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Abstract

This paper examines suitable borderings and modification techniques for finding some special properties of a class of
real heptadiagonal symmetric Toeplitz matrices and anti-heptadiagonal persymmetric Hankel matrices with perturbed
corners as the zeros of explicit rational functions. An orthogonal diagonalization, inverse and determinant, and
a formula to compute its integer powers for these matrices are shown. Then, these results are expanded for the
corresponding Toeplitz-plus-Hankel matrices with perturbed corners.
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1 Introduction and preliminaries

Band matrices arise in a wide variety of applications such as the finite difference approximation to ordinary
differential equations and in certain statistical problems. The integer powers of these matrices are required in different
fields such as numerical analysis, differential equations, linear dynamical systems or graph theory. Spectral and
computational properties of symmetric Toeplitz matrices and persymmetric Hankel matrices in special cases have
been studied by several authors such as Bini, Fasino, Silva and Shams Solary, in [1, 4, 10, 12]. In brief, spectral and
computational properties of symmetric Toeplitz matrices and persymmetric Hankel matrices have been studied by
several authors such as Bini, Fasino and Lita da Silva in Bini and Capovani (1983), Fasino (1988), Lita da Silva (2016)
and Solary (2013). This motivates us to derive an orthogonal diagonalization for heptadiagonal symmetric Toeplitz
matrices and anti-heptadiagonal persymmetric Hankel matrices with perturbed corners. We say that a, b, c, d, e ∈ R,
Tn is an n× n heptadiagonal symmetric Toeplitz matrices, Hn is an n× n anti-heptadiagonal persymmetric Hankel
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matrices with perturbed corners

Tn =



e b c d
b a b c d
c b a b c d
d c b a b c d

d c b a b c d
. . .

. . .
. . .

. . .
. . .

. . .
. . .

d c b a b c d
d c b a b c

d c b a b
d c b e


(1.1)

and

Hn =



d c b e
d c b a b

d c b a b c
d c b a b c d

d c b a b c d

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

d c b e b c d
c b a b c d
b a b c d
e b c d


. (1.2)

By using the technique of bordering for a class of simultaneously diagonalizable matrices, we made suitable submatri-
ces of the heptadiagonal symmetric Toeplitz matrices and anti-heptadiagonal persymmetric Hankel matrices. These
submatrices help us to find the integer powers, the determinant and the inverse of heptadiagonal symmetric Toeplitz
matrices and anti-heptadiagonal persymmetric Hankel matrices with perturbed corners. We generalize these results
for the following Toeplitz-plus-Hankel matrices with perturbed corners. Here we use the following notations:

λk = 2d cos

(
3kπ

n+ 1

)
+ 2c cos

(
2kπ

n+ 1

)
+ 2b cos

(
kπ

n+ 1

)
+ a, (1.3)

µk = −2d cos

[
(n− 2)kπ

n+ 1

]
− 2c cos

[
(n− 1)kπ

n+ 1

]
− 2b cos

(
nkπ

n+ 1

)
− a cos(kπ) (1.4)

k = 1, . . . , n.

(a) If n is even,

D1 = diag(λ1, λ3, . . . , λn−1), D2 = diag(λ2, λ4, . . . , λn),
D3 = diag(µ1, µ3, . . . , µn−1), D4 = diag(µ2, µ4, . . . , µn),
P is the n× n permutation matrix defined by:

[P]i,j =

{
1 if i = 2j − 1 or i = 2j − n
0 otherwise.

(1.5)

U =

 θ w(1)T θ
w(1) V w(2)

θ w(2)T −θ

 (1.6)

U is an orthogonal and symmetric matrix n× n, since UT = U = U−1 where

θ =

√
2

n+ 1
sin

(
π

n+ 1

)
,

w
(1)
i = (−1)iw

(2)
i =

√
2

n+ 1
sin

[
π(i+ 1)

n+ 1

]
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[V]ij =

√
2

n+ 1
sin

[
π(i+ 1)(j + 1)

n+ 1

]
.

u =

√
2

n+ 1


sin

(
π

n+1

)
sin

(
3π
n+1

)
...

sin
[
(n−1)π
n+1

]

 , v =

√
2

n+ 1


sin

(
2π
n+1

)
sin

(
4π
n+1

)
...

sin
(

nπ
n+1

)

 (1.7)

(b) If n is odd,

D1 = diag(λ1, λ3, . . . , λn), D2 = diag(λ2, λ4, . . . , λn−1),
D3 = diag(µ1, µ3, . . . , µn), D4 = diag(µ2, µ4, . . . , µn−1),
P is the n× n permutation matrix defined by:

[P]i,j =

{
1 if i = 2j − 1 or i = 2j − n− 1
0 otherwise.

(1.8)

U =

 θ w(1)T θ
w(1) V w(2)

θ w(2)T θ

 (1.9)

u =

√
2

n+ 1


sin

(
π

n+1

)
sin

(
3π
n+1

)
...

sin
(

nπ
n+1

)

 , v =

√
2

n+ 1


sin

(
2π
n+1

)
sin

(
4π
n+1

)
...

sin
[
(n−1)π
n+1

]

 . (1.10)

Also we have

[ξ]ij = [1 + (−1)i+j ]

[
c− a+ e+ 2d cos

(
iπ

n+ 1

)
+ 2d cos

(
jπ

n+ 1

)]
, i, j = 1, . . . , n, (1.11)

where ξ(1) is an order-preserving submatrix of ξ corresponds to i, j are odd, ξ(2) is an order-preserving submatrix of
ξ corresponds to i, j are even and [ξ]ij = 0 otherwise.
ξ(1) ◦ uuT is shown the Hadamard product of ξ(1) and uuT , ξ(2) ◦ vvT is shown the Hadamard product of ξ(2) and
vvT [8].

2 An orthogonal diagonalization of the matrix Tn

Let an n× n Toeplitz matrix similar (1.1). The basic tool of our analysis in this paper is the bordering technique,
see [1, 2]. This technique helps us to find a class of simultaneously diagonalizable matrices which have a suitable
submatrix generating by band symmetric Toeplits matrices. Setting

T̂n =



a− c b− d c d
b− d a b c d
c b a b c d
d c b a b c d

. . .
. . .

. . .
. . .

. . .
. . .

. . .

d c b a b c d
d c b a b c

d c b a b− d
d c b− d a− c





3060 Shams Solary

and

ÊT =



c− a+ e d 0
d 0 0
0 0 0

. . .
. . .

. . .

0 0 0
0 0 d
0 d c− a+ e


.

Then Tn = T̂n + ÊT , by Proposition 3.1 in [1] and a theoretical and computational analysis of UÊTU, we deduce

UTnU = U(T̂n + ÊT )U = diag(λ1, λ2, . . . , λn) +ET

where
[ET ]ij =

2[1 + (−1)i+j ]

n + 1
sin

(
iπ

n + 1

)
sin

(
jπ

n + 1

)[
c − a + e + 2d

[
cos

(
iπ

n + 1

)
+ cos

(
jπ

n + 1

)]]

for i, j = 1, 2, . . . , n, since [ET ]ij = 0 whenever i+j is odd, we can permute rows and columns of diag(λ1, λ2, . . . , λn)+
ET according to the permutation matrices (1.5) and (1.8) for n even or n odd and other convenient relations of Theorem
12 respectively, which derives:

Tn = UP

(
D1 + ξ(1) ◦ uuT 0

0 D2 + ξ(2) ◦ vvT

)
PTU. (2.1)

Then we deduce

Theorem 1. Let Tn be an n× n matrix similar (1.1) and λk, k = 1, . . . , n be given in (1.3),
(a) If n is even then

Tn = UP

 diag(λ1, λ3, . . . , λn−1) + ξ(1) ◦ uuT 0

0 diag(λ2, λ4, . . . , λn) + ξ(2) ◦ vvT

P
T

U. (2.2)

where P is the n×n permutation matrix defined by (1.5), U in (1.6) is orthogonal matrix and u, v are given by (1.7).
(b) If n is odd then

Tn = UP

 diag(λ1, λ3, . . . , λn) + ξ(1) ◦ uuT 0

0 diag(λ2, λ4, . . . , λn−1) + ξ(2) ◦ vvT

P
T

U. (2.3)

where P is the n× n permutation matrix defined by (1.8), U in (1.9) and u, v are given by (1.10).

The decomposition obtained in the above theorem can be used for finding the inverse and the spectral properties of
the matrix Tn.
Let M = ξ(1) ◦ uuT and N = ξ(2) ◦ vvT , I is the identity matrix (with convenient dimension).
According to Sherman-Morrison-Woodbury formula [7, 9], we have

(D1 +M)−1 = D−1
1 −D−1

1 (I+MD−1
1 )−1MD−1

1

and

(D2 +N)−1 = D−1
2 −D−1

2 (I+ND−1
2 )−1ND−1

2 ,

then we have

T
−1
n = UP

 D−1
1 [I − (I + MD−1

1 )−1MD−1
1 ] 0

0 D−1
2 [I − (I + ND−1

2 )−1MD−1
2 ]

P
T
U. (2.4)

By taking the determinant of both sides of (2.1) and using [5], we have

det(D1 + ϵM) = det(D1)(1 + ϵ trace(D−1
1 M)) +O(ϵ2),
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for any complex ϵ sufficiently small in modulus.
Then for n even we have

det (Tn) =

1 +
4

n+ 1

n
2∑

i=1

(
c− a+ e+ 4d cos

[
(2i−1)π

n+1

])
sin2

[
(2i−1)π

n+1

]
2d cos

[
3(2i−1)π

n+1

]
+ 2c cos

[
2(2i−1)π

n+1

]
+ 2b cos

[
(2i−1)π

n+1

]
+ a


×

1 +
4

n+ 1

n
2∑

i=1

(
c− a+ e+ 4d cos

(
2iπ
n+1

))
sin2

[
2iπ
n+1

]
2d cos

[
3(2i)iπ
n+1

]
+ 2c cos

[
2(2i)π
n+1

]
+ 2b cos

[
2iπ
n+1

]
+ a


×

n∏
i=1

{
2d cos

(
3iπ

n+ 1

)
+ 2c cos

(
2iπ

n+ 1

)
+ 2b cos

(
iπ

n+ 1

)
+ a

}
(2.5)

and for n odd, we deduce

det (Tn) =

1 +
4

n+ 1

n+1
2∑

i=1

(
c− a+ e+ 4d cos

[
(2i−1)pi

n+1

])
sin2

[
(2i−1)π

n+1

]
2d cos

[
3(2i−1)π

n+1

]
+ 2c cos

[
2(2i−1)π

n+1

]
+ 2b cos

[
(2i−1)π

n+1

]
+ a


×

1 +
4

n+ 1

n−1
2∑

i=1

(
c− a+ e+ 4d cos

(
2iπ
n+1

))
sin2

[
2iπ
n+1

]
2d cos

[
3(2i)iπ
n+1

]
+ 2c cos

[
2(2i)π
n+1

]
+ 2b cos

[
2iπ
n+1

]
+ a


×

n∏
i=1

{
2d cos

(
3iπ

n+ 1

)
+ 2c cos

(
2iπ

n+ 1

)
+ 2b cos

(
iπ

n+ 1

)
+ a

}
. (2.6)

2.1 Spectral properties for TN

The results of the preceding section allow us to find straightforward spectral properties of heptadiagonal symmetric
Toeplitz matrices with perturbed corners. In this section we are concerned with separation properties of the eigenvalues,
structure of the eigenvectors and finally the development of efficient methods for finding eigenvalues and eigenvectors
of integer powers of these matrices. Let us point out that this problem was studied where the eigenvalues are simple if
the diagonal matrix has multiple eigenvalues then deflation can be used just as in [3, 6] to eliminate them converting
the original problem into another one where the eigenvalues are simple, thus ensuring that the hypothesis holds.

Lemma 2. Let Tn in (1.1) be an n× n heptadiagonal symmetric Toeplitz matrices with perturbed corners and

λk = 2d cos

(
3kπ

n+ 1

)
+ 2c cos

(
2kπ

n+ 1

)
+ 2b cos

(
kπ

n+ 1

)
+ a, k = 1, . . . , n.

(a) If n is even, u, v and ξ(1) are defined by (1.7) and (1.11) respectively,

i. λ1, λ3, . . . , λn−1 are all distinct then the eigenvalues of
diag(λ1, λ3, . . . , λn−1) + ξ(1) ◦ uuT are the zeros of the rational function

f(t) = 1 +
4

n+ 1

n
2∑

i=1

(
c− a+ e+ 4d cos

[
(2i−1)π

n+1

])
sin2

[
(2i−1)π

n+1

]
t− 2d cos

[
3(2i−1)π

n+1

]
− 2c cos

[
2(2i−1)π

n+1

]
− 2b cos

[
(2i−1)π

n+1

]
− a

. (2.7)
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Moreover, the eigenvalues β1, β2, . . . , βn
2
of diag(λ1, λ3, . . . , λn−1) + ξ(1) ◦ uuT are all simple and

fj =



(
c−a+e+4d cos

(
π

n+1

))
sin

(
π

n+1

)
{
2d cos

(
3π

n+1

)
+2c cos

(
2π

n+1

)
+2b cos

(
π

n+1

)
+a−βj

}√√√√√√√√
n
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1

2 sin2
 (2i−1)π

n+1


2d cos

 3(2i−1)π
n+1

+2c cos

 2(2i−1)π
n+1

+2b cos

 (2i−1)π
n+1

+a−βj


2

(
c−a+e+4d cos

(
3π

n+1

))
sin

(
3π

n+1

)
{
2d cos

(
9π

n+1

)
+2c cos

(
6π

n+1

)
+2b cos

(
3π

n+1

)
+a−βj

}√√√√√√√√
n
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1

2 sin2
 (2i−1)π

n+1


2d cos

 3(2i−1)π
n+1

+2c cos

 2(2i−1)π
n+1

+2b cos

 (2i−1)π
n+1

+a−βj


2

...

(
c−a+e+4d cos

[
(n−1)π

n+1

])
sin

[
(n−1)π

n+1

]
{
2d cos

[
3(n−1)π

n+1

]
+2c cos

[
2(n−1)π

n+1

]
+2b cos

[
(n−1)π

n+1

]
+a−βj

}√√√√√√√√
n
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1

2 sin2
 (2i−1)π

n+1


2d cos

 3(2i−1)π
n+1

+2c cos

 2(2i−1)π
n+1

+2b cos

 (2i−1)π
n+1

+a−βj


2



(2.8)

is an eigenvector associated to βj , j = 1, . . . , n
2 .

ii. λ2, λ4, . . . , λn are all distinct then the eigenvalues of
diag(λ2, λ4, . . . , λn) + ξ(1) ◦ vvT are the zeros of the rational function

g(t) = 1 +
4

n + 1

n
2∑

i=1

(
c − a + e + 4d cos

(
2iπ
n+1

))
sin2

(
2iπ
n+1

)
t − 2d cos

[
3(2i)π
n+1

]
− 2c cos

[
2(2i)π
n+1

]
− 2b cos

[
2iπ
n+1

]
− a

. (2.9)

Moreover, the eigenvalues γ1, γ2, . . . , γn
2
of diag(λ2, λ4, . . . , λn) + ξ(2) ◦ vvT are all simple and

gj =



(
c−a+e+4d cos

(
2π

n+1

))
sin
(

2π
n+1

)
{
2d cos

(
3π

n+1

)
+2c cos

(
2π

n+1

)
+2b cos

(
π

n+1

)
+a−γj

}√√√√√√√
n
2∑

i=1

(
c−a+e+4d cos

(
2iπ
n+1

))2
sin2

(
2iπ
n+1

)
{
2d cos

[
3(2i)π
n+1

]
+2c cos

[
2(2i)π
n+1

]
+2b cos

[
(2i)π
n+1

]
+a−γj

}2

(
c−a+e+4d cos

(
4π

n+1

))
sin
(

4π
n+1

)
{
2d cos

(
6π

n+1

)
+2c cos

(
4π

n+1

)
+2b cos

(
2π

n+1

)
+a−γj

}√√√√√√√
n
2∑

i=1

(
c−a+e+4d cos

(
2iπ
n+1

))2
sin2

(
2iπ
n+1

)
{
2d cos

[
3(2i)π
n+1

]
+2c cos

[
2(2i)π
n+1

]
+2b cos

(
2iπ
n+1

)
+a−γj

}2

.

.

.(
c−a+e+4d cos

(
nπ
n+1

))
sin
(

nπ
n+1

)
{
2d cos

(
3nπ
n+1

)
+2c cos

(
2nπ
n+1

)
+2b cos

(
nπ
n+1

)
+a−γj

}√√√√√√√
n
2∑

i=1

(
c−a+e+4d cos

(
2iπ
n+1

))2
sin2

[
2iπ
n+1

]
{
2d cos

[
3(2i)π
n+1

]
+2c cos

[
2(2i)π
n+1

]
+2b cos

(
2iπ
n+1

)
+a−γj

}2



(2.10)

is an eigenvector associated to γj , j = 1, . . . , n
2 .

(b) If n is odd, u, v and ξ(2) are defined by (1.10) and (1.11) respectively,

i. λ1, λ3, . . . , λn are all distinct then the eigenvalues of
diag(λ1, λ3, . . . , λn) + ξ(1) ◦ uuT are the zeros of the rational function

f(t) = 1 +
4

n + 1

n+1
2∑

i=1

(
c − a + e + 4d cos

[
(2i−1)π

n+1

])
sin2

[
(2i−1)π

n+1

]
t − 2d cos

[
3(2i−1)π

n+1

]
− 2c cos

[
2(2i−1)π

n+1

]
− 2b cos

[
(2i−1)π

n+1

]
− a

. (2.11)

Moreover, the eigenvalues β1, β2, . . . , βn+1
2

of diag(λ1, λ3, . . . , λn) + ξ(1) ◦ uuT are all simple and

fj =



(
c−a+e+4d cos

(
π

n+1

))
sin
(

π
n+1

)
{
2d cos

(
3π

n+1

)
+2c cos

(
2π

n+1

)
+2b cos

(
π

n+1

)
+a−βj

}√√√√√√√
n
2∑

i=1

(
c−a+e+4d cos

[
(2i−1)π

n+1

])2
sin2

[
(2i−1)π

n+1

]
{
2d cos

[
3(2i−1)π

n+1

]
+2c cos

[
2(2i−1)π

n+1

]
+2b cos

[
(2i−1)π

n+1

]
+a−βj

}2

(
c−a+e+4d cos

(
3π

n+1

))
sin
(

3π
n+1

)
{
2d cos

(
9π

n+1

)
+2c cos

(
6π

n+1

)
+2b cos

(
3π

n+1

)
+a−βj

}√√√√√√√
n
2∑

i=1

(
c−a+e+4d cos

[
(2i−1)π

n+1

])2
sin2

[
(2i−1)π

n+1

]
{
2d cos

[
3(2i−1)π

n+1

]
+2c cos

[
2(2i−1)π

n+1

]
+2b cos

[
(2i−1)π

n+1

]
+a−βj

}2

.

.

.(
c−a+e+4d cos

(
nπ
n+1

))
sin
(

nπ
n+1

)
{
2d cos

[
3nπ
n+1

]
+2c cos

[
2nπ
n+1

]
+2b cos

[
nπ
n+1

]
+a−βj

}√√√√√√√
n
2∑

i=1

(
c−a+e+4d cos

[
(2i−1)π

n+1

])2
sin2

[
(2i−1)π

n+1

]
{
2d cos

[
3(2i−1)π

n+1

]
+2c cos

[
2(2i−1)π

n+1

]
+2b cos

[
(2i−1)π

n+1

]
+a−βj

}2



(2.12)
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is an eigenvector associated to βj , j = 1, . . . , n+1
2 .

ii. λ2, λ4, . . . , λn−1 are all distinct then the eigenvalues of
diag(λ2, λ4, . . . , λn−1) + ξ(1) ◦ vvT are the zeros of the rational function

g(t) = 1 +
4

(n + 1)

n−1
2∑

i=1

(
c − a + e + 4d cos

(
2iπ
n+1

))
sin2

(
2iπ
n+1

)
t − 2d cos

[
3(2i)π
n+1

]
− 2c cos

[
2(2i)π
n+1

]
− 2b cos

(
2iπ
n+1

)
− a

. (2.13)

Moreover, the eigenvalues γ1, γ2, . . . , γn−1
2

of diag(λ2, λ4, . . . , λn−1) + ξ(2) ◦ vvT are all simple and

gj =



(
c−a+e+4d cos

(
2π

n+1

))
sin
(

2π
n+1

)
{
2d cos

(
3π

n+1

)
+2c cos

(
2π

n+1

)
+2b cos

(
π

n+1

)
+a−γj

}√√√√√√√
n−1
2∑

i=1

(
c−a+e+4d cos

(
2iπ
n+1

))2
sin2

(
2iπ
n+1

)
{
2d cos

[
3(2i)π
n+1

]
+2c cos

[
2(2i)π
n+1

]
+2b cos

(
2iπ
n+1

)
+a−γj

}2

(
c−a+e+4d cos

(
4π

n+1

))
sin
(

4π
n+1

)
{
2d cos

(
6π

n+1

)
+2c cos

(
4π

n+1

)
+2b cos

(
2π

n+1

)
+a−γj

}√√√√√√√
n−1
2∑

i=1

(
c−a+e+4d cos

(
2iπ
n+1

))2
sin2

(
2iπ
n+1

)
{
2d cos

(
3(2i)π
n+1

)
+2c cos

(
2(2i)π
n+1

)
+2b cos

(
2iπ
n+1

)
+a−γj

}2

.

.

.(
c−a+e+4d cos

[
(n−1)π

n+1

])
sin

[
(n−1)π

n+1

]
{
2d cos

[
3(n−1)π

n+1

]
+2c cos

[
2(n−1)π

n+1

]
+2b cos

[
(n−1)π

n+1

]
+a−γj

}√√√√√√√
n−1
2∑

i=1

(
c−a+e+4d cos

(
2iπ
n+1

))2
sin2

(
2iπ
n+1

)
{
2d cos

[
3(2i)π
n+1

]
+2c cos

[
2(2i)π
n+1

]
+2b cos

[
2iπ
n+1

]
+a−γj

}2



(2.14)

is an eigenvector associated to γj , j = 1, . . . , n−1
2 .

Proof . (a) and (b) can be proven in the same way, then we only prove (a). Let n ∈ N be even.

i. Suppose u given by (1.7),
√

2
n+1 sin

[
(2i−1)π
n+1

]
̸= 0 for i = 1, . . . , n

2 and λ1, λ3, . . . , λn−1 in (1.1) all distinct, then

det
[
diag(λ1, λ3, . . . , λn−1) + ξ(1) ◦ uuT − tIn

2

]
= f(t)

n
2∏

i=1

(λ2i−1 − t)

for this work, we use Equation (3) in [5] and [6].
The eigenvalues of diag(λ1, λ3, . . . , λn−1) + ξ(1) ◦ uuT can be computed by finding the zeros of f(t).

ii. Consider v given by (1.7),
√

2
n+1 sin

(
2iπ
n+1

)
̸= 0 for i = 1, . . . , n

2 and λ2, λ4, . . . , λn in (1.1) all distinct, then

det
[
diag(λ2, λ4, . . . , λn) + ξ(1) ◦ vvT − tIn

2

]
= g(t)

n
2∏

i=1

(λ2i − t).

The eigenvalues of diag(λ2, λ4, . . . , λn) + ξ(2) ◦ vvT can be computed by finding the zeros of g(t). □ Now we suppose
that eigenvectors corresponding to distinct eigenvalues βj , j = 1, . . . , n

2 in Lemma 2 for (a) n even are such that
∥ fj ∥= 1 for j = 1, . . . , n

2 , we can deduce that {f1, ..., fn
2
} is an orthonormal set, then we have an n

2 × n
2 orthogonal

matrix

Fn
2

=



(
c−a+e+4d cos

[
(2k−1)π

n+1

])
sin

[
(2k−1)π

n+1

]

{
2d cos

[
3(2k−1)π

n+1

]
+2c cos

[
2(2k−1)π

n+1

]
+2b cos

[
(2k−1)π

n+1

]
+a−βj

}
√√√√√√√√√√

n
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 3(2i−1)π
n+1

+2c cos

 2(2i−1)π
n+1

+2b cos

 (2i−1)π
n+1

+a−βj


2


k,j

(2.15)

Analogously, we have the n
2 × n

2 orthogonal matrix

Gn
2

=



(
c−a+e+4d cos

(
2kπ
n+1

))
sin

(
2kπ
n+1

)

{
2d cos

[
3(2k)π
n+1

]
+2c cos

[
2(2k)π
n+1

]
+2b cos

(
2kπ
n+1

)
+a−γj

}√√√√√√√√√
n
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 3(2i)π
n+1

+2c cos

 2(2i)π
n+1

+2b cos
 2iπ
n+1

+a−γj


2


k,j

. (2.16)

We repeated the simulations above with sample (b) n odd, so that for i. we have an orthogonal matrix

Fn+1
2

=



(
c−a+e+4d cos

[
(2k−1)π

n+1

])
sin

[
(2k−1)π

n+1

]

{
2d cos

(
3(2k−1)π

n+1

)
+2c cos

[
2(2k−1)π

n+1

]
+2b cos

[
(2k−1)π

n+1

]
+a−βj

}
√√√√√√√√√√

n+1
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 3(2i−1)π
n+1

+2c cos

 2(2i−1)π
n+1

+2b cos

 (2i−1)π
n+1

+a−βj


2


k,j

(2.17)
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analogously, for ii. we deduce

Gn−1
2

=



(
c−a+e+4d cos

[
2kπ
n+1

])
sin

[
2kπ
n+1

]

{
2d cos

(
3(2k)π
n+1

)
+2c cos

[
2(2k)π
n+1

]
+2b cos

[
2kπ
n+1

]
+a−γj

}√√√√√√√√√
n−1
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 3(2i)π
n+1

+2c cos

 2(2i)π
n+1

+2b cos
 2iπ
n+1

+a−γj


2


k,j

(2.18)

by the column vectors (2.12) and (2.14).

Theorem 3. Let Tn in (1.1) be an n× n heptadiagonal symmetric Toeplitz matrices with perturbed corners,
(a) If n is even, λ1, λ3, . . . , λn−1 are all distinct and λ2, λ4, . . . , λn are all distinct, β1, β2, . . . , βn

2
are the zeros of

(2.7), γ1, γ2, . . . , γn
2
are the zeros of (2.9), P is the n× n permutation matrix (1.5), U is the n× n matrix in (1.6),

Fn
2
and Gn

2
are the matrices (2.15) and (2.16) respectively, then

Tn = UP

(
Fn

2
0

0 Gn
2

)
diag

(
β1, β2, . . . , βn

2
, γ1, γ2, . . . , γn

2

) FT
n
2

0

0 GT
n
2

PTU.

(b) If n is odd, λ1, λ3, . . . , λn are all distinct and λ2, λ4, . . . , λn−1 are all distinct, β1, β2, . . . , βn+1
2

are the zeros of

(2.11), γ1, γ2, . . . , γn−1
2

are the zeros of (2.13), P is the n× n permutation matrix (1.8),

U is the n× n matrix in (1.9), Fn+1
2

and Gn−1
2

are the matrices (2.17) and (2.18) respectively, then

Tn = UP


Fn+1

2

0

0 Gn−1
2

 diag

β1, β2, . . . , β n+1
2

, γ1, γ2, . . . , γ n−1
2




FT
n+1
2

0

0 GT
n−1
2

P
T

U.

Proof . (a) According to (a) of Lemma 2 and (2.15), we have

diag(λ1, λ3, . . . , λn−1) + ξ(1) ◦ uuT = Fn
2
diag

(
β1, β2, . . . , βn

2

)
FT

n
2

(2.19)

where
(
β1, β2, . . . , βn

2

)
are the zeros of (2.7) and the matrix Fn

2
is orthogonal. We can also show

diag(λ2, λ4, . . . , λn) + ξ(1) ◦ vvT = Gn
2
diag

(
γ1, γ2, . . . , γn

2

)
GT

n
2

(2.20)

where
(
γ1, γ2, . . . , γn

2

)
are the zeros of (2.9) and the matrix Gn

2
is orthogonal. Therefore, from (a) of Theorem 1

and Equations (2.19 ) and (2.20) we obtain

Tn = UP

 Fn
2

0

0 Gn
2

 diag
(
β1, β2, . . . , βn

2
, γ1, γ2, . . . , γn

2

) FT
n
2

0

0 GT
n
2

P
T
U. (2.21)

(b) The proof of (b) follows the same steps of (a). According to (b) of Lemma 2, for n odd and λ1, λ3, . . . , λn are all
distinct and λ2, λ4, . . . , λn−1 are all distinct. In the same way, we have

diag(λ1, λ3, . . . , λn−1) + ξ(1) ◦ uuT = Fn+1
2
diag

(
β1, β2, . . . , βn+1

2

)
FT

n+1
2

(2.22)

where
(
β1, β2, . . . , βn+1

2

)
are the zeros of (2.11) and the matrix Fn+1

2
is orthogonal. We can also write

diag(λ2, λ4, . . . , λn−1) + ξ(1) ◦ vvT = Gn−1
2

diag
(
γ1, γ2, . . . , γn−1

2

)
GT

n−1
2

(2.23)

where
(
γ1, γ2, . . . , γn−1

2

)
are the zeros of (2.13) and the matrix Gn−1

2
is orthogonal. Therefore, from (b) of Theorem

1 and Equations (2.22 ) and (2.23) we obtain

Tn = UP


Fn+1

2

0

0 Gn−1
2

 diag

(
β1, . . . , β n+1

2

, γ1, . . . , γ n−1
2

)
FT

n+1
2

0

0 GT
n−1
2

P
T

U. (2.24)

□
We finish this section with more general results on spectral properties of heptadiagonal symmetric Toeplitz matrices
with perturbed corners Tn.
We need the following theorem of [13]:
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Theorem 4. Let A, B, C be n×n symmetric matrices with eigenvalues xi, yi, zi, respectively, arranged in increasing
order, and A = B+C; then yi + zn ≤ xi ≤ yi + zi.

Moreover, we observe that if D = diag(λ1, . . . , λn) and u ∈ Rn, ui ̸= 0, i = 1, 2, . . . , n where λ1 ≥ λ2 . . . ≥ λn, the
eigenvalues τi, i = 1, 2, . . . , n of D+ uuT arranged in non-increasing order, are such that:

λ1+ ∥ u ∥2≥ τ1 ≥ λ1, λi−1 ≥ τi ≥ λi, i = 2, 3, . . . , n.

Furthermore, interchanging the roles of D and uuT we have µ1 ≥ λn+ ∥ u ∥2.

Applying these bounds to the submatrices D1+ ξ(1) ◦uuT and D2+ ξ(2) ◦vvT from decomposition (2.2) and (2.3),
then we obtain

Lemma 5. Let

Tn =



e b c d
b a b c d
c b a b c d
d c b a b c d

d c b a b c d
. . .

. . .
. . .

. . .
. . .

. . .
. . .

d c b a b c d
d c b a b c

d c b a b
d c b e


its eigenvalues are partitionable into two subsets

(
β1, β2, . . . , βn

2

)
,
(
γ1, γ2, . . . , γn

2

)
, for n even,(

β1, β2, . . . , βn+1
2

)
,
(
γ1, γ2, . . . , γn−1

2

)
, for n odd.

We only give the results for n even, the same way is shown for n odd.

Considering the polynomial η(t) = dt3 + ct2 + (b − 3d)t + (a − 2c) [1, 11], and assuming that η
{
2 cos

(
iπ

n+1

)}
for

i = 1, 2, . . . , n with λ2i−1 and λ2i. Then we have

λ2i−1 ≤ βi ≤ λ2i+1 λ2i ≤ γi ≤ λ2i+2, i = 1, 2, . . . ,
n

2

λ1+ ∥ ξ(1) ◦ uuT ∥2≥ βi ≥ max{λ3, λn−1+ ∥ ξ(1) ◦ uuT ∥2}

λ2+ ∥ ξ(2) ◦ vvT ∥2≥ γi ≥ max{λ4, λn+ ∥ ξ(2) ◦ vvT ∥2}

from decomposition (2.2) and (2.3).

Theorem 6. Let n, m ∈ N and Tn in (1.1) be an n× n heptadiagonal symmetric Toeplitz matrices with perturbed
corners

(a) If n is even, λ1, λ3, . . . , λn−1 are all distinct and λ2, λ4, . . . , λn are all distinct, β1, β2, . . . , βn
2

are the zeros
of (2.7), γ1, γ2, . . . , γn

2
are the zeros of (2.9), P is the n×n permutation matrix (1.5), U is the n×n matrix in (1.6),

Fn
2
and Gn

2
are the matrices (2.15) and (2.16) respectively, Tn is nonsingular then for every integer m, we have

T
m
n = UP


Fn

2
0

0 Gn
2

 diag

(
β
m
1 , β

m
2 , . . . , β

m
n
2

, γ
m
1 , γ

m
2 , . . . , γ

m
n
2

)
FT

n
2

0

0 GT
n
2

P
T

U.

(b) If n is odd, λ1, λ3, . . . , λn are all distinct and λ2, λ4, . . . , λn−1 are all distinct, β1, β2, . . . , βn+1
2

are the zeros of

(2.11), γ1, γ2, . . . , γn−1
2

are the zeros of (2.13), P is the n× n permutation matrix (1.8),
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U is the n×n matrix in (1.9), Fn+1
2

and Gn−1
2

are the matrices (2.17) and (2.18) respectively, Tn is nonsingular then

for every integer m, we deduce

T
m
n = UP


Fn+1

2

0

0 Gn−1
2

 diag

βm
1 , . . . , β

m
n+1
2

, γ
m
1 , . . . , γ

m
n−1
2




FT
n+1
2

0

0 GT
n−1
2

P
T

U.

Proof . We can prove these results by applying (a) and (b) of Theorem 3. □

3 An orthogonal diagonalization of the matrix Hn

Let an n × n Hankel matrix similar (1.2). The algorithm obtained in the Section 2 can be extended to anti-
heptadiagonal persymmetric Hankel matrices with perturbed corners. This algorithm helps us to find a class of simul-
taneously diagonalizable matrices which have a suitable submatrix generating by band symmetric Hankel matrices.
Let

Ĥn =



d c b− d a− c
d c b a b− d

d c b a b c
d c b a b c d

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

d c b a b c d
c b a b c d

b− d a b c d
a− c b− d c d


and

ÊH =



0 d c− a+ e
0 0 d
0 0 0

. .
.

. .
.

. .
.

0 0 0
d 0 0

c− a+ e d 0


.

Then Hn = Ĥn + ÊH , by some theoretical aspects in computational analysis of UÊHU and

UHnU = U(Ĥn + ÊH)U = diag(µ1, µ2, . . . , µn) +EH

where

[EH ]i,j =
2[1 + (−1)i+j ]

n + 1
sin

(
iπ

n + 1

)
sin

(
jπ

n + 1

)[
c − a + e + 4d

(
cos

[
(i + j)π

2n + 2

]
cos

[
(i − j)π

2n + 2

])]

for i, j = 1, 2, . . . , n, since [EH ]ij = 0 whenever i+j is odd, we can permute rows and columns of diag(µ1, µ2, . . . , µn)+
EH according to the permutation matrices (1.5) and (1.8) for n even or n odd and other convenien relations of Theorem
12 respectively, we have

Hn = UP

(
D3 + ξ(1) ◦ uuT 0

0 D4 − ξ(2) ◦ vvT

)
PTU. (3.1)

Thus we have the following theorem:

Theorem 7. Let Hn be an n× n matrix similar (1.2) and µk, k = 1, . . . , n be given in (1.4),
(a) If n is even then

Hn = UP

 diag(µ1, µ3, . . . , µn−1) + ξ(1) ◦ uuT 0

0 diag(µ2, µ4, . . . , µn) − ξ(2) ◦ vvT

P
T

U. (3.2)
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where P is the n×n permutation matrix defined by (1.5), U in (1.6) is orthogonal matrix and u, v are given by (1.7).
(b) If n is odd then

Hn = UP

 diag(µ1, µ3, . . . , µn) + ξ(1) ◦ uuT 0

0 diag(µ2, µ4, . . . , µn−1) − ξ(2) ◦ vvT

P
T

U. (3.3)

where P is the n× n permutation matrix defined by (1.8), U in (1.9) and u, v are given by (1.10).

The above theorem can be used for finding the inverse and the spectral properties of the matrix Hn.
By M = ξ(1) ◦uuT and N = −ξ(2) ◦vvT , I is the identity matrix (with convenient dimension) and Sherman-Morrison-
Woodbury formula:

(D3 +M)−1 = D−1
3 −D−1

3 (I+MD−1
3 )−1MD−1

3

and

(D4 +N)−1 = D−1
4 −D−1

4 (I+ND−1
4 )−1ND−1

4 ,

then we dedude

H
−1
n = UP

 D−1
3 (I − (I + MD−1

3 )−1MD−1
3 ) 0

0 D−1
4 (I − (I + ND−1

4 )−1ND−1
4 )

P
T
U. (3.4)

Also from (3.1) and using [5], for n even we deduce

det (Hn) =

1 −
4

n + 1

n
2∑

i=1

[
c − a + e + 4d cos

(
(2i−1)π

n+1

)]
sin2

[
(2i−1)π

n+1

]
2d cos

[
(n−2)(2i−1)π

n+1

]
+ 2c cos

[
(n−1)(2i−1)π

n+1

]
+ 2b cos

[
n(2i−1)π

n+1

]
− a


×

1 +
4

n + 1

n
2∑

i=1

[
c − a + e + 4d cos

(
2iπ
n+1

)]
sin2

[
2iπ
n+1

]
2d cos

[
2i(n−2)π

n+1

]
+ 2c cos

[
2i(n−1)π

n+1

]
+ 2b cos

[
2inπ
n+1

]
+ a


×

n∏
i=1

{
2d cos

[
(n − 2)iπ

n + 1

]
+ 2c cos

[
(n − 1)iπ

n + 1

]
+ 2b cos

(
niπ

n + 1

)
+ (−1)

i
a

}
(3.5)

and for n odd, we deduce

det (Hn) =


4

n + 1

n+1
2∑

i=1

[
c − a + e + 4d cos

[
(2i−1)π

n+1

]]
sin2

[
(2i−1)π

n+1

]
2d cos

[
(n−2)(2i−1)π

n+1

]
+ 2c cos

[
(n−1)(2i−1)π

n+1

]
+ 2b cos

[
(2i−1)nπ

n+1

]
− a

− 1


×

1 +
4

n + 1

n−1
2∑

i=1

[
c − a + e + 4d cos

(
2iπ
n+1

)]
sin2

[
2iπ
n+1

]
2d cos

[
2i(n−2)π

n+1

]
+ 2c cos

[
2i(n−1)π

n+1

]
+ 2b cos

[
2inπ
n+1

]
+ a


×

n∏
i=1

{
2d cos

[
(n − 2)iπ

n + 1

]
+ 2c cos

[
(n − 1)iπ

n + 1

]
+ 2b cos

(
niπ

n + 1

)
+ (−1)

i
a

}
. (3.6)

3.1 Spectral properties for HN

We consider the spectral properties of anti-heptadiagonal persymmetric Hankel matrices with perturbed corners.
Let us point out that this problem was considered where the eigenvalues are simple if the diagonal matrix has multiple
eigenvalues then deflation can be used just as in [3, 6] to eliminate them converting the original problem into another
one where the eigenvalues are simple, thus ensuring that the hypothesis holds.

Lemma 8. Let Hn in (1.2) be an n × n anti-heptadiagonal persymmetric Hankel matrices with perturbed corners,
for k = 1, . . . , n, we have

µk = −2d cos

[
(n− 2)kπ

n+ 1

]
− 2c cos

[
(n− 1)kπ

n+ 1

]
− 2b cos

(
nkπ

n+ 1

)
− a cos(kπ).
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(a) If n is even, u, v and ξ(1) are defined by (1.7) and (1.11) respectively,

i. µ1, µ3, . . . , µn−1 are all distinct then the eigenvalues of
diag(µ1, µ3, . . . , µn−1) + ξ(1) ◦ uuT are the zeros of the rational function

r(t) = 1− 4

n+ 1

n
2∑

i=1

(
c− a+ e+ 4d cos

[
(2i−1)π
n+1

])
sin2

[
(2i−1)π
n+1

]
2d cos

[
(n−2)(2i−1)π

n+1

]
+ 2c cos

[
(n−1)(2i−1)π

n+1

]
+ 2b cos

[
n(2i−1)π

n+1

]
− a+ t

. (3.7)

Moreover, the eigenvalues α1, α2, . . . , αn
2
of diag(µ1, µ3, . . . , µn−1) + ξ(1) ◦ uuT are all simple and

rj =



(
c−a+e+4d cos

(
π

n+1

))
sin

(
π

n+1

)

{
2d cos

[
(n−2)π

n+1

]
+2c cos

[
(n−1)π

n+1

]
+2b cos

[
nπ
n+1

]
−a+αj

}
√√√√√√√√√√

n
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 (n−2)(2i−1)π
n+1

+2c cos

 (n−1)(2i−1)π
n+1

+2b cos

 n(2i−1)π
n+1

−a+αj


2

(
c−a+e+4d cos

(
3π

n+1

))
sin

(
3π

n+1

)

{
2d cos

[
3(n−2)π

n+1

]
+2c cos

[
3(n−1)π

n+1

]
+2b cos

(
3nπ
n+1

)
−a+αj

}
√√√√√√√√√√

n
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 (n−2)(2i−1)π
n+1

+2c cos

 (n−1)(2i−1)π
n+1

+2b cos

 n(2i−1)π
n+1

)−a+αj


2

.

.

.

(
c−a+e+4d cos

[
(n−1)π

n+1

])
sin

[
(n−1)π

n+1

]

2d cos

[
(n−2)(n−1)π

n+1

]
+2c cos

 (n−1)2π
n+1

+2b cos

[
(n−1)nπ

n+1

]
−a+αj


√√√√√√√√√√

n
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 (n−2)(2i−1)π
n+1

+2c cos

 (n−1)(2i−1)π
n+1

+2b cos

 n(2i−1)π
n+1

−a+αj


2


(3.8)

is an eigenvector associated to αj , j = 1, . . . , n
2 .

ii. µ2, µ4, . . . , µn are all distinct then the eigenvalues of
diag(µ2, µ4, . . . , µn)− ξ(1) ◦ vvT are the zeros of the rational function

s(t) = 1 +
4

n+ 1

n
2∑

i=1

(
c− a+ e+ 4d cos

(
2iπ
n+1

))
sin2

(
2iπ
n+1

)
2d cos

[
2i(n−2)π

n+1

]
+ 2c cos

[
2i(n−1)π

n+1

]
+ 2b cos

(
2inπ
n+1

)
+ a+ t

. (3.9)

Moreover, the eigenvalues θ1, θ2, . . . , θn
2
of diag(µ2, µ4, . . . , µn)− ξ(2) ◦ vvT are all simple and

sj =



(
c−a+e+4d cos

(
2π

n+1

))
sin

(
2π

n+1

)

{
2d cos

[
2(n−2)π

n+1

]
+2c cos

[
2(n−1)π

n+1

]
+2b cos

(
2nπ
n+1

)
+a+θj

}√√√√√√√√√
n
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 2i(n−2)π
n+1

+2c cos

 2i(n−1)π
n+1

+2b cos
 2inπ
n+1

+a+θj


2

(
c−a+e+4d cos

(
4π

n+1

))
sin

(
4π

n+1

)

{
2d cos

[
4(n−2)π

n+1

]
+2c cos

[
4(n−1)π

n+1

]
+2b cos

(
4nπ
n+1

)
+a+θj

}√√√√√√√√√
n
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 2i(n−2)π
n+1

+2c cos

 2i(n−1)π
n+1

+2b cos
 2inπ
n+1

+a+θj


2

.

.

.

(
c−a+e+4d cos

(
nπ
n+1

))
sin

(
nπ
n+1

)

{
2d cos

[
(n−2)nπ

n+1

]
+2c cos

[
(n−1)nπ

n+1

]
+2b cos

(
n2π
n+1

)
+a+θj

}√√√√√√√√√
n
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 2i(n−2)π
n+1

+2c cos

 2i(n−1)π
n+1

+2b cos
 2inπ
n+1

+a+θj


2



(3.10)

is an eigenvector associated to θj , j = 1, . . . , n
2 .

(b) If n is odd, u, v and ξ(2) are defined by (1.10) and (1.11) respectively,

i. µ1, µ3, . . . , µn are all distinct then the eigenvalues of
diag(µ1, µ3, . . . , µn) + ξ(1) ◦ uuT are the zeros of the rational function

r(t) = 1 −
4

n + 1

n+1
2∑

i=1

(
c − a + e + 4d cos

[
(2i−1)π

n+1

])
sin2

[
(2i−1)π

n+1

]
2d cos

[
(n−2)(2i−1)π

n+1

]
+ 2c cos

[
(n−1)(2i−1)π

n+1

]
+ 2b cos

[
n(2i−1)π

n+1

]
− a + t

. (3.11)
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Moreover, the eigenvalues α1, α2, . . . , αn+1
2

of diag(µ1, µ3, . . . , µn) + ξ(1) ◦ uuT are all simple and

rj =



(
c−a+e+4d cos

(
π

n+1

))
sin

(
π

n+1

)

{
2d cos

[
(n−2)π

n+1

]
+2c cos

[
(n−1)π

n+1

]
+2b cos

(
nπ
n+1

)
−a+αj

}
√√√√√√√√√√

n+1
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 (n−2)(2i−1)π
n+1

+2c cos

 (n−1)(2i−1)π
n+1

+2b cos

 n(2i−1)π
n+1

−a+αj


2

(
c−a+e+4d cos

(
3π

n+1

))
sin

(
3π

n+1

)

{
2d cos

[
3(n−2)π

n+1

]
+2c cos

[
3(n−1)π

n+1

]
+2b cos

(
3nπ
n+1

)
−a+αj

}
√√√√√√√√√√

n+1
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 (n−2)(2i−1)π
n+1

+2c cos

 (n−1)(2i−1)π
n+1

+2b cos

 n(2i−1)π
n+1

−a+αj


2

.

.

.

(
c−a+e+4d cos

(
nπ
n+1

))
sin

(
nπ
n+1

)

{
2d cos

[
(n−2)nπ

n+1

]
+2c cos

[
(n−1)nπ

n+1

]
+2b cos

[
n2π
n+1

]
−a+αj

}
√√√√√√√√√√

n+1
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 (n−2)(2i−1)π
n+1

+2c cos

 (n−1)(2i−1)π
n+1

+2b cos

 n(2i−1)π
n+1

−a+αj


2



(3.12)

is an eigenvector associated to αj , j = 1, . . . , n+1
2 .

ii. µ2, µ4, . . . , µn−1 are all distinct then the eigenvalues of
diag(µ2, µ4, . . . , µn−1)− ξ(1) ◦ vvT are the zeros of the rational function

s(t) = 1 +
4

n + 1

n−1
2∑

i=1

(
c − a + e + 4d cos

(
2iπ
n+1

))
sin2

(
2iπ
n+1

)
2d cos

[
2i(n−2)π

n+1

]
+ 2c cos

[
2i(n−1)π

n+1

]
+ 2b cos

(
2niπ
n+1

)
+ a + t

. (3.13)

Moreover, the eigenvalues θ1, θ2, . . . , θn−1
2

of diag(µ2, µ4, . . . , µn−1)− ξ(2) ◦ vvT are all simple and

sj =



(
c−a+e+4d cos

(
2π

n+1

))
sin

(
2π

n+1

)

{
2d cos

[
2(n−2)π

n+1

]
+2c cos

[
2(n−1)π

n+1

]
+2b cos

[
2nπ
n+1

]
+a+θj

}√√√√√√√√√
n−1
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 2i(n−2)π
n+1

+2c cos

 2i(n−1)π
n+1

+2b cos
 2inπ
n+1

+a+θj


2

(
c−a+e+4d cos

(
4π

n+1

))
sin

(
4π

n+1

)

{
2d cos

[
4(n−2)π

n+1

]
+2c cos

[
4(n−1)π

n+1

]
+2b cos

(
4nπ
n+1

)
+a+θj

}√√√√√√√√√
n−1
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 2i(n−2)π
n+1

+2c cos

 2i(n−1)π
n+1

+2b cos
 2inπ
n+1

+a+θj


2

.

.

.

(
c−a+e+4d cos

[
(n−1)π

n+1

])
sin

[
(n−1)π

n+1

]

2d cos

[
(n−2)(n−1)π

n+1

]
+2c cos

 (n−1)2π
n+1

+2b cos

[
(n−1)nπ

n+1

]
+a+θj


√√√√√√√√√

n−1
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 2i(n−2)π
n+1

+2c cos

 2i(n−1)π
n+1

+2b cos
 2inπ
n+1

+a+θj


2



(3.14)

is an eigenvector associated to θj , j = 1, . . . , n−1
2 .

Proof . Use the procedure described in Lemma 2 for proof (a) and (b). □ We consider the eigenvectors corresponding
to distinct eigenvalues αj , j = 1, . . . , n

2 in Lemma 8 for n even such that ∥ rj ∥= 1 for j = 1, . . . , n
2 , we have

{r1, ..., rn
2
} is an orthonormal set, then we have an n

2 × n
2 orthogonal matrix

Rn
2

=



(
c−a+e+4d cos

[
(2k−1)π

n+1

])
sin

[
(2k−1)π

n+1

]

{
2d cos

[
3(2k−1)π

n+1

]
+2c cos

[
2(2k−1)π

n+1

]
+2b cos

[
(2k−1)π

n+1

]
+a−αj

}
√√√√√√√√√

n
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 3π
n+1

+2c cos
 2π
n+1

+2b cos
 π
n+1

+a−αj

2


k,j

(3.15)

Analogously, we have the n
2 × n

2 orthogonal matrix

Sn
2

=


(
c−a+e+4d cos

(
2kπ
n+1

))
sin

(
2kπ
n+1

)

{
2d cos

[
3(2k)π
n+1

]
+2c cos

[
2(2k)π
n+1

]
+2b cos

(
2kπ
n+1

)
+a−θj

}√√√√√√√√
n
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 3π
n+1

+2c cos
 2π
n+1

+2b cos
 π
n+1

+a−θj

2


k,j

. (3.16)

We repeated the simulations above with sample n odd so that for i. we have an orthogonal matrix

Rn+1
2

=



(
c−a+e+4d cos

[
(2k−1)π

n+1

])
sin

[
(2k−1)π

n+1

]

{
2d cos

[
3(2k−1)π

n+1

]
+2c cos

[
2(2k−1)π

n+1

]
+2b cos

[
(2k−1)π

n+1

]
+a−αj

}
√√√√√√√√√

n+1
2∑

i=1

c−a+e+4d cos

 (2i−1)π
n+1


2 sin2

 (2i−1)π
n+1


2d cos

 3π
n+1

+2c cos
 2π
n+1

+2b cos
 π
n+1

+a−αj

2


k,j

(3.17)
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Analogously, for ii. we define

Sn−1
2

=



(
c−a+e+4d cos

(
2kπ
n+1

))
sin

(
2kπ
n+1

)

{
2d cos

[
3(2k)π
n+1

]
+2c cos

[
2(2k)π
n+1

]
+2b cos

(
2kπ
n+1

)
+a−θj

}
√√√√√√√√√

n−1
2∑

i=1

c−a+e+4d cos
 2iπ
n+1

2 sin2
 2iπ
n+1


2d cos

 3π
n+1

+2c cos
 2π
n+1

+2b cos
 π
n+1

+a−θj

2


k,j

. (3.18)

Theorem 9. Let Hn in (1.2) be an n× n anti-heptadiagonal persymmetric Hankel matrices with perturbed corners,
(a) If n is even, µ1, µ3, . . . , µn−1 are all distinct and µ2, µ4, . . . , µn are all distinct, α1, α2, . . . , αn

2
are the zeros of

(3.7), θ1, θ2, . . . , θn
2
are the zeros of (3.9), P is the n× n permutation matrix (1.5), U is the n× n matrix in (1.6),

Rn
2
and Sn

2
are the matrices (3.15) and (3.16) respectively, then

Hn = UP

 Rn
2

0

0 Sn
2

 diag

(
α1, α2, . . . , αn

2
, θ1, θ2, . . . , θn

2

) RT
n
2

0

0 ST
n
2

P
T
U. (3.19)

(b) If n is odd, µ1, µ3, . . . , µn are all distinct and µ2, µ4, . . . , µn−1 are all distinct, α1, α2, . . . , αn+1
2

are the zeros of

(3.11), θ1, θ2, . . . , θn−1
2

are the zeros of (3.13), P is the n× n permutation matrix (1.8),

U is the n× n matrix in (1.9), Rn+1
2

and Sn−1
2

are the matrices (3.17) and (3.18) respectively, then

Hn = UP

 Rn+1
2

0

0 Sn−1
2

 diag

(
α1, . . . , αn+1

2

, θ1, . . . , θn−1
2

) RT
n+1
2

0

0 ST
n−1
2

P
T
U. (3.20)

Proof . (a) In Lemma 8, we have

diag(µ1, µ3, . . . , µn−1) + ξ(1) ◦ uuT = Rn
2
diag

(
α1, α2, . . . , αn

2

)
RT

n
2

(3.21)

where
(
α1, α2, . . . , αn

2

)
are the zeros of (3.7) and the matrix Rn

2
is orthogonal. We can also show

diag(µ2, µ4, . . . , µn) + ξ(1) ◦ vvT = Sn
2
diag

(
θ1, θ2, . . . , θn

2

)
ST

n
2

(3.22)

where
(
θ1, θ2, . . . , θn

2

)
are the zeros of (3.9) and the matrix Sn

2
is orthogonal. Therefore, from (a) of Theorem 7 and

(3.21) and (3.22) we obtain

Hn = UP

 Rn
2

0

0 Sn
2

 diag
(
α1, α2, . . . , αn

2
, θ1, θ2, . . . , θn

2

) RT
n
2

0

0 ST
n
2

P
T
U.

The same method can also be used to prove the part (b). □ Now we are in a position to extend the results of Theorem
4 for anti-heptadiagonal persymmetric Hankel matrices with perturbed corners.

Lemma 10. Let

Hn =



d c b e
d c b a b

d c b a b c
d c b a b c d

d c b a b c d

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

d c b e b c d
c b a b c d
b a b c d
e b c d


,

its eigenvalues are partitionable into two subsets(
α1, α2, . . . , αn

2

)
,
(
θ1, θ2, . . . , θn

2

)
, for n even,
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α1, α2, . . . , αn+1

2

)
,
(
θ1, θ2, . . . , θn−1

2

)
, for n odd.

We only extend the results for n even, the same way is shown for n odd.

Considering the polynomial ϕ(t) = −dt3−ct2−(b−3d)t−(a−2c), and assuming that ϕ
{
2 cos

(
iπ

n+1

)}
for i = 1, 2, . . . , n

with µ2i−1 and µ2i. Then we have

µ2i−1 ≤ αi ≤ µ2i+1 µ2i ≤ θi ≤ µ2i+2, i = 1, 2, . . . ,
n

2

µ1+ ∥ ξ(1) ◦ uuT ∥2≥ αi ≥ max{µ3, µn−1+ ∥ ξ(1) ◦ uuT ∥2}

µ2+ ∥ ξ(2) ◦ vvT ∥2≥ θi ≥ max{µ4, µn+ ∥ ξ(2) ◦ vvT ∥2}.

Theorem 11. Let n, m ∈ N and Hn in (1.2) be an n × n anti-heptadiagonal persymmetric Hankel matrices with
perturbed corners,

(a) If n is even, µ1, µ3, . . . , µn−1 are all distinct and µ2, µ4, . . . , µn are all distinct, α1, α2, . . . , αn
2
are the zeros

of (3.7), θ1, θ2, . . . , θn
2
are the zeros of (3.9), P is the n×n permutation matrix (1.5), U is the n×n matrix in (1.6),

Rn
2
and Sn

2
are the matrices (3.15) and (3.16) respectively, Hn is nonsingular then for every integer m, we have

H
m
n = UP

 Rn
2

0

0 Sn
2

 diag

(
α
m
1 , α

m
2 , . . . , α

m
n
2
, θ

m
1 , θ

m
2 , . . . , θ

m
n
2

) RT
n
2

0

0 ST
n
2

P
T
U.

(b) If n is odd, µ1, µ3, . . . , µn are all distinct and µ2, µ4, . . . , µn−1 are all distinct, α1, α2, . . . , αn+1
2

are the zeros of

(3.11), θ1, θ2, . . . , θn−1
2

are the zeros of (3.13), P is the n× n permutation matrix (1.8),

U is the n×n matrix in (1.9), Rn+1
2

and Sn−1
2

are the matrices (3.17) and (3.18) respectively, Hn is nonsingular then

for every integer m, we deduce

H
m
n = UP


Rn+1

2

0

0 Sn−1
2

 diag

(
α
m
1 , . . . , α

m
n+1
2

, θ
m
1 , . . . , θ

m
n−1
2

)
RT

n+1
2

0

0 ST
n−1
2

P
T

U.

Proof . We can easily deduce these results by Theorem 9. □

4 Final Comments

In this section, an orthogonal block diagonalization of the matrix Tn +Hn is introduced by Tn and Hn that are
the heptadiagonal symmetric Toeplitz matrices and anti-heptadiagonal persymmetric Hankel matrices, both having
perturbed corners. The representations (2.1) and (3.1) yield results for computing the inverse, the determinant and
eigenproblems for this class of matrices. Also, these relations help us to find an orthogonal block diagonalization of
the matrix Tn +Hn:

Theorem 12. Let Tn +Hn be an n× n Toeplitz-plus-Hankel matrix with perturbed corners

e b c d d c b e
b a b c d d c b a b
c b a b c d d c b a b c
d c b a b c d d c b a b c d

. . .
. . .

. . .
. . .

. . .
. . .

... . .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
. ...

. . .
. . .

. . .
. . .

. . .
. . .

d c b a b c d d c b a b c d
c b a b c d d c b a b c
b a b c d d c b a b
e b c d d c b e


(4.1)
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that the following Toeplitz matrix and Hankel matrix are shown in (1.1) and (1.2). Then the following relation holds:

Tn +Hn = UP

(
D1 +D3 + 2 (ξ(1) ◦ uuT ) 0

0 0

)
PTU. (4.2)

Proof . Here we prove this theorem using Theorem 3 and Theorem 9. We should collect Equations (2.21) and (3.19)
for n even, and Equations (2.24) and (3.20) for n odd. Then

Tn +Hn = UP

(
D1 +D3 + 2 (ξ(1) ◦ uuT ) 0

0 0

)
PTU.

□

Also,

Corollary 1. Let Tn +Hn be an n × n Toeplitz-plus-Hankel matrix with perturbed corners (4.1) and m ∈ N, then
by using Theorem 6 and Theorem 11 are shown:

[Tn +Hn]
m = UP

(
[D1 +D3 + 2 (ξ(1) ◦ uuT )]m 0

0 0

)
PTU.

These updating methods may yield faster performance or improved accuracy, either for sequential or for parallel
computations in similar cases.
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