, yn) (t)− Λ1 (x, y) (t)∥ ≤ ∥Γ1(t)∥B∥Γ1(a)∥B∥g1(xn, yn)− g1(x, y)∥

+∥Γ1(t)∥B
∫ a

sm

∥Γ1(a− τ)∥B∥φ1(τ, xn(τ), yn(τ))− φ1(τ, x(τ), y(τ))∥dτ

+

∫ t

0
∥Γ1(t− τ)∥B∥φ1(τ, xn(τ), yn(τ))− φ1(τ, x(τ), y(τ))∥dτ

≤ N2
1 ∥g1(xn, yn)− g1(x, y)∥

+N2
1

∫ a

sm

∥φ1(τ, xn(τ), yn(τ))− φ1(τ, x(τ), y(τ))∥dτ

+N1

∫ t

0
∥φ1(τ, xn(τ), yn(τ))− φ1(τ, x(τ), y(τ))∥dτ

And

∥Λ2 (xn, yn) (t)− Λ2 (x, y) (t)∥ ≤ N2
2 ∥g2(xn, yn)− g2(x, y)∥

+N2
2

∫ a

sm

∥φ2(τ, xn(τ), yn(τ))− φ2(τ, x(τ), y(τ))∥dτ

+N2

∫ t

0
∥φ2(τ, xn(τ), yn(τ))− φ2(τ, x(τ), y(τ))∥dτ

Case 2: For t ∈ (si, ti+1]; i = 1, · · · ,m, we have

∥Λ1 (xn, yn) (t)− Λ1 (x, y) (t)∥ ≤ ∥Γ1(t)∥B∥g1(xn, yn)− g1(x, y)∥

+

∫ t

si

∥Γ1(t− τ)∥B∥φ1(τ, xn(τ), yn(τ))− φ1(τ, x(τ), y(τ))∥dτ

≤ N1∥g1(xn, yn)− g1(x, y)∥

+N1

∫ t

si

∥φ1(τ, xn(τ), yn(τ))− φ1(τ, x(τ), y(τ))∥dτ

Similarly, we get

∥Λ2 (xn, yn) (t)− Λ2 (x, y) (t)∥ ≤ N2∥g2(xn, yn)− g2(x, y)∥+N2

∫ t

si

∥φ2(τ, xn(τ), yn(τ))− φ2(τ, x(τ), y(τ))∥dτ
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Case 3: For t ∈ (ti, si]; i = 1, · · · ,m, we have

∥Λ1 (xn, yn) (t)− Λ1 (x, y) (t)∥ ≤ ∥T (t− ti)∥∥ψ1i(t, xn(t), yn(t))− ψ1i(t, x(t), y(t))∥
≤ MT e

ωT a∥ψ1i(t, xn(t), yn(t))− ψ1i(t, x(t), y(t))∥

And

∥Λ2 (xn, yn) (t)− Λ2 (x, y) (t)∥ ≤MSe
ωSa∥ψ2i(t, xn(t), yn(t))− ψ2i(t, x(t), y(t))∥

We know that, φj , ψji and gj ; j = 1, 2; i = 1, · · · ,m are continuous, then according to Lebesgue-dominated
convergence theorem, we get from each previous step

lim
n→+∞

∥Λ1(xn, yn)− Λ1(x, y)∥2 = 0and lim
n→+∞

∥Λ2(xn, yn)− Λ2(x, y)∥2 = 0,

and since from (3.1) we have

lim
n→+∞

∥Λ(xn, yn) − Λ(x, y)∥2 = 0

⇕(
lim

n→+∞
∥Λ1(xn, yn)− Λ1(x, y)∥ = 0 and lim

n→+∞
∥Λ2(xn, yn)− Λ2(x, y)∥ = 0

)
.

So, we deduce that lim
n→+∞

∥Λ(xn, yn)− Λ(x, y)∥2 = 0.

Step 2: Λ(Br) is bounded. Indeed:

We have Λ is defined on Br into itself. So, Λ(Br) ⊂ Br which prove that Λ(Br) is bounded.

Step 3: Λ is equicontinuous.

Case 1: For (x, y) ∈ Br and 0 ≤ τ1 < τ2 ≤ t1, we have

∥Λ1(x, y)(τ2)− Λ1(x, y)(τ1)∥ ≤ ∥Γ1(a)∥B
(
∥xm∥+ ∥g1(x, y)∥

)
∥Γ1(τ2)− Γ1(τ1)∥B

+∥Γ1(τ2)− Γ1(τ1)∥B
∫ a

sm

∥Γ1(a− τ)∥B∥φ1(τ, x(τ), y(τ))∥dτ

+

∫ τ1

0
∥Γ1(τ2 − τ)− Γ1(τ1 − τ)∥B∥φ1(τ, x(τ), y(τ))∥dτ

+

∫ τ2

τ1

∥Γ1(τ2 − τ)∥B∥φ1(τ, x(τ), y(τ))∥dτ

≤ N1

[(
∥xm∥+ α1(1 + r)

)
+ (a− sm)λ1(1 + r)

]
∥Γ1(τ2)− Γ1(τ1)∥B

+λ1(1 + r)

∫ τ1

0
∥Γ1(τ2 − τ)− Γ1(τ1 − τ)∥Bdτ +N1λ1(1 + r)(τ2 − τ1)

In the same manner, we get

∥Λ2(x, y)(τ2)− Λ2(x, y)(τ1)∥ ≤ N2

[(
∥ym∥+ α2(1 + r)

)
+ (a− sm)λ2(1 + r)

]
∥Γ2(τ2)− Γ2(τ1)∥B

+λ2(1 + r)

∫ τ1

0
∥Γ2(τ2 − τ)− Γ2(τ1 − τ)∥Bdτ +N2λ2(1 + r)(τ2 − τ1)

Case 2: For (x, y) ∈ Br and si < τ1 < τ2 ≤ ti+1; i = 1, · · · ,m, we have

∥Λ1(x, y)(τ2)− Λ1(x, y)(τ1)∥ ≤ ∥Γ1(τ2)− Γ1(τ1)∥B
(
∥xi∥+ ∥g1(x, y)∥

)
+

∫ τ1

si

∥Γ1(τ2 − τ)− Γ1(τ1 − τ)∥B∥φ1(τ, x(τ), y(τ))∥dτ

+

∫ τ2

τ1

∥Γ1(τ2 − τ)∥B∥φ1(τ, x(τ), y(τ))∥dτ

≤
(
∥xi∥+ α1(1 + r)

)
∥Γ1(τ2)− Γ1(τ1)∥B

+λ1(1 + r)

∫ τ1

si

∥Γ1(τ2 − τ)− Γ1(τ1 − τ)∥Bdτ

+N1λ1(1 + r)(τ2 − τ1)

And

∥Λ2(x, y)(τ2)− Λ2(x, y)(τ1)∥ ≤
(
∥yi∥+ α2(1 + r)

)
∥Γ2(τ2)− Γ2(τ1)∥B

+λ2(1 + r)

∫ τ1

si

∥Γ2(τ2 − τ)− Γ2(τ1 − τ)∥Bdτ

+N2λ2(1 + r)(τ2 − τ1)
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Case 3: For (x, y) ∈ Br and ti < τ1 < τ2 ≤ si; i = 1, · · · ,m, we have

∥Λ1(x, y)(τ2)− Λ1(x, y)(τ1)∥ ≤ ∥T (τ1 − ti)∥∥T (τ2 − τ1)ψ1i(τ2, x(τ2), y(τ2))− ψ1i(τ1, x(τ1), y(τ1))∥
≤ MT e

ωT a∥T (τ2 − τ1)ψ1i(τ2, x(τ2), y(τ2))− ψ1i(τ1, x(τ1), y(τ1))∥

Similarly, we obtain

∥Λ2(x, y)(τ2)− Λ2(x, y)(τ1)∥ ≤MSe
ωSa∥S(τ2 − τ1)ψ2i(τ2, x(τ2), y(τ2))− ψ2i(τ1, x(τ1), y(τ1))∥

In all previous cases, we have

∥Λ(x, y)(τ2)− Λ(x, y)(τ1)∥ = ∥Λ1(x, y)(τ2)− Λ1(x, y)(τ1)∥+ ∥Λ2(x, y)(τ2)− Λ2(x, y)(τ1)∥ → 0 as τ1 → τ2.

This allows us to conclude that Λ is equicontinuous.

Step 4: Let C ⊂ Br be a non empty subset, such that

C ⊂ Λ(C) ∪ {(0, 0)} = (Λ1(C)× Λ2(C)) ∪ {(0, 0)} = (Λ1(C) ∪ {0})× Λ2(C) ∪ {0}).

Clearly, it is bounded and equicontinuous.
Consider the function l defined by

l(t) = m̂ (C(t)) , t ∈ [0, a],

which is continuous.

Case 1: For t ∈ [0, t1], We have

l(t) = m̂ (C(t)) ≤ m̂
(
Λ(C)(t) ∪ {(0, 0)}

)
≤ m̂

(
Λ(C)(t)

)
= m̂ (Λ(C)(t)) = max{m (Λ1(C)(t)) ,m (Λ2(C)(t))}.

Since, we have

m (Λ1(C)(t)) ≤ ∥Γ1(t)∥B∥Γ1(a)∥Bα1 sup
t∈[0,a]

m̂
(
C(t)

)
+∥Γ1(t)∥B

∫ a

sm

∥Γ1(a− τ)∥Bλ1m̂
(
C(τ)

)
dτ

+

∫ t

0

∥Γ1(t− τ)∥Bλ1m̂
(
C(τ)

)
dτ

≤ N1

(
N1α1 + aN1λ1 + aλ1

)
∥l∥∞

≤ δ1∥l∥∞
and

m (Λ2(C)(t)) ≤ N2

(
N2α2 + aN2λ2 + aλ2

)
∥l∥∞

≤ δ1∥l∥∞
Therefore,

l(t) ≤ δ∥l∥∞.

Case 2: For t ∈ (si, ti+1]; i = 1, · · · ,m, We have

m (Λ1(C)(t)) ≤ ∥Γ1(t)∥Bα1 sup
t∈[0,a]

m̂
((
C(t)

))
+

∫ t

si

∥Γ1(t− τ)∥Bλ1m̂
(
C(τ)

)
dτ

≤ N1

(
α1 + aλ1

)
∥l∥∞

≤ δ1∥l∥∞
and

m (Λ2(C)(t)) ≤ N2

(
α2 + aλ2

)
∥l∥∞

≤ δ1∥l∥∞
Then,

l(t) ≤ δ∥l∥∞.
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Case 3: For t ∈ (ti, si]; i = 1, · · · ,m, We have

m (Λ1(C)(t)) ≤ ∥T (t− ti)∥σ1 sup
t∈[0,a]

m̂
(
C(t)

)
≤ σ1MT e

ωT a∥l∥∞
≤ δ2∥l∥∞

and

m (Λ2(C)(t)) ≤ σ2MSe
ωSa∥l∥∞

≤ δ2∥l∥∞
Then,

l(t) ≤ δ∥l∥∞.

Hence, from above cases we can deduce that

∥l∥∞ ≤ δ∥l∥∞.

Since δ < 1, so obviously we have ∥l∥∞ = 0 which is equivalent to saying that m̂
(
C(t)

)
= 0. So, according to

the first property of Definition 2.1, C(t) is relatively compact in X ×X. Then, by the Ascoli-Arzelà theorem, it
is relatively compact in Br.

Thus, all conditions of Theorem 3.3 are satisfied, and consequently our problem has a solution. □

4 Examples

In this section we present two examples to illustrate our existence results.

Example 4.1. We consider the following problem:



∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) +

∫ t
0 L1(t− τ)

∂2

∂x2
u(τ, x)dτ +

1

18N2
1

(
cos(u(t, x)) + sin(v(t, x))

)
, t ∈ (0, 1] ∪ (2, 3], x ∈ [0, 1]

∂

∂t
v(t, x) =

∂2

∂x2
v(t, x) +

∫ t
0 L2(t− τ)

∂2

∂x2
v(τ, x)dτ +

1

18N2
2

(
cos(u(t, x)) + v(t, x)

)
, t ∈ (0, 1] ∪ (2, 3], x ∈ [0, 1]

u(t, x) = T (t− 1)
1

14

(
sin(u(t, x)) + sin(v(t, x))

)
, t ∈ (1, 2], x ∈ [0, 1]

v(t, x) = T (t− 1)
1

14

(
cos(u(t, x)) + sin(u(t, x))

)
, t ∈ (1, 2], x ∈ [0, 1]

u(t, 0) = v(t, 0) = u(t, 1) = v(t, 1) = 0, t ∈ (0, 1] ∪ (2, 3]

u(0, x) = u(3, x), x ∈ [0, 1]

v(0, x) = v(3, x), x ∈ [0, 1]

u(0, x) +
1

8N2
1

(1 + sin(u) + v) = 1 + ex, x ∈ [0, 1]

u(2, x) +
1

8N2
1

(1 + sin(u) + v) = 2 + ex, x ∈ [0, 1]

v(0, x) +
1

8N2
2

(1 + cos(u) + v) = 1 + ex, x ∈ [0, 1]

v(2, x) +
1

8N2
2

(1 + cos(u) + v) = 2 + ex, x ∈ [0, 1]

(4.1)

where L1, L2 ∈ C1([0, 3],R).
The previous problem can be abstracted into problem 1.1, where X = L2([0, 1]) endowed with the norm ∥u∥ =(∫ 1

0

|u(x)|2dx
) 1

2

which is a Banach space, andAu = Bu =
∂2

∂x2
u, for u ∈ D(A) =

{
u ∈ X :

∂

∂x
u,

∂2

∂x2
u ∈ X, u(0) = u(1) = 0

}
.
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A is the generator of a strongly continuous and compact semigroup {T (t), t ≥ 0} on X and ∥T (t)∥ ≤ 1, for all t ≥ 0.

B1(t) = L1(t)A, B2(t) = L2(t)A, φ1(t, u, v) =
1

18N2
1

(
cos(u(t, x)) + sin(v(t, x))

)
,

φ2(t, u, v) =
1

18N2
2

(
cos(u(t, x)) + v(t, x)

)
, ψ11(t, u, v) =

1

14

(
sin(u(t, x)) + sin(v(t, x))

)
,

ψ21(t, u, v) =
1

14

(
cos(u(t, x)) + sin(v(t, x))

)
g1(u, v) =

1

8N2
1

(1 + sin(u) + v) , g2(u, v) =
1

8N2
2

(1 + cos(u) + v) .

Clearly, we have Lφ1 =
1

18N2
1

, Lφ2 =
1

18N2
2

, Lψ11 = Lψ21 =
1

14N
, Lg1 =

1

8N2
1

, Lg2 =
1

8N2
2

, MT = MS = 1, a = 3

and ωT = ωS = 0. Then κ11 ≤ 17

72
, κ12 ≤ 17

72
and κ21 = κ22 =

1

14
, therefore κ ≤ 17

36
< 1. Hence, according to theorem

3.2, problem (4.1) has a unique mild solution.

Example 4.2. To illustrate our second result of existence, we present the following problem:

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) +

∫ t
0 L1(t− τ)

∂2

∂x2
u(τ, x)dτ +

(
1

e9
+

1

et+x+9

)
t2(1 + u(t, x) + v(t, x))

36N2
1 (1 + ∥u∥+ ∥v∥)

, t ∈ (0, 1] ∪ (2, 3], x ∈ [0, 1]

∂

∂t
v(t, x) =

∂2

∂x2
v(t, x) +

∫ t
0 L2(t− τ)

∂2

∂x2
u(τ, x)dτ +

(
1

e9
+

1

et+x+9

)
t2(1 + u(t, x))

36N2
2 (1 + ∥u∥+ ∥v∥)

, t ∈ (0, 1] ∪ (2, 3], x ∈ [0, 1]

u(t, x) = T (t− 1)
u(t, x)

24(1 + ∥u∥+ ∥v∥)
, t ∈ (1, 2], x ∈ [0, 1]

v(t, x) = T (t− 1)
v(t, x)

24(1 + ∥u∥+ ∥v∥)
, t ∈ (1, 2], x ∈ [0, 1]

u(t, 0) = u(t, 1) = v(t, 0) = v(t, 1) = 0, t ∈ (0, 1] ∪ (2, 3]

u(0, x) = u(3, x), x ∈ [0, 1]

v(0, x) = v(3, x), x ∈ [0, 1]

u(0, x) +
1

8N12
(1 + sin(u) + cos(v)) = 1 + ex, x ∈ [0, 1]

u(2, x) +
1

8N2
1

(1 + sin(u) + cos(v)) = 2 + ex, x ∈ [0, 1]

v(0, x) +
1

8N2
2

(1 + sin(u) + v) = 1 + ex, x ∈ [0, 1]

v(2, x) +
1

8N2
2

(1 + sin(u) + v) = 2 + ex, x ∈ [0, 1]

(4.2)

The previous problem can be written as problem (1.1), where

φ1(t, u, v) =

(
1

e9
+

1

et+x+9

)
t2(1 + u(t, x) + v(t, x))

36N2
1 (1 + ∥u∥+ ∥v∥)

,

φ2(t, u, v) =

(
1

e9
+

1

et+x+9

)
t2(1 + u(t, x))

36N2
2 (1 + ∥u∥+ ∥v∥)

,

ψ11(t, u, v) =
u(t, x)

24(1 + ∥u∥+ ∥v∥)
,

ψ21(t, u, v) =
v(t, x)

24(1 + ∥u∥+ ∥v∥)
,

g1(u, v) =
1

8N2
1

(1 + sin(u) + cos(v)) ,

g2(u, v) =
1

8N2
2

(1 + sin(u) + v) .

It’s easy to verify that λ1 =
1

2N2
1 e

9
, λ2 =

1

2N2
2 e

9
, σ1 = σ2 =

1

24
, α1 =

1

8N2
1

and α2 =
1

8N2
2

. Thus, δ1 ≤ 24 + e9

4e9
< 1

and δ2 =
1

12
< 1. Therefore, by using Theorem (3.3), our problem (4.2) has a solution.
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